JPS6350430B2 - - Google Patents

Info

Publication number
JPS6350430B2
JPS6350430B2 JP55179053A JP17905380A JPS6350430B2 JP S6350430 B2 JPS6350430 B2 JP S6350430B2 JP 55179053 A JP55179053 A JP 55179053A JP 17905380 A JP17905380 A JP 17905380A JP S6350430 B2 JPS6350430 B2 JP S6350430B2
Authority
JP
Japan
Prior art keywords
carburizing
gas
nitrogen
furnace
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55179053A
Other languages
Japanese (ja)
Other versions
JPS5696070A (en
Inventor
Uisu Urusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAAKU TSUAANREEDAA UNTO MASHIINEN AG
Original Assignee
MAAKU TSUAANREEDAA UNTO MASHIINEN AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAAKU TSUAANREEDAA UNTO MASHIINEN AG filed Critical MAAKU TSUAANREEDAA UNTO MASHIINEN AG
Publication of JPS5696070A publication Critical patent/JPS5696070A/en
Publication of JPS6350430B2 publication Critical patent/JPS6350430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 本発明はメタノールとチツ素から得たキヤリヤ
ガスおよび浸炭剤からなる炉の雰囲気中で所定の
C―レベルで鋼部材を制御可能にガス浸炭する方
法に関する。同様にこの方法は部材の炭素量を増
加または減少せずに、調節したC―レベルにより
1定に保持することを保証する鋼部材の加熱法に
も関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controllably gas carburizing steel components at a predetermined C-level in a furnace atmosphere consisting of a carrier gas derived from methanol and nitrogen and a carburizing agent. The method likewise relates to a method for heating steel parts, which ensures that the carbon content of the part remains constant by means of an adjusted C-level, without increasing or decreasing it.

種々のガス浸炭法が公知である。1つの公知法
によればキヤリヤガスは発生器内で天然ガス、プ
ロパンまたは他の炭化水素および空気から吸熱反
応で形成され、このガスが次に浸炭炉または熱処
理炉へ導入される。所望のC―レベルに調節する
ための浸炭剤としてプロパン、天然ガスまたは他
の炭化水素が直接炉の雰囲気へ導入される。この
ような方法により浸炭剤の供給を、所定C―レベ
ルを維持するための瞬間的需要に応じて炉の雰囲
気のC―レベルに対し臨界的なガス成分を介して
自動的に制御する可能性が得られる。そのために
は水蒸気(露点)、CO2またはO2が適する。この
方法の欠点は熱処理炉または浸炭炉の外部でキヤ
リヤガスを製造するための発生炉および発生炉の
作業のための熱エネルギーを必要とすることであ
る。
Various gas carburizing methods are known. According to one known method, a carrier gas is formed in a generator from natural gas, propane or other hydrocarbons, and air in an endothermic reaction, and this gas is then introduced into a carburizing or heat treatment furnace. Propane, natural gas or other hydrocarbons are introduced directly into the furnace atmosphere as a carburizing agent to adjust the desired C-level. Such a method provides the possibility of automatically controlling the supply of carburizing agent via the gas component critical to the C-level of the furnace atmosphere depending on the instantaneous demand to maintain a predetermined C-level. is obtained. Water vapor (dew point), CO 2 or O 2 are suitable for this purpose. A disadvantage of this method is that it requires a generator for producing the carrier gas and thermal energy for the operation of the generator outside the heat treatment or carburizing furnace.

発生炉なしのガス浸炭法も公知であり、これに
よれば直接炉内へメタノールとチツ素を適当な比
で導入し、それによつて炉内にキヤリヤガスが形
成される。この方法により発生炉内で天然ガスと
空気から前記方法により得られるものと同様の組
成のキヤリヤガスが得られる(Heat Treatment
of Metals、1979年53〜58ページ参照)。
Gas carburizing processes without a generator furnace are also known, in which methanol and nitrogen are introduced directly into the furnace in a suitable ratio, thereby forming a carrier gas in the furnace. By this method, a carrier gas with a composition similar to that obtained by the above method is obtained from natural gas and air in the generator (Heat Treatment
of Metals, 1979, pp. 53-58).

この2つの公知法は次の反応式に基く: 2CH4+空気→2CO+4H2+4N2 2CH3OH+4N2→2CO+4H2+4N2 平衡条件に基くキヤリヤガス中の少量の2酸化
炭素、水蒸気および酸素はこの式では概要を示す
ため無視している。発生器法の場合天然ガス2容
量部に対し空気5容量部を必要とする。メタノー
ル法の場合メタノール100gに対しチツ素0.14m3 S
が必要である。
These two known methods are based on the following reaction equation: 2CH 4 + Air → 2CO + 4H 2 + 4N 2 2CH 3 OH + 4N 2 → 2CO + 4H 2 + 4N 2 Based on equilibrium conditions, small amounts of carbon dioxide, water vapor and oxygen in the carrier gas are This is ignored for the purpose of providing an overview. In the case of the generator method, 5 parts by volume of air are required for 2 parts by volume of natural gas. In the case of methanol method, 0.14m of nitrogen per 100g of methanol 3 S
is necessary.

西独特許第1192486号明細書により鋼部材の制
御可能の浸炭法が公知であり、この場合2種の物
質が使用され、その1つは過圧を発生するキヤリ
ヤガスを形成することができ、他は本来の浸炭剤
である。浸炭反応の後、炉の雰囲気のガス状生成
物の組成は同じまたはほぼ同じに留まる。この方
法により1つまたは両方の物質、とくに浸炭ガス
を発生する物質の供給の自動的制御が可能にな
り、その際炉の雰囲気の1つのガス成分の含量が
制御値として使用される。この公知法によれば連
続的にまたはときどき炉の雰囲気の水蒸気の含量
をとくに露点の測定を介して、またはCO2含量を
測定することができ、これらのガス成分を介して
物質の供給が制御される。キヤリヤガスをつくる
物質としてメタノールを使用する場合、浸炭剤と
してはエチルアセテート、アセトン、イソプロパ
ノールまたはイソプロパノールと水の混合物が適
当である。浸炭剤としてアセトンを使用する場
合、キヤリヤガスをつくる物質としてはメタノー
ルとイソプロパノールの混合物が適当である。
From German Patent No. 1 192 486 a controllable carburizing process for steel parts is known, in which two substances are used, one of which can form a carrier gas that generates an overpressure, the other It is a natural carburizing agent. After the carburizing reaction, the composition of the gaseous products in the furnace atmosphere remains the same or nearly the same. This method makes it possible to automatically control the supply of one or both substances, in particular those generating carburizing gases, using the content of one gas component of the furnace atmosphere as a control value. According to this known method, the water vapor content of the furnace atmosphere can be determined continuously or from time to time, in particular by measuring the dew point, or the CO 2 content, and the supply of substances via these gas components can be controlled. be done. If methanol is used as the material for producing the carrier gas, ethyl acetate, acetone, isopropanol or a mixture of isopropanol and water are suitable as carburizing agents. When acetone is used as the carburizing agent, a mixture of methanol and isopropanol is suitable as the substance forming the carrier gas.

しかしこの方法の欠点は低い焼入温度および
(または)低いC―レベルで露点が比較的高く、
ほぼ室温の範囲にあるので、この方法によれば測
定管内に水の凝縮が生じ、制御値を乱し、したが
つて浸炭剤の誤まつた供給が行われることであ
る。
However, the disadvantage of this method is that the dew point is relatively high at low quenching temperatures and/or low C-levels.
Since this is approximately in the room temperature range, this method results in water condensation in the measuring tube, which disturbs the control values and thus leads to incorrect dosing of the carburizing agent.

本発明の目的は簡単で信頼性の高い制御が可能
であり、キヤリヤガスの所要量を著しく低下しう
る、所定のC―レベルにおける鋼部材表面の制御
可能の浸炭または加熱法を得ることである。
The object of the invention is to provide a controllable carburizing or heating process for the surface of a steel component at a predetermined C-level, which is simple and reliable to control and can significantly reduce the carrier gas requirements.

本発明の方法はメタノールとチツ素から得られ
るキヤリヤガス浸炭剤からなる炉雰囲気中のガス
浸炭から出発して、炭化水素の酸素誘導体の形の
浸炭剤に対し付加的に、ガスが浸炭反応の後にほ
ぼ同じ組成またはほぼ同じに留まる組成を有する
ような量のチツ素を供給し、浸炭剤および(また
は)付加的チツ素の供給を公知法で炉の雰囲気の
C―レベルに対し臨界的なガス成分の含量を連続
的に測定することによつて制御することを特徴と
する。とくに浸炭剤としてはエチルアセテート、
アセトン、エタノールまたはイソプロパノールが
使用される。制御は有利に炉の雰囲気の酸素ポテ
ンシヤルまたは水蒸気含量すなわち露点の測定を
介して行われる。浸炭反応後のガスはCO 10〜25
%、H2 20〜50%およびN2 70〜20%を含む。
The process of the invention starts from gas carburizing in the furnace atmosphere consisting of a carrier gas carburizing agent obtained from methanol and nitrogen, and additionally to the carburizing agent in the form of an oxygen derivative of the hydrocarbon, the gas is added after the carburizing reaction. Nitrogen is supplied in an amount such that the composition has approximately the same composition or remains approximately the same, and the carburizing agent and/or additional nitrogen is supplied in a known manner with a gas critical to the C-level of the furnace atmosphere. It is characterized in that it is controlled by continuously measuring the content of the components. In particular, ethyl acetate is used as a carburizing agent.
Acetone, ethanol or isopropanol are used. Control is preferably carried out via measurement of the oxygen potential or the water vapor content, ie the dew point, of the furnace atmosphere. The gas after carburizing reaction is CO 10~25
%, containing 20-50% H2 and 70-20% N2 .

本発明によれば付加的に供給するチツ素は浸炭
剤の供給量に応じて調節されるので、炉の雰囲気
中でガス組成はキヤリヤガス(2CO+4H2+4N2
に従つてまつたくまたはほとんど変化せず、それ
によつて炉の雰囲気の臨界的ガス成分を介する制
御可能性が保証され、キヤリヤガスしたがつてメ
タノールの所要量を公知法に比して著しく低下す
ることができる。
According to the present invention, the additionally supplied nitrogen is adjusted according to the supply amount of the carburizing agent, so that the gas composition in the furnace atmosphere is the carrier gas (2CO + 4H 2 + 4N 2 ).
Accordingly, there is little or no change, thereby ensuring controllability over the critical gas component of the furnace atmosphere and significantly reducing the required amount of carrier gas and therefore of methanol compared to known processes. I can do it.

本発明の方法は発生器で吸熱的に製造して浸炭
の際消費されるキヤリヤガスが適当な比のメタノ
ールとチツ素によつて置替えられるだけでなく、
ガス所要量を著しく低下しうる利点を有する。そ
れは本発明により浸炭剤を適当量のチツ素ととも
に供給することによつてガス組成の移動が避けら
れるからである。
The process of the invention not only allows the carrier gas produced endothermically in the generator and consumed during carburization to be replaced by methanol and nitrogen in a suitable ratio;
This has the advantage of significantly reducing gas requirements. This is because according to the present invention, by supplying the carburizing agent with an appropriate amount of nitrogen, migration of the gas composition is avoided.

過圧を維持し、または炉室への空気侵入を避け
るためのみには少量のガス供給しか必要でない。
これは本発明の方法の経済性が第1に低いキヤリ
ヤガス所要量にあることを意味する。
Only a small gas supply is required just to maintain overpressure or to avoid air ingress into the furnace chamber.
This means that the economics of the process of the invention lies in the firstly low carrier gas requirements.

前記技術水準によるたとえばキヤリヤガス発生
器内で浸炭剤として炭化水素を添加することによ
り、またはメタノールもしくはチツ素を導入する
際、炉内で浸炭反応(たとえばCH4→C+2H2
により、浸炭すべき面積が大きいほど多量に水素
が発生する。それによつて表面積が大きい場合、
炉の雰囲気の組成が非常に迅速に移動することが
生じうる。これを避けるため、十分な過圧だけで
なく、とくに1定のガス組成も保証するように、
吸熱的に製造したキヤリヤガスを大過剰で供給し
なければならなかつた。質量作用の法則により炉
ガスのCO2含量または酸素ポテンシヤルを介する
C―レベルの満足な制御のためにはCO含量を1
定に保持しなければならない。
According to the state of the art, for example by adding hydrocarbons as carburizing agent in a carrier gas generator or when introducing methanol or nitrogen, a carburizing reaction (for example CH 4 →C+2H 2 ) is carried out in the furnace.
Therefore, the larger the area to be carburized, the more hydrogen is generated. If the surface area is thereby large,
It can occur that the composition of the furnace atmosphere shifts very quickly. To avoid this, ensure not only a sufficient overpressure but also, in particular, a constant gas composition.
A large excess of endothermically produced carrier gas had to be supplied. According to the law of mass action, for satisfactory control of the CO 2 content of the furnace gas or the C level via the oxygen potential, the CO content must be reduced to 1.
must be maintained at a constant level.

露点による公知制御法の場合、H2およびCOの
分圧の積は1定でなければならない。C―レベル
の満足な制御のためのこれらすべての前提は現在
まで適当に大きい過剰のキヤリヤガスによらなけ
れば維持できなかつた。しかしこれは天然ガスの
過大な消費、したがつて不経済な浸炭を意味す
る。
In the case of the known control method by dew point, the product of the partial pressures of H 2 and CO must be constant. All these prerequisites for satisfactory control of the C-level could up to now only be maintained with a suitably large excess of carrier gas. However, this means excessive consumption of natural gas and therefore uneconomical carburization.

他面公知技術によればキヤリヤガス量を減少す
ると、浸炭反応の制御が非常に困難になることが
明らかになつた。浸炭剤として炭化水素を使用す
る場合、公知のように浸炭反応で水素しか発生し
ない。キヤリヤガス量が少な過ぎる場合、炉の雰
囲気の組成が大きく移動するので、C―レベルは
これに対して臨界的なガス成分(CO2、H2O、
O2)を介する制御によつてはもはや信頼可能に
支配できない。本発明の方法によればこれらの困
難が避けられる。それは (a) キヤリヤガスに浸炭剤として純炭化水素の代
りにその酸素誘導体たとえばアルコール、エス
テル、ケトンまたはアルデヒドを供給し、それ
によつて炉の雰囲気のCO含量の大きい変動が
避けられ、 (b) 浸炭剤の制御された間欠的または連続的供給
と同時に浸炭剤量に対応する量のチツ素を炉へ
導入するので、浸炭過程で発生するガス混合物
はキヤリヤガスの組成に相当し、またはこれに
非常に近づくからである。
On the other hand, according to known techniques, it has become clear that if the amount of carrier gas is reduced, it becomes very difficult to control the carburizing reaction. When a hydrocarbon is used as a carburizing agent, only hydrogen is generated in the carburizing reaction, as is known. If the amount of carrier gas is too low, the composition of the furnace atmosphere will shift significantly, so that the C-level will be reduced by the critical gas components (CO 2 , H 2 O,
can no longer be reliably dominated by control via O 2 ). The method of the invention avoids these difficulties. It (a) supplies the carrier gas with its oxygen derivatives, such as alcohols, esters, ketones or aldehydes, instead of pure hydrocarbons as carburizing agent, thereby avoiding large fluctuations in the CO content of the furnace atmosphere, and (b) carburizing. Due to the controlled intermittent or continuous supply of carburizing agent and simultaneous introduction of nitrogen into the furnace in an amount corresponding to the amount of carburizing agent, the gas mixture generated during the carburizing process corresponds to the composition of the carrier gas or is very similar to this. Because it approaches.

次に例により本発明の方法の根拠を説明する: (A) キヤリヤガスを製造するメタノールおよびチ
ツ素: CH3OH+2N2→CO+2H2+2N2 ガスのCO含量は約20%である。浸炭剤とし
てまたはC―レベル調節のためのイソプロパノ
ールを導入し、それによつて浸炭反応の際同様
CO含量20%のガスが得られる: C3H7OH→2C+CO+4H2 CO2含量を介してC―レベルを制御する場
合、非常に少量のキヤリヤガスの場合もチツ素
添加は必要でない。というのはCO含量はイソ
プロパノール分が高い場合も1定に留まるから
である。
The rationale for the method of the invention will now be explained by way of example: (A) Methanol and nitrogen for producing carrier gas: CH 3 OH+2N 2 →CO+2H 2 +2N 2 The CO content of the 2 gas is approximately 20%. Introducing isopropanol as a carburizing agent or for C-level adjustment, thereby increasing the
A gas with a CO content of 20% is obtained: C 3 H 7 OH→2C+CO+4H 2 If the C level is controlled via the CO 2 content, no nitrogen addition is necessary even with very small amounts of carrier gas. This is because the CO content remains constant even when the isopropanol content is high.

これに反しPH2・PCOの積はイソプロパノール
によつて著しく高くなるので、露点を介する制
御には、とくに浸炭剤所要量が多く、キヤリヤ
ガスが少量の場合、イソプロパノール添加と同
時にチツ素も供給しなければならない。
On the other hand, the P H2 P CO product is significantly higher with isopropanol, so for control via dew point, especially when the required amount of carburizing agent is large and the carrier gas is small, it is necessary to supply nitrogen at the same time as isopropanol addition. There must be.

(B) 浸炭剤としてのまたはC―レベル制御のため
のアセトン: キヤリヤガス製造のためメタノール100gお
よびチツ素0.14m3 Sを使用すれば、浸炭剤とし
ての単独のアセトンは容易にCO含量を増大す
るので、キヤリヤガス量の著しい減少またはア
セトンの供給速度が高い場合、1定のCO2含量
または1定のO2ポテンシヤルを介してC―レ
ベルを制御すれば著しく高いC―レベルが生ず
る。しかし制御されたアセトン供給と同時にア
セトン100gに対しチツ素0.0386m3 Sを付加的に
供給すれば、制御器の同じ調節でCO含量およ
びC―レベルも1定に留まる。他面露点を介し
てC―レベルを制御する場合、PH2・PCOの積が
ほぼ1定に留まるように、同じキヤリヤガスの
場合アセトン100gとともにチツ素0.082m3 S
さらに供給しなければならない。
(B) Acetone as carburizing agent or for C-level control: Acetone alone as carburizing agent easily increases the CO content if 100 g methanol and 0.14 m 3 S of nitrogen are used for carrier gas production. Therefore, if the carrier gas quantity is significantly reduced or the acetone feed rate is high, controlling the C-level via a constant CO 2 content or a constant O 2 potential will result in significantly higher C-levels. However, if 0.0386 m 3 S of nitrogen is added to 100 g of acetone simultaneously with the controlled acetone feed, the CO content and C-level also remain constant with the same adjustment of the controller. On the other hand, when controlling the C-level via the dew point, in the case of the same carrier gas, 0.082 m 3 S of nitrogen must be additionally supplied with 100 g of acetone so that the product of P H2 · P CO remains approximately constant. .

(C) Bを変化して浸炭剤としてエチルアセテート
を使用すればエチルアセテートの単独供給によ
つてCOおよびH2含量が著しく上昇し、これは
制御装置の調節が同じ場合、C―レベルを過大
にする。そこでキヤリヤガス量を減少する場
合、エチルアセテート100gに対しチツ素
0.102m3 Sを同時に供給し、CO含量およびCOお
よびH2の分圧の積を1定に保持することが必
要である。この方法で酸素ポテンシヤルまたは
露点を介してC―レベルを信頼可能に制御する
ことができる。CO2を介する制御は分解の際中
間的に生成するCO2のため不適当である。
(C) If B is varied and ethyl acetate is used as the carburizing agent, feeding ethyl acetate alone will significantly increase the CO and H 2 content, which, with the same control adjustment, will cause the C level to be too high. Make it. Therefore, when reducing the amount of carrier gas, add nitrogen to 100g of ethyl acetate.
It is necessary to simultaneously feed 0.102 m 3 S and keep the CO content and the product of the partial pressures of CO and H 2 constant. In this way C-levels can be reliably controlled via oxygen potential or dew point. Control via CO 2 is inappropriate due to the intermediate formation of CO 2 during decomposition.

浸炭剤需要に適する付加的チツ素供給のA、B
およびCに記載した方法により、正確な制御過程
を妨害するガス組成の変化を避けることができ
る。したがつて本発明により単位時間に供給する
キヤリヤガス量を著しく減少し、極端な場合僅か
な過圧を維持するために必要な量まで低下するこ
とができる。
Additional nitrogen supply A, B suitable for carburizing agent demand
The method described in and C makes it possible to avoid changes in the gas composition that would interfere with the precise control process. The invention therefore makes it possible to significantly reduce the amount of carrier gas supplied per unit time, in extreme cases down to the amount required to maintain a slight overpressure.

本発明の方法は浸炭にも、調節したC―レベル
における焼入温度への加熱にも使用することがで
きる。いずれの場合も制御の原理は同じである。
The method of the invention can be used for carburizing as well as for heating to quenching temperatures at controlled C-levels. The control principle is the same in either case.

次に本発明の方法を図面の実施装置により説明
する。
Next, the method of the present invention will be explained using the implementation device shown in the drawings.

浸炭炉1は制御ガス導管1aを介してC―レベ
ル制御装置2と結合する。浸炭炉1はポツト炉、
シヤフト炉、レトルト炉または連続加熱炉であり
うる。C―レベル制御装置2は制御値として赤外
線分光分析により測定したCO2含量、露点または
酸素ポテンシヤルを介して作業する装置である。
浸炭炉1は第1ののぞき窓6aおよび能力可変の
第1ポンプ5を有するメタノール供給管6により
メタノールタンク3と結合し、第2ののぞき窓8
aおよび能力可変の第2ポンプ7を有する導管8
を介して浸炭剤貯蔵タンク4と結合する。第2ポ
ンプは制御装置2によつて作動される。浸炭炉1
へのチツ素供給管13は第1流量計12および第
1制御弁ならびに第2流量計および第2制御弁を
介して共通の圧力調節器10を有するチツ素タン
ク9と結合する。第2流量計15とチツ素供給管
13の間に制御装置2によつて作動される電磁弁
16が備えられ、この弁はチツ素を第2ポンプが
浸炭剤を炉へ供給する場合のみ供給するために役
立つ。第1制御弁11ではそれゆえメタノールに
比例するチツ素量、第2制御弁14では浸炭剤と
ともに供給されるチツ素量が調節される。
The carburizing furnace 1 is connected to a C-level control device 2 via a control gas line 1a. Carburizing furnace 1 is a pot furnace,
It can be a shaft furnace, a retort furnace or a continuous heating furnace. The C-level control device 2 is a device that operates via the CO 2 content, dew point or oxygen potential determined by infrared spectroscopy as control values.
The carburizing furnace 1 is connected to a methanol tank 3 through a methanol supply pipe 6 having a first sight port 6a and a first pump 5 with variable capacity, and a second sight port 8.
a and a conduit 8 with a variable capacity second pump 7
It is connected to the carburizing agent storage tank 4 via. The second pump is operated by the control device 2. Carburizing furnace 1
The nitrogen supply pipe 13 to the nitrogen tank 9 is connected to the nitrogen tank 9 with a common pressure regulator 10 via a first flow meter 12 and a first control valve and a second flow meter and a second control valve. A solenoid valve 16 operated by the control device 2 is provided between the second flow meter 15 and the nitrogen supply pipe 13, and this valve supplies nitrogen only when the second pump supplies carburizing agent to the furnace. useful for. In the first control valve 11, therefore, the amount of nitrogen proportional to methanol is regulated, and in the second control valve 14, the amount of nitrogen supplied together with the carburizing agent is regulated.

炉はたとえば西独特許第1192486号明細書に記
載の炉である。この炉は加熱要素18を備えたラ
イニング17を有する。ライニング内部には断熱
ぶた20を有するレトルト19が配置され、この
ふたは21の位置で気密に閉鎖される。レトルト
内には炉の作業の際処理すべき部材23を支持す
る装入架台22がある。処理すべき部材はベンチ
レータ24によつて循環する炉ガスによつて全面
的に洗われる。ベンチレータ24、上部ガイド板
25および側面ガイド板26の配置によつて矢で
示すガスの流れが生ずる。炉ガスは27から放出
される。
The furnace is, for example, the furnace described in German Patent No. 1192486. The furnace has a lining 17 with heating elements 18. A retort 19 with a heat-insulating lid 20 is arranged inside the lining and is closed airtight at position 21. Inside the retort there is a charging frame 22 which supports the parts 23 to be processed during furnace operation. The parts to be treated are thoroughly flushed by the furnace gas circulated by the ventilator 24. The arrangement of the ventilator 24, the upper guide plate 25 and the side guide plate 26 results in a gas flow shown by the arrows. Furnace gas is discharged from 27.

次にこの図面の装置内での浸炭を例により説明
する: 例 1 ポツト炉内で17 CrNiMo 6からなるピニオン
20個のチヤージを1mmの浸炭深さに浸炭する。
Next, carburizing in the apparatus shown in this drawing will be explained by example: Example 1 A pinion made of 17 CrNiMo 6 in a pot furnace.
Carburize 20 charges to a carburizing depth of 1mm.

ピニオンを常用架台により約750℃に予熱した
炉へ装入し、炉を閉鎖し、ただちに炉室を空気駆
出のためチツ素で洗う。炉温は温度制御器により
浸炭温度に調節した。加熱の間にすでにチツ素量
を手により作動する弁11により0.63m3 S/hに、
メタノール量をポンプ5により450g/hに調節
したので、920℃の浸炭温度に達したときすでに
炉の雰囲気の所望の基本組成CO 18〜20%、H2
38〜40%およびN2約40%が生じた。そこで弁1
4により付加的チツ素量を0.574m3 S/hに、アセ
トンポンプの供給量を700g/hに調節した。制
御装置は所望のC―レベルの維持に必要なアセト
ンおよび付加的チツ素の供給を制御した。メタノ
ールポンプ5は今や300g/hの低い供給量へ、
チツ素供給は手により作動する弁11および流量
計12により0.420m3 S/hに調節することができ
た。露点、CO2含量および酸素ポテンシヤルは低
下した。これらは制御器2により1定値すなわち
C 1%に保持された。6.25時間後浸炭を終了し
た。
The pinion is placed into a furnace preheated to approximately 750°C using a conventional mount, the furnace is closed, and the furnace chamber is immediately flushed with nitrogen to expel air. The furnace temperature was adjusted to the carburizing temperature using a temperature controller. Already during heating, the amount of nitrogen was reduced to 0.63 m 3 S / h by means of a manually actuated valve 11.
The amount of methanol was adjusted to 450 g/h by pump 5, so that when the carburizing temperature of 920 °C was reached, the desired basic composition of the furnace atmosphere was already CO 18-20%, H 2
38-40% and about 40% N2 resulted. So valve 1
4, the additional amount of nitrogen was adjusted to 0.574 m 3 S /h, and the supply amount of the acetone pump was adjusted to 700 g/h. A controller controlled the supply of acetone and additional nitrogen necessary to maintain the desired C-level. Methanol pump 5 now has a low feed rate of 300g/h,
The nitrogen supply could be adjusted to 0.420 m 3 S /h by means of a manually operated valve 11 and a flow meter 12. Dew point, CO 2 content and oxygen potential decreased. These were held by controller 2 at a constant value of 1 or C 1%. Carburizing was completed after 6.25 hours.

例 2 14 NiCr 14鋼のピニオン6個のチヤージの加
熱の場合、浸炭および冷却後、800℃の焼入温度
への再加熱は炉の雰囲気を0.80%のC―レベルが
保証されるように調節しなければならなかつた。
それによつて1つには脱炭が避けられ、他面1部
脱炭した表面範囲が再び表面炭素量の標準値まで
浸炭される。
Example 2 In the case of heating a charge of 6 pinions of 14 NiCr 14 steel, after carburizing and cooling, reheating to a quenching temperature of 800 °C adjusts the furnace atmosphere to ensure a C-level of 0.80%. I had to.
On the one hand, decarburization is thereby avoided, and on the other hand, the partially decarburized surface area is again carburized to the standard value of the surface carbon content.

この場合2重室炉内で浸炭の場合とまつたく同
様に処理した。ピニオンを装入ケージにより前室
を通して約750℃に予熱された炉室へ装入した。
中間ドアおよび前室ドアを閉鎖した後、ただちに
空気を駆出するためチツ素で洗い、炉温を800℃
に調節し、加熱の間チツ素量を0.630m3 S/hに、
メタノール量を450g/hに調節したので、800℃
の焼入温度に達した際すでに所望の基本ガス組成
CO 18〜20%、H2 38〜40%およびN2約40%が達
成された。手動弁14を介して付加的チツ素量を
0.155m3 S/hに、アセトンポンプの供給量を400
g/hに調節した。制御装置2は0.80%のC―レ
ベルの維持に必要なアセトンおよびチツ素の供給
を制御した。次にメタノールポンプ5を300g/
hの供給量に、チツ素供給を0.420m3 S/hに調節
した。2時間の加熱の後メタノールポンプ5およ
びアセトンポンプ7を停止し、炉室および前室の
パージのためチツ素供給量を著しく高い値に調節
した。次に前室内でピニオンの焼入を行つた。
In this case, the treatment was carried out in a double chamber furnace in exactly the same manner as in the case of carburizing. The pinion was loaded into the furnace chamber, which was preheated to about 750° C., through a charging cage through the prechamber.
After closing the intermediate door and front room door, immediately wash with nitrogen to expel air and raise the furnace temperature to 800℃.
During heating, the amount of nitrogen was adjusted to 0.630 m 3 S / h.
Since the amount of methanol was adjusted to 450g/h, the temperature was 800℃.
The desired basic gas composition is already present when the quenching temperature is reached.
18-20% CO, 38-40% H2 and about 40% N2 were achieved. Additional titanium content via manual valve 14
0.155m 3 S / h, the supply amount of acetone pump is 400
g/h. Controller 2 controlled the supply of acetone and nitrogen necessary to maintain the 0.80% C-level. Next, add methanol pump 5 to 300g/
The nitrogen supply was adjusted to 0.420 m 3 S /h. After heating for 2 hours, the methanol pump 5 and the acetone pump 7 were stopped, and the nitrogen feed rate was adjusted to a significantly higher value in order to purge the furnace chamber and the front chamber. Next, the pinion was hardened in the front chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法を実施する装置の略示図で
ある。 1…浸炭炉、2…C―レベル制御装置、3…メ
タノールタンク、4…アセトンタンク、5,7…
ポンプ、6a,8a…のぞき窓、9…チツ素タン
ク、12,15…流量計、18…加熱要素、19
…レトルト、22…架台、24…ベンチレータ。
The drawing is a schematic illustration of an apparatus for carrying out the method of the invention. 1... Carburizing furnace, 2... C-level control device, 3... Methanol tank, 4... Acetone tank, 5, 7...
Pump, 6a, 8a... Peephole, 9... Nitanium tank, 12, 15... Flow meter, 18... Heating element, 19
... Retort, 22... Frame, 24... Ventilator.

Claims (1)

【特許請求の範囲】 1 メタノールとチツ素から得られるキヤリヤガ
スおよび炭化水素の酸素誘導体の形の浸炭剤から
なる炉の雰囲気中の所定のC―レベルにおける保
護ガス中で鋼部材を制御可能にガス浸炭または加
熱する方法において、浸炭剤に対して付加的に、
浸炭反応後のガスがほぼ同じまたはほぼ同じに留
まるガス組成を有するような量のチツ素を供給
し、浸炭剤および(または)付加的チツ素の供給
を公知法で炉の雰囲気のC―レベルに対し臨界的
なガス成分の量を連続的に測定することによつて
制御することを特徴とする保護ガス中で鋼部材を
制御可能に浸炭または加熱する方法。 2 浸炭剤としてエチルアセテート、アセトン、
エタノールまたはイソプロパノールを使用する特
許請求の範囲第1項記載の方法。 3 炉の雰囲気の酸素ポテンシアル、CO2含量ま
たは水蒸気含量を介して、とくに露点の測定によ
つて制御する特許請求の範囲第1項または第2項
記載の方法。
[Claims] 1. Controllable gas-gassing of steel parts in a protective gas at a predetermined C-level in the furnace atmosphere consisting of a carrier gas obtained from methanol and nitrogen and a carburizing agent in the form of an oxygen derivative of a hydrocarbon. In the carburizing or heating method, in addition to the carburizing agent,
Supplying an amount of nitrogen such that the gas after the carburizing reaction has approximately the same or approximately the same gas composition, and supplying the carburizing agent and/or additional nitrogen to the C-level of the furnace atmosphere in a known manner. 1. A method for controllably carburizing or heating steel parts in a protective gas, characterized in that the amount of a gas component critical to the gas is controlled by continuous measurement. 2 Ethyl acetate, acetone, as a carburizing agent
2. A method according to claim 1, wherein ethanol or isopropanol is used. 3. The method as claimed in claim 1 or 2, wherein the oxygen potential, the CO 2 content or the water vapor content of the furnace atmosphere is controlled, in particular by measuring the dew point.
JP17905380A 1979-12-20 1980-12-19 Carburizing of heating of steel member controllably in protecting gas Granted JPS5696070A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1130379A CH643597A5 (en) 1979-12-20 1979-12-20 METHOD FOR ADJUSTABLE CARBONING OR HEATING IN PROTECTIVE GAS FROM WORKPIECE STEEL.

Publications (2)

Publication Number Publication Date
JPS5696070A JPS5696070A (en) 1981-08-03
JPS6350430B2 true JPS6350430B2 (en) 1988-10-07

Family

ID=4372157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17905380A Granted JPS5696070A (en) 1979-12-20 1980-12-19 Carburizing of heating of steel member controllably in protecting gas

Country Status (9)

Country Link
EP (1) EP0031034B1 (en)
JP (1) JPS5696070A (en)
BR (1) BR8008362A (en)
CH (1) CH643597A5 (en)
DE (2) DE3019830C2 (en)
FR (1) FR2472034B1 (en)
GB (1) GB2066301B (en)
IT (1) IT1149924B (en)
SU (1) SU1261567A3 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415378A (en) * 1982-04-22 1983-11-15 Dana Corporation Case hardening method for steel parts
FR2527641A1 (en) * 1982-05-28 1983-12-02 Air Liquide PROCESS FOR THERMALLY TREATING METALLIC PARTS THROUGH CARBURATION
US4512821A (en) * 1982-12-20 1985-04-23 Procedyne Corp. Method for metal treatment using a fluidized bed
JPS6372821A (en) * 1986-09-16 1988-04-02 Osaka Oxygen Ind Ltd Treatment of metal
DE3718240C1 (en) * 1987-05-30 1988-01-14 Ewald Schwing Process for the heat treatment of metallic workpieces in a gas-flowed fluidized bed
DE3810775C2 (en) * 1988-03-30 1996-05-23 Schlafhorst & Co W Spinning rotor
DE3830559C1 (en) * 1988-09-08 1989-03-09 Linde Ag, 6200 Wiesbaden, De
DE10307341B4 (en) * 2003-02-21 2006-02-02 Bayerische Motoren Werke Ag Support plate for receiving a ring gear
DE10321414B4 (en) * 2003-05-13 2008-12-18 Robert Bosch Gmbh Process for the heat treatment of metallic workpieces in chamber furnaces
CN109778106A (en) * 2018-11-14 2019-05-21 苏州工业园区姑苏科技有限公司 A kind of control system and adjusting method of the n-formyl sarcolysine alcohol protective atmosphere of meshbeltfurnace
CN113913731A (en) * 2021-11-12 2022-01-11 陕西柴油机重工有限公司 Press-in type controllable atmosphere generating device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB816051A (en) * 1954-12-18 1959-07-08 Renault Improvements in or relating to a process for preparing a gas suitable for the case hardening of steel
DE1208148B (en) * 1959-05-11 1965-12-30 Hurth Masch Zahnrad Carl Process for carburizing workpieces made of iron
GB952363A (en) * 1959-10-07 1964-03-18 Nissan Motor Heat treatment of steels with a mixed gas of nitrogen and hydrocarbon
IT649978A (en) * 1960-06-17
DE2163476A1 (en) * 1971-12-21 1973-07-12 Jenaer Glaswerk Schott & Gen PROCESS FOR INCREASING THE MECHANICAL STRENGTH OF GLASS-METAL FUSIONS BY CARBURIZING IRON AND IRON ALLOYS
LU71534A1 (en) * 1973-12-21 1975-06-17
US4049473A (en) * 1976-03-11 1977-09-20 Airco, Inc. Methods for carburizing steel parts
US4175986A (en) * 1978-10-19 1979-11-27 Trw Inc. Inert carrier gas heat treating control process

Also Published As

Publication number Publication date
FR2472034B1 (en) 1986-05-16
CH643597A5 (en) 1984-06-15
JPS5696070A (en) 1981-08-03
IT1149924B (en) 1986-12-10
IT8026589A0 (en) 1980-12-12
FR2472034A1 (en) 1981-06-26
EP0031034B1 (en) 1985-09-25
DE3071126D1 (en) 1985-10-31
GB2066301B (en) 1984-01-25
DE3019830A1 (en) 1981-07-02
SU1261567A3 (en) 1986-09-30
EP0031034A1 (en) 1981-07-01
GB2066301A (en) 1981-07-08
DE3019830C2 (en) 1983-03-24
BR8008362A (en) 1981-07-07

Similar Documents

Publication Publication Date Title
US4512821A (en) Method for metal treatment using a fluidized bed
KR850001289B1 (en) Process for carburizing ferrous metals
JPS6350430B2 (en)
US3201290A (en) Process for automatically controlled carburizing of the surface layer of steel articles
JP5883727B2 (en) Gas nitriding and gas soft nitriding methods
JPS641527B2 (en)
US4201600A (en) Method for the gas carburization of workpieces made of steel
JPH06172960A (en) Vacuum carburization method
JPH064906B2 (en) Carburizing of metal work
US4525389A (en) Method for conveying and treating a gas employed for the coating of workpieces by means of a chemical, heterogeneous vapor-phase reaction
US4208224A (en) Heat treatment processes utilizing H2 O additions
US20140366993A1 (en) Method of carburizing
EP0024106B1 (en) Method of heat treating ferrous workpieces
GB2044804A (en) Heat treatment method
JP2001214255A (en) Gas-hardening treatment method for metal surface
JP3407126B2 (en) Atmosphere control method of heat treatment furnace
JP6543208B2 (en) Gas carburizing method and gas carburizing apparatus
JPS6411709B2 (en)
JPH04107256A (en) Carburizing furnace
US4436289A (en) Method and apparatus for controlling the atmosphere in a carburizing furnace utilizing a cascaded valving system
JPS641547B2 (en)
CZ197695A3 (en) Heat treatment, particularly carburization of metal workpieces
US5194228A (en) Fluidized bed apparatus for chemically treating workpieces
JP4092215B2 (en) Heat treatment furnace atmosphere control device
JPS6053744B2 (en) Gas carburizing method using nitrogen, organic liquid, and hydrocarbon