JPS6350077A - Semiconductor light receiving device - Google Patents

Semiconductor light receiving device

Info

Publication number
JPS6350077A
JPS6350077A JP61194602A JP19460286A JPS6350077A JP S6350077 A JPS6350077 A JP S6350077A JP 61194602 A JP61194602 A JP 61194602A JP 19460286 A JP19460286 A JP 19460286A JP S6350077 A JPS6350077 A JP S6350077A
Authority
JP
Japan
Prior art keywords
light
type
region
film
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61194602A
Other languages
Japanese (ja)
Inventor
Hiroshi Maekawa
前川 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61194602A priority Critical patent/JPS6350077A/en
Publication of JPS6350077A publication Critical patent/JPS6350077A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To extend a light receiving band width having excellent characteristics and stability, by absorbing the light which fluorescent substance film generates being excited by an incident light and the transmitted light through a light receiving surface, with a semiconductor substrate. CONSTITUTION:On a P<+>type Si substrate 1, the followings are formed; e P-type light absorbing region 2, a P-type avalanche region 3, an N<+>type diffusion region 4, an N-type guard ring region 5, a P<+>type channel stopper region 6, a fluorescent substance film 7, an SiO2 film 8, an N-side electrode 9 and a P-side electrode 10. As to the fluorescent substance film 7, a film made of, for example, SrS:Eu system fluorescent substance is arranged in a ring form. Based on the thickness of the film 7 and the like, the transmittance of incident light is selected, and thereby the light reception sensitivity characteristics are controlled.

Description

【発明の詳細な説明】 〔概要〕 この発明は、St半導体受光装置において、受光面上に
螢光体膜を配設し、該螢光体膜が入射光に励起されて発
生ずる光及び該受光面を通過した入射光を該半導体基体
において吸収させることにより、 その受光帯域を拡張するものである。
Detailed Description of the Invention [Summary] The present invention provides an St semiconductor light receiving device in which a phosphor film is disposed on the light receiving surface, and the phosphor film is excited by incident light to emit light and light generated. The light-receiving band is expanded by causing the semiconductor substrate to absorb the incident light that has passed through the light-receiving surface.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体受光装置、特に受光可能な帯域が広げら
れたSt半導体受光装置の構造に関する。
The present invention relates to a semiconductor light-receiving device, and particularly to a structure of an St semiconductor light-receiving device whose light-receiving band is widened.

光通信等の各種の光応用システムにおいて、所要の受光
帯域に適合する半導体材料で構成された受光装置が用い
られているが、半導体材料によって定まる帯域幅より広
い受光帯域が例えば試験装置などで要求されており、そ
の実現が強く要望されている。
In various optical application systems such as optical communication, light receiving devices made of semiconductor materials that match the required light receiving band are used, but for example, test equipment requires a wider light receiving band than the bandwidth determined by the semiconductor material. The realization of this goal is strongly desired.

〔従来の技術〕[Conventional technology]

半導体受光装置は目的に応じて多くの構造が開発されて
いるが、可視〜近赤外帯域に適するシリコン(St)ア
バランシホトダイオード(APD)の従来例の模式側断
面図を第3図に示す。
Many structures have been developed for semiconductor photodetectors depending on the purpose, and Figure 3 shows a schematic side sectional view of a conventional example of a silicon (St) avalanche photodiode (APD) suitable for the visible to near-infrared band. .

本従来例において、21はp+型Si基板、22はp−
型光吸収領域、23はp型アバランシ領域、24はに型
拡散領域、25はn型ガードリング領域、26はp+型
チャネルストッパ領域、28は二酸化シリコン(SiO
2)膜、29はn側電極、30はp側電極である。
In this conventional example, 21 is a p+ type Si substrate, 22 is a p-
23 is a p-type avalanche region, 24 is a di-type diffusion region, 25 is an n-type guard ring region, 26 is a p + type channel stopper region, 28 is a silicon dioxide (SiO
2) In the film, 29 is an n-side electrode, and 30 is a p-side electrode.

前記従来例では半導体材料にSiを用いているが、半導
体材料にゲルマニウム(Ge)を用い各領域の導電型を
反転した類似の構造で、1.3μm帯域の光通信用AP
Dが提供されている。
The conventional example uses Si as the semiconductor material, but it has a similar structure in which germanium (Ge) is used as the semiconductor material and the conductivity type of each region is reversed.
D is provided.

石英系光ファイバによる伝送に適する1、3〜1.6賜
帯域には、更にインジウム燐/インジウムガリウム砒素
(InP/InGaAs)系等の化合物半導体APDが
開発されているが、半導体材料が吸収し得る光の波長は
そのバンドギャップで定まるために、第4図に例示する
如く、半導体受光装置の量子効率は光吸収領域の半導体
材料に支配される。
Compound semiconductor APDs such as those based on indium phosphide/indium gallium arsenide (InP/InGaAs) have been developed for the 1.3 to 1.6 band, which is suitable for transmission using silica-based optical fibers; Since the wavelength of the obtained light is determined by its bandgap, the quantum efficiency of the semiconductor light receiving device is controlled by the semiconductor material of the light absorption region, as illustrated in FIG.

またAPDではアバランシ増倍率及び増倍雑音が極めて
重要な特性であるが、これらの値は概ね下記の様であり
、5i−APDはこの様に増倍率が大きく増倍雑音が少
なくて、安定性も最も優れている。
In addition, the avalanche multiplication factor and multiplication noise are extremely important characteristics in APD, and these values are roughly as shown below.The 5i-APD has a high multiplication factor and low multiplication noise, and is stable. is also the best.

Si−ΔPD     Ge−APD   InGaA
s−APD増倍率M 最大値   500〜1000 50〜100   〜
50使用値   50〜200  〜10 4〜5増倍
雑音パラメータに 0.22〜0.3 0.5〜0.9   〜0.7〔発
明が解決しようとする問題点〕 半導体受光装置は上述の如く目的とする波長帯域に適合
することが必要であが、例えば多種のレーザを対象とす
る試験装置などにおいて、上述の如き各半導体受光装置
を包含する受光帯域を備え、しかも特性、安定性等が優
れた半導体受光装置が要望されている。
Si-ΔPD Ge-APD InGaA
s-APD multiplication factor M Maximum value 500-1000 50-100 ~
50 Usage value 50-200 ~10 4-5 Multiplication noise parameter 0.22-0.3 0.5-0.9 ~0.7 [Problem to be solved by the invention] The semiconductor photodetector device is However, for example, in a test device that targets various types of lasers, it is necessary to have a light receiving band that covers each semiconductor light receiving device as described above, and to have characteristics, stability, etc. There is a demand for a semiconductor light receiving device with excellent characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、シリコンからなる半導体基体の受光面上
に螢光体膜が配設され、該螢光体膜が入射光に励起され
て発生する光及び該受光面を通過した入射光を該半導体
基体において吸収する本発明による半導体受光装置によ
り解決される。
The problem is that a phosphor film is disposed on the light-receiving surface of a semiconductor substrate made of silicon, and the phosphor film is excited by the incident light and separates the light generated and the incident light that passes through the light-receiving surface. This problem is solved by a semiconductor light receiving device according to the present invention that absorbs light in a semiconductor substrate.

〔作 用〕[For production]

本発明による半導体受光装置は、例えば前記従来例の5
i−APDに相当する半導体基体の受光面上に、受光面
に接し或いは離隅し、その全面に拡がり或いは1部分に
限って配設した螢光体膜が入射光に励起されて発生する
光と、受光面を通過した入射光とを受光する。
The semiconductor light receiving device according to the present invention is, for example, the conventional example 5.
Light generated when incident light excites a phosphor film disposed on the light-receiving surface of a semiconductor substrate corresponding to an i-APD, in contact with or in a corner of the light-receiving surface, and extending over the entire surface or only in one part of the light-receiving surface. and the incident light that has passed through the light receiving surface.

この螢光体膜に例えば赤外帯域の入射光により可視光を
発生する螢光材料を用いることにより、Si受光装置本
来の受光可能帯域より長波長の赤外帯域を受光すること
が可能となる。この様な螢光材料としては、遷移金属に
アルカリ土類金属を付加した下記の例などがある。
By using, for example, a fluorescent material that generates visible light in response to incident light in the infrared band for this phosphor film, it becomes possible to receive light in the infrared band with a longer wavelength than the band that the Si light receiving device can originally receive. . Examples of such fluorescent materials include the following examples in which alkaline earth metals are added to transition metals.

ストロンチウム(Sr)セレン(Se) :タリウム(
TI)系;波長2μm付近の赤外光により可視光を発光
Strontium (Sr) Selenium (Se): Thallium (
TI) system; emits visible light using infrared light with a wavelength of around 2 μm.

ストロンチウム(Sr)硫黄(S):ユウロピウム(E
u)系;波長1μm付近の赤外光により可視光を発光。
Strontium (Sr) Sulfur (S): Europium (E
u) System; emits visible light using infrared light with a wavelength of around 1 μm.

なお逆に螢光体膜に入射光より長波長の可視光を発生す
る螢光体を用いることにより、Si受光装置本来の受光
可能帯域より短波長の帯域を受光することも可能である
Conversely, by using a phosphor that generates visible light with a longer wavelength than the incident light in the phosphor film, it is also possible to receive light in a wavelength band shorter than the light receiving band originally available for the Si light receiving device.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第1図は本発明の実施例を示す模式斜視断面図であり、
その上部は受光面、下部は側断面を示す。
FIG. 1 is a schematic perspective sectional view showing an embodiment of the present invention,
The upper part shows the light-receiving surface, and the lower part shows the side cross section.

同図において、1はp+型Si基板、2はp−型光吸収
領域、3はp型アバランシ領域、4は忙型拡散領域、5
はn型ガードリング領域、6はf型チャネルストッパ領
域、7は本発明による螢光体膜、8はSiO□膜、9は
n側電極、10はp側電極である。
In the figure, 1 is a p+ type Si substrate, 2 is a p- type light absorption region, 3 is a p-type avalanche region, 4 is a busy diffusion region, and 5 is a p-type light absorption region.
6 is an n-type guard ring region, 6 is an f-type channel stopper region, 7 is a phosphor film according to the present invention, 8 is a SiO□ film, 9 is an n-side electrode, and 10 is a p-side electrode.

本実施例は螢光体膜7として、前記SrS:Eu系螢光
材料からなる厚さ約0.5〜1.0如の膜をリング状に
配設し、第2図に例示する量子効率を得ている。
In this embodiment, a film made of the SrS:Eu-based fluorescent material and having a thickness of about 0.5 to 1.0 mm is arranged in a ring shape as the phosphor film 7, and the quantum efficiency shown in FIG. I am getting .

本実施例では螢光体膜7をリング状としているが、特に
開口を設けなくてもよい。この場合には螢光体膜7の厚
さ等によって入射光の透過率を選択して受光感度特性を
制御する。
Although the phosphor film 7 is ring-shaped in this embodiment, it is not necessary to provide any openings. In this case, the transmittance of incident light is selected depending on the thickness of the phosphor film 7, etc. to control the light-receiving sensitivity characteristics.

また以上の説明は/IPDを引例しているが、本発明は
半導体基体にアバランシ増倍機能を備えないp−4−n
ホトダイオード等についても適用可能である。
Further, although the above explanation refers to /IPD, the present invention is a p-4-n device which does not have an avalanche multiplication function on the semiconductor substrate
It is also applicable to photodiodes and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、Si受光装置の優れ
た特性、安定性を基礎としてその受光帯域が拡張され、
例えばレーザ試験装置等における適用範囲が拡大されて
、光応用システム等の進展に大きく寄与する。
As explained above, according to the present invention, the light receiving band is expanded based on the excellent characteristics and stability of the Si light receiving device.
For example, the scope of application in laser testing equipment, etc. will be expanded, and this will greatly contribute to the advancement of optical application systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の模式斜視断面図、第2図は実
施例の量子効率の例を示す図、第3図は従来例の模式側
断面図、 第4図はSi及びGe受光装置の量子効率の例を示す図
である。 図において、 ■はp+型St基板、 2ばp−型光吸収領域、 3はp型アバランシ領域、 4はf型拡散領域、 5はn型ガードリング領域、 6はp十型チャネルストッパv4域、 7は本発明による螢光体膜、 8はSiO□膜、 9はn側電極、 10はp側電極を示す。 尖先例/)模式側断面図 殆 1 図 θ、4   θP    /、2     /6  2
0波長Cp−) 皺釆移゛Jの模式(it・1町面図    漉 3 図 波長(μ町 5創びGe受を装置カ量子妨率 第 4 図
Fig. 1 is a schematic perspective sectional view of an embodiment of the present invention, Fig. 2 is a diagram showing an example of quantum efficiency of the embodiment, Fig. 3 is a schematic side sectional view of a conventional example, and Fig. 4 is Si and Ge light reception. It is a figure showing an example of quantum efficiency of a device. In the figure, 2 is a p+ type St substrate, 2 is a p- type light absorption region, 3 is a p-type avalanche region, 4 is an f-type diffusion region, 5 is an n-type guard ring region, 6 is a p-type channel stopper v4 region , 7 is a phosphor film according to the present invention, 8 is a SiO□ film, 9 is an n-side electrode, and 10 is a p-side electrode. Tip example/) Schematic side sectional view Most 1 Figure θ, 4 θP /, 2 /6 2
0 wavelength Cp-) Schematic diagram of wrinkle transfer J (it・1 Town map) 3 Diagram wavelength (μ town 5 Create Ge receiver and equipment quantum rejection factor 4)

Claims (1)

【特許請求の範囲】 1)シリコンからなる半導体基体の受光面上に螢光体膜
が配設され、該螢光体膜が入射光に励起されて発生する
光及び該受光面を通過した入射光を該半導体基体におい
て吸収することを特徴とする半導体受光装置。 2)前記螢光体膜が赤外帯域の入射光により可視光を発
生する螢光体からなることを特徴とする特許請求の範囲
第1項記載の半導体受光装置。
[Claims] 1) A phosphor film is provided on a light-receiving surface of a semiconductor substrate made of silicon, and the phosphor film is excited by incident light to generate light and the light that passes through the light-receiving surface. A semiconductor light-receiving device characterized in that light is absorbed in the semiconductor substrate. 2) The semiconductor light-receiving device according to claim 1, wherein the phosphor film is made of a phosphor that generates visible light in response to incident light in an infrared band.
JP61194602A 1986-08-20 1986-08-20 Semiconductor light receiving device Pending JPS6350077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61194602A JPS6350077A (en) 1986-08-20 1986-08-20 Semiconductor light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61194602A JPS6350077A (en) 1986-08-20 1986-08-20 Semiconductor light receiving device

Publications (1)

Publication Number Publication Date
JPS6350077A true JPS6350077A (en) 1988-03-02

Family

ID=16327276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61194602A Pending JPS6350077A (en) 1986-08-20 1986-08-20 Semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JPS6350077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843363A1 (en) * 1996-11-18 1998-05-20 Nec Corporation Solid state camera element comprising a wavelength converter
CN104505434A (en) * 2014-12-16 2015-04-08 中国电子科技集团公司第四十七研究所 Photocell and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156528A (en) * 1981-03-22 1982-09-27 Nec Corp Image detector using infrared rays
JPS57193078A (en) * 1981-05-22 1982-11-27 Nec Corp Semiconductor light oscillator with monitor
JPS5955075A (en) * 1982-09-22 1984-03-29 Fuji Electric Corp Res & Dev Ltd Semiconductor radiation detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156528A (en) * 1981-03-22 1982-09-27 Nec Corp Image detector using infrared rays
JPS57193078A (en) * 1981-05-22 1982-11-27 Nec Corp Semiconductor light oscillator with monitor
JPS5955075A (en) * 1982-09-22 1984-03-29 Fuji Electric Corp Res & Dev Ltd Semiconductor radiation detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843363A1 (en) * 1996-11-18 1998-05-20 Nec Corporation Solid state camera element comprising a wavelength converter
CN104505434A (en) * 2014-12-16 2015-04-08 中国电子科技集团公司第四十七研究所 Photocell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4493113A (en) Bidirectional fiber optic transmission systems and photodiodes for use in such systems
US4709413A (en) Bidirectional fiber optic systems
JPS6328506B2 (en)
US4577209A (en) Photodiodes having a hole extending therethrough
US5130762A (en) Integrated quantum well feedback structure
US6987306B2 (en) Monolithic photoreceiver technology for free space optical networks
US5652813A (en) Line bi-directional link
CN103929252B (en) Coherent receiver based on APD
CN112913158B (en) Photoelectric detector chip, light receiving and transmitting-receiving assembly, optical module and communication equipment
JPS6350077A (en) Semiconductor light receiving device
WO2021100088A1 (en) Avalanche photodiode
US5656831A (en) Semiconductor photo detector
Mason et al. Photonic integrated receiver for 40 Gbit/s transmission
JP2710070B2 (en) Semiconductor light receiving element and optical semiconductor device using this semiconductor light receiving element
JP2684568B2 (en) Optical integrated circuit
JPS6269687A (en) Semiconductor photodetector
JPS59151475A (en) Hetero-structure avalanche-photodiode with buffer layer
JP4281743B2 (en) Light receiving element and optical receiver using the same
JPH04144182A (en) Optical semiconductor device array
EBIHARA et al. 100 GBaud Waveguide Photodetectors for Next-Generation Data Centers
Yin et al. InGaAs/InAlAs avalanche photodetectors integrated on silicon-on-insulator waveguide circuits
Smith Photodetectors and receivers—An update
JP2767877B2 (en) Manufacturing method of semiconductor light receiving element
Napiah et al. Wavelength dependence of silicon avalanche photodiode fabricated by CMOS process
JPS61292973A (en) Semiconductor light-receiving element