JPS63502B2 - - Google Patents

Info

Publication number
JPS63502B2
JPS63502B2 JP55017276A JP1727680A JPS63502B2 JP S63502 B2 JPS63502 B2 JP S63502B2 JP 55017276 A JP55017276 A JP 55017276A JP 1727680 A JP1727680 A JP 1727680A JP S63502 B2 JPS63502 B2 JP S63502B2
Authority
JP
Japan
Prior art keywords
rare earth
heat treatment
hour
aging heat
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55017276A
Other languages
Japanese (ja)
Other versions
JPS56116862A (en
Inventor
Katsuhiko Yahagi
Moryoshi Hata
Hideaki Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKO DENSHI KOGYO KK
Original Assignee
SEIKO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKO DENSHI KOGYO KK filed Critical SEIKO DENSHI KOGYO KK
Priority to JP1727680A priority Critical patent/JPS56116862A/en
Publication of JPS56116862A publication Critical patent/JPS56116862A/en
Publication of JPS63502B2 publication Critical patent/JPS63502B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は希土類元素と遷移金属、Cu、Agおよ
び、その他の元素一種以上からなる合金の粉末を
成形し焼結、各種熱処理をして製造する希土類石
の製造方法に関するものである。 そして高い磁気特性を得るには焼結後行なう時
効熱処理が重要であるが従来の時効熱処理では優
れた磁気特性、特に保磁力( IHCと称す。)の優
れた希土類磁石を得ることが出来ない欠点を有す
る。 本発明は上記欠点等を改良し、優れた磁気特
性、特に保磁力の優れた磁石を得ることを可能と
した時効熱処理に関する製造方法を提供すること
を目的とする。 希土類磁石は希土類元素Sc、Y、La、および
元素番号58〜71の17元素が一種以上と、遷移金属
Fe、Ni、Mn、Cr、Co、Ti、Zr、Hf、W、等を
はじめB族、B、B、族、又Cu、Agを
主成分とし、更に添加元素のその他の元素として
Be、Mg等のA族、Zn、Cd又B、Al等のA
族、C、Si、P、Se、Bi等のA族、A、
A族等を含むことは公知である。 そしてこれらの合金化合物として、Rを希土類
元素、Mをその他の元素とした時、R3M、
R9M4、RM2、RM3、R2M7、R5M19、R1M5
R2M17で示される物が存在することも知られてい
る。 本発明の合金組成はこの中でR2M17に関するも
のであり、Rは20〜34重量%の間に限定される。
これらの溶解されて作製された合金インゴツトは
粉砕機、超微粉砕機によつて10μ以下の粉末にま
で粉砕され、その後磁場5000〜15000エルステツ
ド中でプレス圧縮され成形体になる、そして十分
脱ガスされた後、焼結が1000〜1300℃の温度範囲
で行われる。その後同温度内で溶体他処理が行わ
れた後、アルゴンガス吹つけ、又は水中、オイ
ル、塩浴中等で急冷される。その後800℃〜950℃
の範囲で時効熱処理が行なわれる。そして従来の
方法ではこの時効熱処理後、急冷されるか又は多
段階時効処理されるか更に除冷としても炉冷する
程度の方法であつた。本発明は従来の方法と異な
り非常に遅い徐冷を施こし室温にもたらす方法
と、途中に一回700℃〜500℃の範囲でのみ急冷処
理をしその後は徐冷する方法である。 すなわち時効熱処理後の除冷の冷却速度は遅
く、150℃/時間より遅くすることによつて良い
結果が得られる、しかし工業的価値から言つて、
150℃/時間〜10℃/時間が好ましい。 又上記の徐冷の途中温度範囲700℃〜500℃の間
にアルゴンガスやチツリガス吹付け急冷か又は油
や塩浴、メルト金属浴中に焼入し急冷する、その
後は上記と同じ冷却速度で徐冷し室温にもたらす
方法である。 しかし時間的短縮をはかるため、若干の磁気特
性の劣化を許すならば700℃以下は急冷して室温
にもたらしても良い。 以下実施例をあげて本発明の説明をする。 実施例 1 Sm24重量%、Fe20%、Cu10%、Zr1.5%、残
りCoからなる合金をアルゴン中高周波溶解炉中
で作製した。その後ボールミル、振動ミル、ジエ
ツトミルで4μ程度まで粉砕した。その後磁場プ
レスにて9500エルステツド中5t/cm2で成形したそ
して400℃で1時間真空脱ガスをした後1190℃で
焼結し、1170℃で溶体化熱処理をした後、シリコ
ンオイル中に焼入れした。この試料を850℃で数
時間時効熱処理後下に示す冷却速度を変化させ、
磁気特性を調べた結果を示す。 なお磁気特性の中で残留磁束密度Brはいずれ
も一定でBr=10250ガウスである。
The present invention relates to a method for producing rare earth stones by molding, sintering, and various heat treatments a powder of an alloy consisting of rare earth elements, transition metals, Cu, Ag, and one or more other elements. In order to obtain high magnetic properties, aging heat treatment after sintering is important, but conventional aging heat treatment cannot produce rare earth magnets with excellent magnetic properties, especially coercive force (referred to as IHC ). Has no drawbacks. An object of the present invention is to improve the above-mentioned drawbacks and provide a manufacturing method related to aging heat treatment that makes it possible to obtain a magnet with excellent magnetic properties, particularly excellent coercive force. Rare earth magnets contain one or more of the rare earth elements Sc, Y, La, and 17 elements with element numbers 58 to 71, as well as transition metals.
The main components include Fe, Ni, Mn, Cr, Co, Ti, Zr, Hf, W, etc., as well as Cu, Ag, and other elements as additive elements.
A group such as Be, Mg, etc., A group such as Zn, Cd, B, Al etc.
Group, A group such as C, Si, P, Se, Bi, A,
It is known that it includes group A and the like. As these alloy compounds, when R is a rare earth element and M is another element, R 3 M,
R 9 M 4 , RM 2 , RM 3 , R 2 M 7 , R 5 M 19 , R 1 M 5 ,
It is also known that a substance represented by R 2 M 17 exists. The alloy composition of the present invention concerns R 2 M 17 therein, with R being limited to between 20 and 34% by weight.
These melted alloy ingots are pulverized into powders of 10μ or less using a pulverizer or ultrafine pulverizer, and then pressed into compacts in a magnetic field of 5,000 to 15,000 oersteds, and thoroughly degassed. After that, sintering is carried out at a temperature range of 1000-1300°C. After that, it is subjected to solution and other treatments at the same temperature, and then rapidly cooled by blowing argon gas, or in water, oil, salt bath, etc. Then 800℃~950℃
Aging heat treatment is performed within the range of . In conventional methods, after this aging heat treatment, the material is rapidly cooled, multi-stage aging treatment is performed, or even slow cooling is performed at the level of furnace cooling. The present invention differs from conventional methods in that it involves very slow slow cooling to bring the material to room temperature, and a method in which rapid cooling is performed only once in the range of 700°C to 500°C, followed by slow cooling. In other words, good results can be obtained by slowing the slow cooling rate after aging heat treatment to less than 150°C/hour, but from an industrial value point of view,
150°C/hour to 10°C/hour is preferred. In addition, in the middle of the above gradual cooling, the temperature range is 700°C to 500°C, and quenching is performed by spraying argon gas or dust gas, or by quenching in an oil, salt bath, or melt metal bath, and then the cooling rate is the same as above. This method involves slow cooling and bringing it to room temperature. However, in order to save time, temperatures below 700°C may be rapidly cooled to room temperature if some deterioration of magnetic properties is allowed. The present invention will be explained below with reference to Examples. Example 1 An alloy consisting of 24% by weight of Sm, 20% of Fe, 10% of Cu, 1.5% of Zr, and the remainder Co was produced in a high-frequency melting furnace in argon. Thereafter, it was ground to about 4 μm using a ball mill, vibration mill, and jet mill. After that, it was molded in a magnetic field press at 5t/cm 2 in 9500 Oersted, vacuum degassed at 400℃ for 1 hour, sintered at 1190℃, solution heat treated at 1170℃, and then quenched in silicone oil. . After aging heat treating this sample at 850℃ for several hours, the cooling rate shown below was changed.
The results of investigating magnetic properties are shown. Among the magnetic properties, the residual magnetic flux density Br is constant and Br=10250 Gauss.

【表】【table】

【表】 又冷却速度80℃/時間において、急冷する温度
範囲を調査実験した結果を示す。
[Table] Also shows the results of an experiment to investigate the temperature range for rapid cooling at a cooling rate of 80°C/hour.

【表】 以上のように、冷却速度150℃/時間〜10℃/
時間において、保磁力が著るしく増大しているこ
とがわかる。 又この中の80℃/時間において、急冷(塩浴中
浸漬して)する温度範囲700℃〜500℃において更
に保磁力の増大が得られる。 実施例 2 Sm29重量%、Fe25%、Cu8%、Ag2%、Ni、
Mn、Cr、Zr、Ti、Hf、Wを計2%、Zn、Be、
を各0.5%、残りCoからなる組成で実施例1と同
様に行なつた結果同じ傾向を得た。 実施例 3 Sm15重量%、Pr12%、Fe15%、Cu10%、Zr、
Ti、W、各々0.5%残りCoの組成においても同様
の傾向を得た。 実施例 4 Sm27重量%、Fe15%、Cu10%、W1.5%、残
りCoの場合も同様であつた。
[Table] As shown above, cooling rate 150℃/hour ~ 10℃/hour
It can be seen that the coercive force increases significantly with time. Further, at 80°C/hour, a further increase in coercive force can be obtained in the temperature range of 700°C to 500°C during rapid cooling (immersion in a salt bath). Example 2 Sm29% by weight, Fe25%, Cu8%, Ag2%, Ni,
Mn, Cr, Zr, Ti, Hf, W in total 2%, Zn, Be,
The same trend as in Example 1 was obtained using a composition of 0.5% each and the remainder Co. Example 3 Sm15% by weight, Pr12%, Fe15%, Cu10%, Zr,
Similar trends were obtained for the compositions of Ti, W, and each with 0.5% remaining Co. Example 4 The same was true in the case of 27% by weight of Sm, 15% of Fe, 10% of Cu, 1.5% of W, and the remainder Co.

Claims (1)

【特許請求の範囲】 1 希土類元素が一種以上で20〜34重量%、残り
Cu、Ag、およびFe、Ni、Mn、Cr、Co、Zr、
Ti、Hf、W、等の遷移金属、およびその他の元
素一種以上からなる合金粉末を圧縮成形、焼結、
時効熱処理をして磁石を製造する方法において、
時効熱処理後冷却速度150℃/時間〜10℃/時間
で徐冷して製造することを特徴とする希土類磁石
の製造方法。 2 時効熱処理後、700℃〜500℃の温度範囲内の
み急冷することを特徴とした特許請求の範囲第1
項記載の希土類磁石の製造方法。
[Claims] 1. 20 to 34% by weight of one or more rare earth elements, the rest
Cu, Ag, and Fe, Ni, Mn, Cr, Co, Zr,
Compression molding, sintering of alloy powder consisting of transition metals such as Ti, Hf, W, and one or more other elements,
In the method of manufacturing magnets by aging heat treatment,
A method for manufacturing a rare earth magnet, which comprises slowly cooling the magnet at a cooling rate of 150° C./hour to 10° C./hour after aging heat treatment. 2. Claim 1 characterized in that after aging heat treatment, quenching is performed only within a temperature range of 700°C to 500°C.
2. Method for manufacturing rare earth magnets described in Section 1.
JP1727680A 1980-02-15 1980-02-15 Manufacture of rare earth element magnet Granted JPS56116862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1727680A JPS56116862A (en) 1980-02-15 1980-02-15 Manufacture of rare earth element magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1727680A JPS56116862A (en) 1980-02-15 1980-02-15 Manufacture of rare earth element magnet

Publications (2)

Publication Number Publication Date
JPS56116862A JPS56116862A (en) 1981-09-12
JPS63502B2 true JPS63502B2 (en) 1988-01-07

Family

ID=11939448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1727680A Granted JPS56116862A (en) 1980-02-15 1980-02-15 Manufacture of rare earth element magnet

Country Status (1)

Country Link
JP (1) JPS56116862A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603105A (en) * 1983-06-21 1985-01-09 Toshiba Corp Manufacture of permanent magnet
JPH02156051A (en) * 1988-12-08 1990-06-15 Fuji Elelctrochem Co Ltd Permanent magnet material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115000A (en) * 1976-03-22 1977-09-27 Tdk Corp Material of permanent magnet
JPS52141416A (en) * 1977-04-27 1977-11-25 Hitachi Metals Ltd Permanent magnetic alloy
JPS53106624A (en) * 1977-03-02 1978-09-16 Hitachi Metals Ltd Method of making permant magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115000A (en) * 1976-03-22 1977-09-27 Tdk Corp Material of permanent magnet
JPS53106624A (en) * 1977-03-02 1978-09-16 Hitachi Metals Ltd Method of making permant magnet
JPS52141416A (en) * 1977-04-27 1977-11-25 Hitachi Metals Ltd Permanent magnetic alloy

Also Published As

Publication number Publication date
JPS56116862A (en) 1981-09-12

Similar Documents

Publication Publication Date Title
US2167240A (en) Magnet material
US4221613A (en) Rare earth-cobalt system permanent magnetic alloys and method of preparing same
US4213803A (en) R2 Co17 Rare type-earth-cobalt, permanent magnet material and process for producing the same
JPS6043900B2 (en) permanent magnet material
JPS63502B2 (en)
US4601876A (en) Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
US3769100A (en) Method for manufacturing semi-hard magnetic material
US4396441A (en) Permanent magnet having ultra-high coercive force and large maximum energy product and method of producing the same
US4311537A (en) Low-cobalt Fe-Cr-Co permanent magnet alloy processing
EP0432060A1 (en) Permanent magnet alloy of the type iron-neodymium-boron, sintered permanent magnet and manufacturing process
US3211592A (en) Method of manufacturing permanent magnets having large coercive force
US4481045A (en) High-coercive-force permanent magnet with a large maximum energy product and a method of producing the same
EP0024686A2 (en) Article comprising a magnetic component consisting essentially of an alloy comprising Fe, Cr and Co
JPS6231056B2 (en)
JPS6320411A (en) Production of material for permanent magnet
JPS61295342A (en) Manufacture of permanent magnet alloy
US3591373A (en) Permanent magnetic alloy composed of platinum,gold and iron
KR860001237B1 (en) Permanent magnet
JPS62122106A (en) Sintered permanent magnet
JPS6053107B2 (en) Rare earth magnet manufacturing method
Yoneyama et al. R 2 Co 17 Rare type-earth-cobalt, permanent magnet material and process for producing the same
Shimoda et al. New resin-bonded Sm 2 Co 17 type magnets
JPS5922302A (en) Permanent magnet
JPS58157941A (en) Permanent magnet alloy
US4415380A (en) Method for making a high remanence Fe-Mo-Ni magnetic element