JPS63502575A - A member device forming a part of a fluid machine and a method for manufacturing the member - Google Patents

A member device forming a part of a fluid machine and a method for manufacturing the member

Info

Publication number
JPS63502575A
JPS63502575A JP62501127A JP50112787A JPS63502575A JP S63502575 A JPS63502575 A JP S63502575A JP 62501127 A JP62501127 A JP 62501127A JP 50112787 A JP50112787 A JP 50112787A JP S63502575 A JPS63502575 A JP S63502575A
Authority
JP
Japan
Prior art keywords
reinforcement
propeller
blade
load
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62501127A
Other languages
Japanese (ja)
Other versions
JP2714089B2 (en
Inventor
ストロムベリ カ−ル オット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63501127A priority Critical patent/JP2714089B2/en
Publication of JPS63502575A publication Critical patent/JPS63502575A/en
Application granted granted Critical
Publication of JP2714089B2 publication Critical patent/JP2714089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ・ の− をノ する部 置およびその。材を ゛すゑ亙皇生方抜 この発明は、流体によって作動する部材装置、例えば、プロペラ、タービン、フ ァン等のターボ型機械装置の一部を形成し、装置のハブに固着され、重合体を主 とする複合材料よりなる羽根、翼等に関する。[Detailed description of the invention] ・The location of the part that indicates - and its location. The material is removed from the wood This invention applies to fluid-operated member devices such as propellers, turbines, and It forms part of a turbo-mechanical device such as a fan, is fixed to the hub of the device, and is mainly composed of polymers. This invention relates to feathers, wings, etc. made of composite materials.

口の 従来、強化プラスチック部材からプロペラを製造することは周知である。例えば 、ある海難救助船は、25パーセントの長繊維グラスファイバーで強化されたポ リウレタンで被覆されたプロペラが装備されている。製造はポリビニルアルコー ルによって固められ、予備成形されたマットで始まる。of the mouth It is known in the art to manufacture propellers from reinforced plastic parts. for example , a salvage vessel is equipped with ports reinforced with 25 percent long-fiber glass fiber. It is equipped with a propeller coated with urethane. Manufactured with polyvinyl alcohol It starts with a preformed mat that is hardened by a mold.

該予備成形マットは型に入れられ、型の中にポリウレタンが注入される。この方 法によると、青銅製プロペラの変形に対する強度にほぼ等しい強度が得られ、同 時に、対応する金属プロペラのわずか6分の1の重量の製品が得られる。The preformed mat is placed in a mold and polyurethane is injected into the mold. This person According to the method, the strength against deformation is almost equal to that of a bronze propeller, and the same Sometimes products are obtained that are only one-sixth the weight of the corresponding metal propeller.

米国特許3,883,267号から、金属製のコア部と数層の合成繊維材料のコ ーティング層からなる羽根や翼のあるターボ型機械装置は周知である。羽根の外 側に位置する部分が前記金属製コアで、プラスチック製の付属品と比べて金属製 付属品という利点をもって羽根の付根が形成される。合成繊維の各層は1層の主 方向と羽根の軸の間に含まれた角度が、最も深い層あるいはコアに最も近い層に 対する最大値から、最も外側の層あるいは羽根の表面に最も近い層に対する最小 値に減少するよう配設される。それによって、金属コアと合成繊維材料間の境界 面で起る機械的なストレスと温度変動によって生ずる力を抑えようとするもので ある。From U.S. Pat. No. 3,883,267, a core of metal and several layers of synthetic fiber material Turbomachinery devices with blades or wings consisting of coating layers are well known. outside the feather The part located on the side is the metal core, which is made of metal compared to plastic accessories. The root of the vane is formed with the advantage of being an accessory. Each layer of synthetic fiber is one layer of main The angle included between the direction and the axis of the vane is the deepest layer or layer closest to the core. from the maximum value for the outermost layer or the layer closest to the surface of the blade. arranged to decrease the value. Thereby, the interface between the metal core and the synthetic fiber material It attempts to suppress the force generated by mechanical stress and temperature fluctuations occurring on the surface. be.

米国特許4,022,547号によると、コンプレッサ或いはファンのようなタ ーボ型機械のための羽根は、数層の繊維積層物を塗布あるいは接着することによ り製造される。積層物、の少なくともある部分の繊維は、翼弦に関する方向、す なわち、非放射羽根の中心線の前後方向に傾斜され、従って。According to U.S. Pat. No. 4,022,547, a motor such as a compressor or fan Blades for aircraft-type machines are made by coating or gluing several layers of fiber laminates. manufactured by The fibers of at least some portion of the laminate are arranged in a direction relative to the chord. That is, the centerline of the non-radiating vane is inclined in the fore-aft direction, and therefore.

羽根の回転中央に形成される斜めの積層物は放射羽根の軸の前後方向に傾斜され ている。このことは羽根のねじれ周波数を著しく増加させる。一実施例において 、繊維は羽根の前縁から、羽根の先端に延びるのではなく、かわりに、羽根の前 縁から羽根の根元に延びるような方向に傾けられている。この方向付は張力を羽 根の根元に伝送させ1羽根を支えるハブによってより容易に張力を吸収し放散す ることができる。The oblique laminate formed at the center of rotation of the blade is inclined in the front-rear direction of the axis of the radial blade. ing. This significantly increases the blade torsion frequency. In one embodiment , the fibers do not extend from the leading edge of the blade to the tip of the blade, but instead extend from the front of the blade to the tip of the blade. It is angled in such a way that it extends from the edge to the base of the blade. This orientation reduces tension. The hub that supports each blade transmits tension to the base of the root, making it easier to absorb and dissipate tension. can be done.

上述の方法で繊維を配する目的は、前述した材料で作られたプロペラの作動中に 受けるかもしれぬ変形をできるだけ早く抑えることにある。The purpose of arranging the fibers in the manner described above is to ensure that during operation of a propeller made of the aforementioned material, The aim is to suppress any deformation that may occur as quickly as possible.

プロペラは、均一で予期できる状況下で作動することはまずあり得ない。作動状 態が乱れたりあるいは一部することがよくある。これは、それがプロペラの状態 に関係するときに問題を生じる。これらの状況の乱れと変化は、プロペラが最適 条件で作動することが不可能であるという事実に通じる。Propellers are unlikely to operate under uniform and predictable conditions. operating condition The condition is often disturbed or partially altered. This means that it is the state of the propeller Problems arise when related to Propellers are the best way to deal with these disturbances and changes in the situation. Leading to the fact that it is impossible to operate in such conditions.

この乱れは、船の推進時、キャビテーション、振動或いは騒音のような特殊の問 題をしばしば引き起す。それゆえ、発生した状況にプロペラが耐え得るように、 プロペラの結合構造を選択し、状況に合わせる必要がある。しかしながら、これ は、プロペラに最適の特性を付与し°得ないということを意味している。この問 題を解決するため1種々の方法が講じられる。而して、振動の大きさを減少し、 プロペラの羽根の先端を負荷から放し、或いは、負荷によって羽根のピッチを変 えることができる、チルト可能な羽根を持ったプロペラを用いること等を目的と した手段をとることが可能である。This turbulence can be caused by special problems such as cavitation, vibration or noise during ship propulsion. often causes problems. Therefore, in order for the propeller to withstand the conditions encountered, It is necessary to select the propeller coupling structure and adapt it to the situation. However, this This means that it is not possible to impart optimal characteristics to the propeller. this question Various methods can be taken to solve the problem. Therefore, the magnitude of vibration is reduced, Release the tip of the propeller blade from the load, or change the pitch of the blade depending on the load. The purpose is to use a propeller with tiltable blades that can be tilted. It is possible to take such measures.

これらの手段は、所望の効果を得に<<、この可動部分のため高価格と、低能率 と、信頼性の低減を引き起こす。These means require high cost and low efficiency due to this moving part to obtain the desired effect. and cause a reduction in reliability.

明の 的および最も 的な この発明の目的は、上述の点に鑑みて、進歩した特性を提供することにある。そ れは1例えば、作動負荷の増加時に、プロペラの羽根を自動的に最適のピッチに することで、キャビテーションが妨げられ、或いは減じられる。他の目的は、組 立て或いは後処理の必要がなく重量の低減化を計ることにあり、それゆえ、低価 格が得られる。更に部材は腐食することがない。lightest and most important It is an object of the invention to provide improved characteristics in view of the above points. So For example, when the operating load increases, the propeller blades are automatically adjusted to the optimal pitch. By doing so, cavitation is prevented or reduced. Other purposes are The aim is to reduce weight without the need for stand-up or post-processing, and therefore low cost. You can get rank. Furthermore, the components do not corrode.

図面の敬肌 添付した図面に1本発明の実施例が示されている。drawing skin respect An embodiment of the invention is shown in the accompanying drawings.

第1図は1本発明によるプロペラの一部断面正面図、第2図は、第1図の線■− ■に沿った断面図、第3図および第4図は、変形したプロペラおよび無変形のプ ロペラの輪郭形状を示す図、第5図および第6図は、変形した羽根の部分および 無変形の羽根の断面の輪郭形状を示す図、第7図は1本発明による翼部の一部断 面斜視図である。FIG. 1 is a partially sectional front view of a propeller according to the present invention, and FIG. 2 is a line shown in FIG. 3 and 4 show the deformed propeller and the undeformed propeller. Figures 5 and 6, which show the outline shape of the roper, show the deformed blade part and FIG. 7 is a diagram showing the contour shape of a cross section of an undeformed blade, and FIG. FIG.

ス1側1贋l吸 以下、本発明を、プロペラ、特に・船舶のプロペラに適用して説明する。しかし 、本発明は勿論本実施例に限定されるものではない。1 side 1 counterfeit Hereinafter, the present invention will be explained by applying it to a propeller, particularly a propeller for a ship. but Of course, the present invention is not limited to this embodiment.

本発明によると、プラスチック材料の可撓性がプロペラに所望の特性を与えるた めに用いられ、そしてそれは異方性の特性をもつ材料、すなわち方向により物理 的性質が異なる材料からプロペラが作られることで果たされ、それは強化−外装 −がある複数の部分に施こされることで達成される。すなわち、ある部分におけ る強化部材が同じ方向を向くように適用され、かつ、他のある部分の強化部材が 他の部分の対応する部材に対して異なる方向に延長されることで達成される。According to the invention, the flexibility of the plastic material gives the propeller the desired properties. It is used for materials with anisotropic properties, i.e. physical This is accomplished by making the propeller from materials with different physical properties, which are reinforced - -Achieved by applying it to certain parts. That is, in some parts The reinforcing members are applied in such a way that they face the same direction, and the reinforcing members in some other area are This is achieved by extending in different directions relative to corresponding members of other parts.

更に、現在の状態にプロペラの幾何図形的外形を適用することによって、非常に 進歩した特性のプロペラを得ることができる。Furthermore, by applying the propeller geometry to the current state, the Propellers with advanced characteristics can be obtained.

第1図は1本発明により形成されたプロペラを示している。FIG. 1 shows a propeller constructed in accordance with the present invention.

このプロペラは、一般に1で示され、既知の手段によりハブ2と結合し、中央の 金属ブツシュに嵌合しておりハブから。This propeller, generally designated 1, is coupled by known means to a hub 2, with a central It is fitted with a metal bushing and starts from the hub.

例えばプロペラ羽根のような部材が複数枚突出している。プロペラの製造にあた って、図1にて示されるプロペラは、さらされる負荷に鑑みていくつかの補強部 分4,5.6に別けられ、その変形が許されあるいは望まれさえしている。この ようにして、ある部分の強化は、ある一定の品質、繊維のタイプ、繊維の長さと 量がら成り、そして、一定の方向に方向づけられるのに対して、他の部分におけ る強化素材は、他の特質、飯、品質、方向性等を有している。このような強化の 方法によって、強化の内方の集中を、例えば、プロペラ羽根の回転中心に配設さ れた梁4にさせることが可能である。これは、羽根の標準の中央位置より端部付 近の位置にある方が好ましい、このように、曲げモーメントは作動負荷のもとで 成し遂げられる。梁4は羽根の付根を過ぎてハブ2にまで延びるよう選定される 。梁4は、羽根の残りの部分に関しては堅いが、前記梁と共働する外部の積層物 5すなわち羽根の外部は梁の横断方向に関しては堅くない。このようにして、羽 根の後縁は、負荷が正常値を越えて増えた時に曲げおよび回転が可能である。後 方への曲げおよび後縁の回転は強化を適切に設計することによって前方向りおよ び前縁の回転に帰着し、それによって流体の迎え角が変えられ、すなわち、羽根 のピッチは、このようにして正方向と同様に負の方向に変えられる。従って、異 なった方向に羽根の可撓性を制御すること1羽根の回転中心を変化させること、 或いは、回転を1或いは幾つかの回転部分に分布させることが可能であり、この ようにして制御された方法によって、これらの負荷期間中の変形を処理すること ができる。更に、羽根の幾何図形的外形を変化することによって、羽根の特性を 効果的に制御することができる。For example, a plurality of members such as propeller blades protrude. In manufacturing propellers Therefore, the propeller shown in Figure 1 has several reinforcement parts in view of the loads to which it is exposed. It is divided into 4, 5, and 6 parts, and its variations are permitted or even desired. this In this way, reinforcement of a part depends on a certain quality, fiber type, fiber length and consists of a quantity and is oriented in a certain direction, while in other parts The reinforcing material has other properties, properties, quality, directionality, etc. This kind of reinforcement The method allows for an inward concentration of reinforcement, e.g. It is possible to make the beam 4 have a lower profile. This means that the end of the vane is more In this way, the bending moment will be reduced under the working load. It can be accomplished. The beam 4 is selected to extend past the root of the vane to the hub 2. . The beam 4 is rigid with respect to the rest of the vane, but has an external laminate cooperating with said beam. 5, that is, the outside of the vane is not rigid in the transverse direction of the beam. In this way, the feather The trailing edge of the root is capable of bending and rotation when the load increases above normal values. rear Bending towards the front and rotation of the trailing edge can be avoided by properly designing the reinforcement. resulting in a rotation of the leading edge, which changes the angle of attack of the fluid, i.e. The pitch of is thus changed in the negative direction as well as in the positive direction. Therefore, the difference To control the flexibility of the blade in the direction of the change in direction, to change the center of rotation of one blade, Alternatively, it is possible to distribute the rotation in one or several rotation parts, and this to handle deformations during these loading periods in a controlled manner. Can be done. Furthermore, by changing the geometric shape of the blade, the characteristics of the blade can be improved. Can be effectively controlled.

第1図の破線7は正常荷重下において生ずる羽根の輪郭を明瞭に示している。一 方、実線8は、荷重が増加して羽根が変形した、すなわち、羽根のピッチが減じ た状況化における羽根の前縁を示している。The dashed line 7 in FIG. 1 clearly shows the contour of the vane as it occurs under normal loading. one On the other hand, solid line 8 indicates that the blade has deformed due to the increase in load, that is, the pitch of the blade has decreased. The leading edge of the vane is shown in a similar situation.

所望の特質を持つプロペラを完成するために、強化材4〜6は、本発明による方 法で、すなわち、作動中に生ずる変形で選択され分配される。すなわち、 a)プロペラの羽根のピッチは、負荷の増加時に減少し、その増加した負荷が減 少する時に初期位置に戻る。In order to complete the propeller with the desired properties, the reinforcements 4 to 6 are modified according to the invention. It is selected and distributed according to the law, ie, the deformations that occur during operation. That is, a) The pitch of the propeller blades decreases when the load increases, and the pitch of the propeller blades decreases when the increased load decreases. After a short time, it returns to its initial position.

b)負荷が増加した時の各羽根の曲率半径は、減少した揚力の方向に変化する。b) The radius of curvature of each vane when the load increases changes in the direction of decreased lift.

C)羽根は、負荷が増加する時に揚力の方向に変形される。C) The vane is deformed in the direction of lift when the load increases.

d)羽根め回転軸は、できるだけ前縁に近接するよう配設される。d) The blade rotation axis is arranged as close to the leading edge as possible.

e)羽根の固有振動数が高いので共振が生ずるおそれはなく、羽根は過渡的な負 荷の変化にも変形し得る。e) Since the natural frequency of the blade is high, there is no risk of resonance occurring, and the blade is free from transient negative effects. It can also deform due to changes in load.

羽根の幾何図形的外形は以下のように応用される。The geometric outline of the vane is applied as follows.

a)羽根の回転中心から遠い部分は、回転モーメントを生じ、プロペラを回す傾 向がある。従って、ピッチは負荷が増加する時に減少する。a) The part of the blade far from the center of rotation generates a rotational moment and has an inclination to turn the propeller. There is a direction. Therefore, the pitch decreases as the load increases.

b)羽根の各部は曲げモーメントを受け、該曲げモーメントは、負荷が増加した 時に羽根のピッチを減少させる目的のため、当該羽根の各部のねじりモーメント より太き本発明に従ってプロペラを製造するため、周知の方法で、すなわち、表 面のゲルコートや強化マット、例えば、外側積層物として、同じ方向に延びた繊 維方向の例えば不織層をもって所望の型を造ることができる。内部の強化材は1 以上の梁になり得る。それは組立て式で作られ、その繊維方向は第7図に示すよ うに、梁の輪郭に沿ってらせん状に延び得る。b) Each part of the blade is subjected to a bending moment, which bends when the load increases. Sometimes, for the purpose of reducing the pitch of the blade, the torsional moment of each part of the blade is In order to produce a propeller according to the invention that is thicker, it is possible to produce a propeller according to the invention in a known manner, i.e. Surface gelcoat or reinforced mat, e.g. fibers extending in the same direction as the outer laminate. For example, a desired mold can be made using a nonwoven layer in the fiber direction. Internal reinforcement is 1 It can be more than one beam. It is made in a prefabricated manner, and its fiber direction is shown in Figure 7. In other words, it can extend helically along the contour of the beam.

数学的計算と実際の試験では、下記に与えられた素材特質を有するガラス織布は 、第7図のZ−Z軸に関し、20〜35°、好ましくは26°の繊維方向を与え ることが適切であり、それは普通、梁4の伸長方向および回転軸と一致する。Mathematical calculations and practical tests show that woven glass fabrics with the material properties given below are , giving a fiber orientation of 20 to 35°, preferably 26° with respect to the Z-Z axis in FIG. It is appropriate that the beam 4 has an extension direction and an axis of rotation of the beam 4.

縦方向剛性 E=36.0OOGPa 横方向剛性 E=12.0OOGPa 剛性係数 G=4.0000Pa ポアソン比 V=0.1 強化部材は、好ましくは、あらかじめ計算された位置に手作業で加えられるが1 割型でも作ることができる。しかし。Longitudinal stiffness E=36.0OOGPa Lateral stiffness E=12.0OOGPa Rigidity coefficient G = 4.0000Pa Poisson's ratio V=0.1 The reinforcing members are preferably added manually at pre-calculated locations, but 1 It can also be made in split molds. but.

一般に両方法は、負荷が生ずる部分およびプロペラの羽根がそれ自体変形する部 分の製造より先に確立されている。そして、そこに強化が適用され、鋳入と熱処 理(固化)が完了する。In general, both methods are applied to the parts where loads occur and where the propeller blades themselves deform. It was established before the production of minutes. Then, reinforcement is applied, casting and heat treatment The process (solidification) is completed.

プロペラのピッチは、第3図による変形しないプロペラと比べて54°回転させ られている。The pitch of the propeller is rotated by 54° compared to the undeformed propeller according to Figure 3. It is being

プロペラのこれらの部分においては、抵抗の面から、大量の強化剤は必要とされ ていない。周知の方法で、例えば、サンドインチ構造、プラスチックフオーム、 または充填材としての他の同様のものを用いることができる。それによって、羽 根の固有振動数は増加し1羽根の重置は減少し材料消費も減少する。Large amounts of reinforcement are not required in these parts of the propeller due to resistance. Not yet. In a known manner, for example, sand inch structures, plastic foam, Or other similar materials can be used as fillers. By doing so, feathers The natural frequency of the roots increases, the number of overlapping blades decreases, and material consumption decreases.

FIGI FgG2 ■ FIG 5 FIG6 国際調査報告FIGI FgG2 ■ FIG 5 FIG6 international search report

Claims (1)

【特許請求の範囲】 1.プロペラ、タービン、ファン等のターボ型機械等の一部を形成する要素(1 )のハブ(2)に配列された例えば、羽根、翼等、液体によって作動する部材装 置であって、該部材は重合体を主とする複合材料より成り、該部材(3)は少な くとも異方性の特性を有する強化素材から造られ、前記部材(3)は、強化部分 (6)および/或は梁(4)からなる内部強化材と、シェル形の外部積層物(5 )からなる外部強化材を具備し、前記強化材は、作動負荷の下で前記部材がハブ に関して変形され、各部材の変化は負荷とひずみにより引き起こされ、それによ って、羽根のピッチが、様々な負荷が加えられている間、負荷が増加する時に羽 根の揚力が最適となるような方法で変えられるように配設され方向付けられてい ることを特徴とする部材装置。 2.クレーム(1)による、例えば羽根、翼等、液体によって作動し、プロペラ 、タービン、ファン等のターボ型機械の部分を形成する要素であるハブ(2)に 配設され、かつ、重合体を主とする複合材からなる部材を複合材から製造する方 法であって、前記部材(3)は少なくとも部分的に異方性の特質を有する強化材 によって強化され、該強化材は強化部分(6)および/あるいは梁(4)から成 る内部強化材およびシェル形外部積層物(5)における外部強化材として配設さ れ、該強化材は、前記部材の回転中心から最も遠くに位置された各羽根の部分が 負荷の増加時に、羽根のピッチを減少するようにプロペラを回転させようとする 回転モーメントを生ずるように配設され方向付けられていることを特徴とする製 造方法。 3.部材(3)の選ばれた部分が、該部分に関し曲げモーメントが回転モーメン トより大きな変形を生ずるように強化されていることを特徴とする特許請求の範 囲第2項に記載の方法。 4.強化材が、部材(3)の選ばれた部分が、負荷が増加した時に揚力の方向に 変形するよう配置され、釣り合いを保たせていることを特徴とする特許請求の範 囲第2項或いは第3項に記載の方法。 5.部材(3)の内部補強材(4,6)は、流体に面する部材の前縁に集中或い は近接して配設され、好ましくは、機械の回転中心を構成する梁(4)として形 成されることを特徴とする特許請求の範囲第1項に記載の装置。 6.梁は剛く、そして、部材の外部シェルを形成する外部積層物(5)は、梁に 関し横方向に低い剛性を有し、従って、部材にかかる負荷の増加は曲率の半径の 減少を生ずることを特徴とする特許請求の範囲第5項に記載の装置。 7.強化材(4,5,6)における繊維(β)の方向は部材(3)の回転軸に関 し、20〜35°の角、好ましくは26°の角で配設されたことを特徴とする特 許請求の範囲第5項或いは第6項に記載の装置。[Claims] 1. Elements forming part of turbo-type machines such as propellers, turbines, fans, etc. (1 ), such as vanes, wings, etc., arranged on the hub (2) of the The member (3) is made of a composite material mainly composed of a polymer, and the member (3) is made of a composite material mainly composed of a polymer. made of a reinforced material having at least anisotropic properties, said member (3) having a reinforced portion (6) and/or beams (4) and shell-shaped external laminates (5). ), wherein the reinforcement is such that under an actuating load, the member is The changes in each member are caused by loads and strains, which Therefore, the pitch of the blade changes as the load increases while various loads are applied. They are arranged and oriented so that root uplift forces can be varied in an optimal manner. A component device characterized by: 2. According to claim (1), e.g. blades, blades, etc., actuated by liquid, propellers. , a hub (2) which is an element forming part of a turbo-type machine such as a turbine or a fan. A method for manufacturing components made of composite materials mainly composed of polymers. method, wherein the member (3) is a reinforcing material having at least partially anisotropic properties. The reinforcement consists of a reinforcement section (6) and/or a beam (4). provided as internal reinforcement and external reinforcement in shell-shaped external laminates (5). and the reinforcing material is such that the portion of each blade located farthest from the center of rotation of the member is When the load increases, the propeller tries to rotate to reduce the pitch of the blades. A manufacturing method characterized by being arranged and oriented to create a rotational moment. Construction method. 3. The selected part of the member (3) is such that the bending moment is a rotational moment with respect to that part. Claims characterized in that: The method described in section 2. 4. The reinforcement ensures that selected parts of the member (3) are aligned in the direction of the uplift force when the load is increased. Claims characterized in that they are arranged to be deformed and balanced. The method according to item 2 or 3. 5. The internal reinforcements (4, 6) of the member (3) are concentrated or concentrated at the leading edge of the member facing the fluid. are arranged in close proximity and are preferably shaped as beams (4) constituting the center of rotation of the machine. 2. A device according to claim 1, characterized in that the device is made of: 6. The beam is rigid and the external laminate (5) forming the external shell of the member is attached to the beam. has a low stiffness in the lateral direction and therefore the increase in load on the member is due to the radius of curvature. 6. Device according to claim 5, characterized in that it produces a reduction. 7. The direction of the fibers (β) in the reinforcement (4, 5, 6) is relative to the rotation axis of the member (3). and are arranged at an angle of 20 to 35°, preferably an angle of 26°. An apparatus according to claim 5 or 6.
JP63501127A 1987-12-28 1987-12-28 Heating or drying or heating and drying equipment Expired - Lifetime JP2714089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63501127A JP2714089B2 (en) 1987-12-28 1987-12-28 Heating or drying or heating and drying equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8600369-6 1986-01-28
JP63501127A JP2714089B2 (en) 1987-12-28 1987-12-28 Heating or drying or heating and drying equipment

Publications (2)

Publication Number Publication Date
JPS63502575A true JPS63502575A (en) 1988-09-29
JP2714089B2 JP2714089B2 (en) 1998-02-16

Family

ID=18527114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63501127A Expired - Lifetime JP2714089B2 (en) 1987-12-28 1987-12-28 Heating or drying or heating and drying equipment

Country Status (1)

Country Link
JP (1) JP2714089B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535759A (en) * 2000-06-07 2003-12-02 ロールス・ロイス・アクチボラゲット Ship propulsion system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650891A (en) * 1979-10-01 1981-05-08 Yamaha Motor Co Ltd Marine propeller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535759A (en) * 2000-06-07 2003-12-02 ロールス・ロイス・アクチボラゲット Ship propulsion system

Also Published As

Publication number Publication date
JP2714089B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
EP0295247B1 (en) Device at members forming part of a turbo machinery and a method of producing such members
EP1980714B1 (en) Rotor blade and corresponding turbine
US5127802A (en) Reinforced full-spar composite rotor blade
DE2756684C2 (en) Method for manufacturing a turbomachine blade and a turbomachine having such blades
JP4504374B2 (en) Braided girder of rotor blade and method for manufacturing the same
US5392514A (en) Method of manufacturing a composite blade with a reinforced leading edge
EP0496550B1 (en) Wide chord fan blade
US4040770A (en) Transition reinforcement of composite blade dovetails
US8038408B2 (en) Composite aerofoil
US4298417A (en) Method of manufacturing a helicopter rotor blade
US4022547A (en) Composite blade employing biased layup
US4616977A (en) Hubless, hingeless and bearingless helicopter rotor system
US4971641A (en) Method of making counterrotating aircraft propeller blades
US20070231152A1 (en) Hybrid bucket dovetail pocket design for mechanical retainment
US20110052408A1 (en) Swept blades utilizing asymmetric double biased fabrics
WO2015134823A1 (en) Wind turbine blade spar web having enhanced buckling strength
US20110052407A1 (en) Swept blades utilizing asymmetric double biased fabrics
EP0888235A1 (en) Composite cuff structure for helicopter rotors
US11788420B2 (en) Fan blade comprising an insert of stiff fibers
JP5228518B2 (en) Wind turbine blade, molding die thereof and manufacturing method thereof
KR101632403B1 (en) Blade having reduced torsion stiffness and rotor consisted of the same
KR101958948B1 (en) A monolithic blade, a rotorcraft rotor fitted with such a monolithic blade, and an associated rotorcraft
JPS63502575A (en) A member device forming a part of a fluid machine and a method for manufacturing the member
US4306837A (en) Bearingless tail rotor for helicopters
GB2224784A (en) Propeller blades