JPS6350063B2 - - Google Patents

Info

Publication number
JPS6350063B2
JPS6350063B2 JP55064867A JP6486780A JPS6350063B2 JP S6350063 B2 JPS6350063 B2 JP S6350063B2 JP 55064867 A JP55064867 A JP 55064867A JP 6486780 A JP6486780 A JP 6486780A JP S6350063 B2 JPS6350063 B2 JP S6350063B2
Authority
JP
Japan
Prior art keywords
liquid
classified
pipe
outflow
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55064867A
Other languages
Japanese (ja)
Other versions
JPS56161850A (en
Inventor
Naoya Igawa
Juzo Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UINGOO KK
Original Assignee
UINGOO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UINGOO KK filed Critical UINGOO KK
Priority to JP6486780A priority Critical patent/JPS56161850A/en
Publication of JPS56161850A publication Critical patent/JPS56161850A/en
Publication of JPS6350063B2 publication Critical patent/JPS6350063B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • B04B2005/0464Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation with hollow or massive core in centrifuge bowl

Landscapes

  • Centrifugal Separators (AREA)

Description

【発明の詳細な説明】 本発明は遠心分離と流体力学的分離とを併用し
た微粒子の連続式分級装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous particle classification device that uses both centrifugal separation and hydrodynamic separation.

微粒子の分級に関する技術は最近多くの分野で
関心を持たれているが、特に最近注目されている
サブミクロンオーダの微粒子を利用する種々の超
精密加工の分野においては、粗粒の混在が直接品
質そのものに影響するため、これらの微粒子の整
粒技術の確立が切望されており、本出願人も過去
に特開昭54−65877号として効果的な分級法を開
示している。
Technology related to the classification of fine particles has recently attracted interest in many fields, but in the field of various ultra-precision machining that uses fine particles on the submicron order, which has recently attracted attention, the mixture of coarse particles directly affects quality. Therefore, there is a strong desire to establish a technology for classifying these fine particles, and the present applicant has previously disclosed an effective classification method in Japanese Patent Application Laid-Open No. 54-65877.

本発明は上記のものを更に発展、改良したもの
であり、0.1(μm)オーダといつた微粒子ではそ
の物性等のために分離精度に限界があつたのを、
本発明では微粒子特有の凝集性を解消するため、
微粒子を液中に混入させた被分級液をつくり、該
液を安定した流れとして連続的に遠心力場を通過
させることにより、0.1(μm)オーダの微粒子の
高精度、高能率な分級を可能としたものである。
The present invention is a further development and improvement of the above-mentioned system, and it is possible to overcome the limitations of separation accuracy due to the physical properties of fine particles on the order of 0.1 (μm).
In the present invention, in order to eliminate the aggregation characteristic of fine particles,
By creating a liquid to be classified with fine particles mixed in it and passing the liquid continuously through a centrifugal force field in a stable flow, it is possible to classify fine particles on the order of 0.1 (μm) with high precision and high efficiency. That is.

以下本発明の詳細を図示した実施例に基づき説
明すると、図中1は円筒状の密閉容器であつて、
該容器の両平面2,3には内部が連通状態で液体
流入管4と液体流出管5が連設されてなり、この
密閉容器1の内部には、円板状の中間体10を該
中間体10の周囲側面と密閉容器1の内側面6と
の間に分離空間7を設けて配するともに、該中間
体10の上下面中心部に同軸となして突設した軸
体8,9をそれぞれ前記液体流入管4と液体流出
管5内に同軸として配し、該軸体8,9を中間体
10と密閉容器1とが一体的に回転するように棒
体で固着した。
The details of the present invention will be explained below based on the illustrated embodiments. In the figure, 1 is a cylindrical closed container,
A liquid inflow pipe 4 and a liquid outflow pipe 5 are connected to both flat surfaces 2 and 3 of the container so that the inside thereof is in communication with each other. A separation space 7 is provided between the peripheral side surface of the intermediate body 10 and the inner surface 6 of the closed container 1, and shaft bodies 8 and 9 are coaxially protruded from the center of the upper and lower surfaces of the intermediate body 10. They were disposed coaxially within the liquid inflow pipe 4 and the liquid outflow pipe 5, respectively, and the shaft bodies 8 and 9 were fixed with rods so that the intermediate body 10 and the closed container 1 rotated together.

更に、液体流入側においては前記液体流入管4
と軸体8間に中管11を同軸となして配するとと
もに、該中管11の下方遊端を密閉容器1の上方
平面2と中間体10上面間に固定した板体12に
連設し、また該板体12の前記分離空間7の上部
に臨む位置には注入口13を開設し、前記液体流
入管4と中管11間及びそれと連通した密閉容器
1の上方平面2間を分級物取出用液体流入路14
となすとともに、前記軸体8と中管11間を被分
級液流入路15となし、更に前記中間体10の上
面と板体12間に上部狭間隙16を形成して構成
した。尚、前記注入口13は、円筒状の分離空間
7の上部から分級物取出用液体を略均一な流れと
なして導入できるように、円板状の前記板体12
の周囲に多数形成している。また、液体流出側に
おいても前記上部構造と全く同じ構造に形成さ
れ、即ち前記板体12、中管11と同様に板体1
7、中管18をそれぞれ配し、また前記注入口1
3に対応する分離空間7下部の板体17には取出
口19を形成し、前記上部狭間隙16に対応する
下部狭間隙20、分級物取出用液体流入路14に
対応する分級物取出用液体流出路21及び被分級
液流入路15に対応する被分級液流出路22をそ
れぞれ形成して構成した。
Furthermore, on the liquid inflow side, the liquid inflow pipe 4
An intermediate tube 11 is disposed coaxially between the inner tube 11 and the shaft body 8, and the lower free end of the intermediate tube 11 is connected to a plate 12 fixed between the upper plane 2 of the closed container 1 and the upper surface of the intermediate body 10. In addition, an inlet 13 is provided at a position facing the upper part of the separation space 7 of the plate body 12, and the space between the liquid inflow pipe 4 and the middle pipe 11, and between the upper plane 2 of the closed container 1 communicating therewith, is filled with the classified material. Retrieval liquid inflow path 14
In addition, the space between the shaft body 8 and the intermediate tube 11 is defined as an inflow path 15 for the liquid to be classified, and furthermore, an upper narrow gap 16 is formed between the upper surface of the intermediate body 10 and the plate body 12. The inlet 13 is connected to the disc-shaped plate 12 so that the liquid for removing the classified product can be introduced from the upper part of the cylindrical separation space 7 in a substantially uniform flow.
Many are formed around the. Also, on the liquid outflow side, the structure is exactly the same as the upper structure, that is, the plate 12 and the middle pipe 11 are
7, the middle pipes 18 are respectively disposed, and the inlet 1
An extraction port 19 is formed in the plate body 17 at the bottom of the separation space 7 corresponding to No. 3, and a lower narrow gap 20 corresponding to the upper narrow gap 16 and a liquid for removing the classified material corresponding to the liquid inflow path 14 for removing the classified material are formed. A liquid to be classified outflow path 22 corresponding to the outflow path 21 and the liquid to be classified inflow path 15 was formed respectively.

なおこれら装置に対しては、各流入路14,1
5、流出路21,22に対し装置外との液体流入
又は流出系を構成すべくそれぞれが外部装置と連
結されるとともに密閉容器内の被分級液に対し遠
心力を附与する為に液体流入管4及び液体流出管
5を軸受にて回転可能に支持し、本実施例では一
方の液体流出管5をプーリ、ベルトを介して回転
装置23にこれら装置を関係づけている。
Note that for these devices, each inflow path 14, 1
5. The outflow channels 21 and 22 are connected to an external device to form a liquid inflow or outflow system with the outside of the device, and liquid inflow to apply centrifugal force to the liquid to be classified in the sealed container. The tube 4 and the liquid outflow tube 5 are rotatably supported by bearings, and in this embodiment, one of the liquid outflow tubes 5 is connected to a rotating device 23 via a pulley and a belt.

しかして種々の大きさの微粒子を含む被分級液
を処理せんとするときはまず回転装置23を作動
して密閉容器1並びに中間体10を一体的に回転
させながら被分級液を流入路15に分級物取出用
液体を流入路14に供給すれば、被分級液は流入
路15より密閉容器1内の上部狭間〓16に流入
し、該狭間〓16において被分級液は密閉容器1
及び板体12の各面に接触して粘性抵抗により流
れは層流状の安定した流れに規制され、且つ遠心
力により平面視渦状に拡がつて分離空間7へ供給
され、該分離空間7において流入路14から供給
されてきた分級物取出用液体と平行に空間7内を
流れ被分級液中の混入粒子は遠心力によりその粒
径の大小に応じて外方に飛ばされ分級物取出用液
体流入路14を通して注入口13から導入された
分級物取出用液体中へ分離され、一定粒径以下の
微粒子だけが被分級液と共に下部狭間〓20に流
入し、連続して流入路15から送給されてくる被
分級液の圧力により、前記下部狭間〓20に流入
したものは密閉容器1の中心に位置する分級液流
出路22に向い取出される。一方、一定粒径以上
の粒子は分離空間7内の分級物取出用液体中に分
離されこれも又連続して流入路14から送給され
てくる分級物取出用液体の圧力により取出口19
から流出路21へ送出され、装置外へ取り出され
る。
When a liquid to be classified containing fine particles of various sizes is to be treated, the rotating device 23 is first activated to rotate the closed container 1 and the intermediate body 10 integrally, and the liquid to be classified is introduced into the inflow path 15. When the liquid for taking out the classified product is supplied to the inflow path 14, the liquid to be classified flows from the inflow path 15 into the upper gap 16 in the closed container 1, and in the gap 16, the liquid to be classified flows into the closed container 1.
The flow is regulated to a stable laminar flow due to viscous resistance when it comes into contact with each surface of the plate body 12 , and is expanded into a spiral shape in a plan view due to centrifugal force and is supplied to the separation space 7 . The particles flowing in the space 7 are parallel to the liquid for removing the classified material supplied from the inflow path 14, and the mixed particles in the liquid to be classified are blown outward according to the size of the particles by centrifugal force, and the liquid for removing the classified material is flown. The particles are separated into the liquid for taking out the classified material introduced from the inlet 13 through the inflow path 14, and only fine particles with a certain particle size or less flow into the lower gap 20 together with the liquid to be classified, and are continuously fed from the inflow path 15. Due to the pressure of the liquid to be classified, the liquid flowing into the lower gap 20 is directed toward the classified liquid outflow path 22 located at the center of the closed container 1 and is taken out. On the other hand, particles larger than a certain particle size are separated into the liquid for taking out the classified material in the separation space 7, and the pressure of the liquid for taking out the classified material, which is also continuously fed from the inflow path 14, causes the particles to reach the outlet 19.
It is sent out to the outflow path 21 and taken out of the device.

このように本発明の被分級液は上部狭間〓16
により層流状化され且つ渦巻状になつて分離空間
7に流入するとともに流入路14から分級物取出
用液体が被分級液の外側に位置して注入口13か
ら流入するから被分級液の流れは極めて円滑で整
流されており、大小の混入微粒子もまた分級され
るのに適した滑らかな流れの状態となつて精度の
高い分級が可能となるのである。即ち層流状のま
ま分離空間7に流入した被分級液は密閉容器1と
中間体10とが一体的に回転しているからそのま
ま層流状の安定した流れを保つて下部狭間〓20
に流入しようとし、その間において混入粒子は遠
心力により粒径の大なるもの程、分離空間7内の
分級物取出用液体中へ飛ばされ、一定粒径以下の
微粒子だけが分離空間7を通過して下部狭間〓2
0に流入して分級がなされるのである。
In this way, the liquid to be classified according to the present invention is
The liquid to be classified flows into the separation space 7 in a laminar and spiral manner, and at the same time, the liquid for taking out the classified substance is located outside the liquid to be classified and flows in from the inlet 13 from the inflow path 14, so that the liquid to be classified flows. The flow is extremely smooth and rectified, creating a smooth flow suitable for classifying even large and small mixed particles, making highly accurate classification possible. That is, the liquid to be classified that has flowed into the separation space 7 in a laminar flow maintains a stable laminar flow because the closed container 1 and the intermediate body 10 are rotating integrally, and flows into the lower gap 20.
During this time, the larger the particle size of the mixed particles is blown into the liquid for removing the classified material in the separation space 7 due to centrifugal force, and only fine particles with a certain size or less pass through the separation space 7. Lower gap = 2
It flows into 0 and is classified.

以上のように本発明は微粒子の精度の高い分級
を行うため、分級せんとする微粒子を液中に混入
させて被分級液をつくり、該液を密閉容器1と中
間体10との間に形成される狭間〓16を通過せ
しめて流れの整つた層流状とすると共に該被分級
液の外側に分級物取出用液体を配ししかも密閉容
器1全体を回転して被分級液並びに分級物取出用
液体に遠心力を附与し、微粒子の分級をするよう
にしたものであり、これにより極めて小さい微粒
子を利用する種々の超精密加工においてより精度
の高い、品質の良好な製品を得ることが可能とな
つた。被分級液と分級物取出用液体は別の流入口
より流入し被分級液は中間体の軸体周囲より同平
面と粘性抵抗により層別流体に整流されつつ外周
分級物取出用液体に拡流し、中間体外周よりその
粘度別の遠心力により密閉容器外周に向い放散
し、その大なるものは遠く小なるものは近くに秩
序よく分散された上、その大なる粗粒子領域の直
上方向よりの分級物取出用液体の落下直流により
密閉容器下部へ略々平行流となつて沈降するの
で、中間体よりの飛散に際し密閉容器内面付近に
おこる反転流による渦流もこの落下直流により発
生せず互いにその付近での局部滞留も起こらず、
安定した沈降状態となつて降流して取出口より排
出され、微粒子の方は中間体上部表面において軸
体外周より十分に液層別整流されている為、遠心
力による飛散も遠方に拡散することなく微粒子領
域の乱れがなく、また粗粒子領域との相互拡散も
なく下部板体に至り被分級液流出路から排出され
るのである。本発明は、流出入口をそれぞれ二重
となした二液式としてあり、それにより各流量の
調節が可能で、その調節と密閉容器の回転数によ
り分級サイズの設定が極めて容易であり、高精度
高能率の連続分級が可能となつたのである。
As described above, in order to perform highly accurate classification of fine particles, the present invention mixes fine particles to be classified into a liquid to create a liquid to be classified, and forms the liquid between the closed container 1 and the intermediate body 10. The liquid to be classified is made to flow through the gap 16 to form a well-organized laminar flow, and a liquid for taking out the classified material is arranged outside the liquid to be classified, and the entire sealed container 1 is rotated to take out the liquid to be classified and the classified material. This is a device that applies centrifugal force to the liquid used to classify fine particles.This makes it possible to obtain products with higher precision and better quality in various ultra-precision machining processes that utilize extremely small particles. It became possible. The liquid to be classified and the liquid for taking out the classified product flow in from separate inlets, and the liquid to be classified is rectified into stratified fluid from around the shaft of the intermediate body by the same plane and viscous resistance, and spreads into the liquid for removing the classified product at the outer periphery. , from the periphery of the intermediate to the periphery of the closed container due to the centrifugal force depending on its viscosity, and the large particles are dispersed in an orderly manner far away and the small particles are nearby. The falling direct current of the liquid for taking out the classified material causes it to settle to the bottom of the closed container in a substantially parallel flow, so that the eddy current caused by the reversed flow that occurs near the inner surface of the closed container when it is scattered from the intermediate is not generated by this falling direct current, and the liquid flows mutually. There is no local retention in the vicinity,
In a stable sedimentation state, it descends and is discharged from the outlet, and since the fine particles are sufficiently rectified by liquid layer on the upper surface of the intermediate body than the outer periphery of the shaft body, scattering due to centrifugal force can also be dispersed far away. Therefore, there is no disturbance in the fine particle region, and there is no mutual diffusion with the coarse particle region, so that the liquid reaches the lower plate and is discharged from the outflow path of the liquid to be classified. The present invention is a two-liquid type with double inlets and inlets, which allows each flow rate to be adjusted, making it extremely easy to set the classification size by adjusting the flow rate and the rotation speed of the sealed container, and achieving high precision. Highly efficient continuous classification has become possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示す説明図である。 1:密閉容器、2:平面、3:平面、4:液体
流入管、5:液体流出管、6:内側面、7:分離
空間、8:軸体、9:軸体、10:中間体、1
1:中管、12:板体、13:注入口、14:分
級物取出用液体流入路、15:被分級液流入路、
16:上部狭間〓、17:板体、18:中管、1
9:取出口、20:下部狭間〓、21:分級物取
出用液体流出路、22:被分級液流出路、23:
回転装置。
The drawings are explanatory diagrams showing embodiments of the present invention. 1: Airtight container, 2: Plane, 3: Plane, 4: Liquid inflow pipe, 5: Liquid outflow pipe, 6: Inner surface, 7: Separation space, 8: Shaft body, 9: Shaft body, 10: Intermediate body, 1
1: Middle pipe, 12: Plate body, 13: Inlet, 14: Liquid inflow path for taking out the classified product, 15: Liquid inflow path to be classified,
16: Upper gap, 17: Plate, 18: Middle pipe, 1
9: Take-out port, 20: Lower gap, 21: Liquid outflow path for taking out the classified material, 22: Classified liquid outflow path, 23:
Rotating device.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒状密閉容器の両平面には内部が連通状態
で液体流入管と液体流出管を連設し、これらのう
ち密閉容器中には容器側内面との間に分離空間を
設けて円板状の中間体を配し、液体流入並びに流
出管中には中間体に固着した軸体を固定的に配す
るとともに液体流入管と内部の軸体、並びに液体
流出管と内部の軸体間にはそれぞれ中管を配し且
該中管の中間体側端部には密閉容器の両平面内側
面と中間体両平面との間に板体を連設して、液体
流入管側には内側に被分級液流入路を外側に分級
物取出用液体流入路を形成し、液体流出管側に
は、内側に被分級液流出路を外側に分級物取出用
液体流出路を形成し、又分離空間上面には注入口
を、分離空間下面には取出口を開設し、しかも、
これら装置を密閉容器内の被分級液に対し遠心力
を附与する回転装置に関係づけてなる連続式分級
装置。
1 A liquid inflow pipe and a liquid outflow pipe are connected to each other on both planes of a cylindrical sealed container so that the inside thereof is in communication, and a separation space is provided between the inside of the sealed container and the inner surface on the side of the container to form a disc-shaped pipe. A shaft body fixed to the intermediate body is fixedly arranged in the liquid inflow and outflow pipes, and between the liquid inflow pipe and the internal shaft body, and between the liquid outflow pipe and the internal shaft body. A middle pipe is arranged in each case, and a plate is connected to the end of the middle pipe on the side of the intermediate body between both flat inner surfaces of the airtight container and both flat faces of the intermediate body, and a plate body is arranged on the inside of the liquid inflow pipe side. A liquid inflow path for taking out the classified material is formed on the outside of the classified liquid inflow path, and a liquid outflow path for taking out the classified material is formed on the inside and a liquid outflow path for taking out the classified material on the outside of the liquid outflow pipe. An inlet is provided at the bottom of the separation space, and an outlet is provided at the bottom of the separation space.
A continuous classification device in which these devices are connected to a rotating device that applies centrifugal force to the liquid to be classified in a closed container.
JP6486780A 1980-05-15 1980-05-15 Method and apparatus for continuous classification Granted JPS56161850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6486780A JPS56161850A (en) 1980-05-15 1980-05-15 Method and apparatus for continuous classification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6486780A JPS56161850A (en) 1980-05-15 1980-05-15 Method and apparatus for continuous classification

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP12923982A Division JPS5874157A (en) 1982-07-24 1982-07-24 Continuous system classifying device

Publications (2)

Publication Number Publication Date
JPS56161850A JPS56161850A (en) 1981-12-12
JPS6350063B2 true JPS6350063B2 (en) 1988-10-06

Family

ID=13270525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6486780A Granted JPS56161850A (en) 1980-05-15 1980-05-15 Method and apparatus for continuous classification

Country Status (1)

Country Link
JP (1) JPS56161850A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227751U (en) * 1985-08-02 1987-02-19
JPH039803Y2 (en) * 1986-04-18 1991-03-12
JP5115684B2 (en) * 2005-12-14 2013-01-09 正武 高島 Apparatus for removing solid components mechanically using centrifugal separation method and centrifugal separation method for removing solid components mechanically

Also Published As

Publication number Publication date
JPS56161850A (en) 1981-12-12

Similar Documents

Publication Publication Date Title
US4214981A (en) Steric field-flow fractionation
DK150182B (en) PROCEDURE AND APPARATUS FOR CONTINUOUS CENTRIFUGAL CLASSIFICATION OF A CONTINUOUS CURRENT GOD'S CURRENT FLOW
JPS5935267B2 (en) Sedimentation field flow separation rotor
JP2005098704A (en) Method for fractionating particulate of different specific gravity
JP2509374B2 (en) Granule classifier
US3498454A (en) Counter-current centrifugal device and use
Morimoto et al. Classification of ultra fine powder by a new pneumatic type classifier
US3698626A (en) Centrifuge separator
JPS6350063B2 (en)
CN112024112A (en) Microparticle powder sorting method and ultra-narrow band distribution microparticle powder
Galvin et al. Particle transport and separation in inclined channels subject to centrifugal forces
US1701942A (en) Vortex classifier suitable for use in the classification of powdered materials by elutriation
JPS63502089A (en) magnetic separator
US20090236269A1 (en) Classification method and classification apparatus
Leschonski et al. Principle and construction of two new air classifiers for particle size analysis
US20110042279A1 (en) Device and method for classifying particles
US2731147A (en) Hydraulic classifier
JPS59145079A (en) Air classifier of powdery particle
US8087515B2 (en) Separation method and separation apparatus
Burson III et al. Particle dynamics in centrifugal fields
JPH0140665B2 (en)
US3087482A (en) Method and apparatus for making reconstituted synthetic mica sheet
JPH03245856A (en) Centrifugal sifting apparatus
JP2946230B2 (en) Ultra fine powder classifier
JP3542382B2 (en) Classifier