JP5115684B2 - Apparatus for removing solid components mechanically using centrifugal separation method and centrifugal separation method for removing solid components mechanically - Google Patents

Apparatus for removing solid components mechanically using centrifugal separation method and centrifugal separation method for removing solid components mechanically Download PDF

Info

Publication number
JP5115684B2
JP5115684B2 JP2005359900A JP2005359900A JP5115684B2 JP 5115684 B2 JP5115684 B2 JP 5115684B2 JP 2005359900 A JP2005359900 A JP 2005359900A JP 2005359900 A JP2005359900 A JP 2005359900A JP 5115684 B2 JP5115684 B2 JP 5115684B2
Authority
JP
Japan
Prior art keywords
waste liquid
bottomed circular
liquid
separation tank
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005359900A
Other languages
Japanese (ja)
Other versions
JP2007160220A (en
Inventor
正武 高島
満夫 長崎
Original Assignee
正武 高島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正武 高島 filed Critical 正武 高島
Priority to JP2005359900A priority Critical patent/JP5115684B2/en
Publication of JP2007160220A publication Critical patent/JP2007160220A/en
Application granted granted Critical
Publication of JP5115684B2 publication Critical patent/JP5115684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Centrifugal Separators (AREA)

Description

本発明は、使用状態で汚れた部品の洗浄や、部品の加工時に発生する研削粉などをスプレーノズルにより吹き付ける方法で洗浄する工程で、ノズルの詰まりの原因となる洗浄液に分散浮遊している固形成分を除去し、洗浄液を繰り返し利用できるようにするために供する機械的に固体成分を除去する装置に関するものである。 The present invention is a process of cleaning a dirty part in the state of use and a method of spraying grinding powder generated during processing of a part with a spray nozzle, and a solid suspended in a cleaning liquid that causes clogging of the nozzle The present invention relates to an apparatus for removing a component and mechanically removing a solid component, which is used to repeatedly use a cleaning liquid.

洗浄作業において洗浄に用いる洗浄液は、洗浄によって種々の汚染物質を含むことになるが、―般的に洗浄効果が落ちるまで繰り返し使用される。しかし、ノズルを用いて噴射する方法で洗浄する装置では、洗浄液に分散浮遊している固形成分がノズルを詰まらせる原因となり、洗浄液の化学的機能又は分散能力等の物理化学的機能が劣化する前に繰り返し利用ができなくなる。   The cleaning liquid used for cleaning in the cleaning operation contains various contaminants by the cleaning, but is generally used repeatedly until the cleaning effect is reduced. However, in an apparatus for cleaning by a method of spraying using a nozzle, solid components dispersed and suspended in the cleaning liquid cause clogging of the nozzle, and before the chemical function of the cleaning liquid or the physicochemical functions such as dispersibility are deteriorated. Cannot be used repeatedly.

そこで、従来は濾紙フィルター等により固形成分を濾し取る機能を付加して洗浄液の繰り返し利用を行っていたが、被洗浄部品の汚れの状況によっては、固形成分が多く、フィルターの消耗が激しく、洗浄に多くの経費がかかっている。特に、lμm以下の粒径の汚れ物質は、ノズルの詰まりによる洗浄装置機能障害だけでなく、洗浄液の分散能力の低下も生じるため、フィルターのメッシュを小さくする必要が生じ、フィルターが短時間で目詰まりを起して交換頻度が増すことになった。
特開2002−45729
Therefore, in the past, the cleaning liquid was repeatedly used by adding a function to filter out solid components with a filter paper filter, etc., but depending on the condition of the dirt of the parts to be cleaned, there are many solid components, and the filter is heavily consumed. It costs a lot of money. In particular, a soiled substance having a particle size of 1 μm or less not only impairs the function of the cleaning device due to clogging of the nozzle but also decreases the ability to disperse the cleaning liquid. The replacement frequency increased due to clogging.
JP2002-45729

解決しようとする問題点は、微細な汚れ物質による被洗浄部品の汚れが激しい場合においても、洗浄能力の増大を図り、且つ洗浄液を繰り返し利用できるような遠心分離法を用いた機械的に固体成分を除去する手段及び機械的に固体成分を除去する手段に適した遠心分離方法を提供しようとするものである。 The problem to be solved is a mechanically solid component using a centrifugal separation method that increases the cleaning ability and allows repeated use of the cleaning liquid even when the parts to be cleaned are heavily soiled by fine dirt substances. centrifugation methods suitable means for removing means and mechanically solid component removing are intended to provide.

本発明の請求項1に記載の遠心分離法を用いた機械的に固体成分を除去する装置によれば、タンク体内の底部に向かって垂設し下端部分に外方にノズルを設けた洗浄廃液導入管と、この洗浄廃液導入管を距離を保って包囲しかつ上部外周に複数の細孔を設けた有底円形内筒と、この有底円形内筒に対して距離を保って包囲し下方に向かって末広がり状に拡開しかつ底面直近の外周部に複数の細孔を設けた有底円形外筒と、さらにこの有形円形外筒を距離を保って包囲する分離槽から主としてなり、内周壁に複数段にわたって形成したそれぞれ全周をカバ―する環状堰を設けた前記分離槽及び前記有底円形内筒並びに前記有底円形外筒を、軸受手段を介して駆動装置で高速回転させるようにしたものである。 According to the apparatus for removing a solid component mechanically using the centrifugal separation method according to claim 1 of the present invention, the cleaning waste liquid that is suspended toward the bottom of the tank body and has a nozzle on the lower end portion. A bottomed circular inner cylinder that surrounds the introduction pipe and the cleaning waste liquid introduction pipe at a distance and is provided with a plurality of pores on the outer periphery of the bottom, and is surrounded and surrounded by a distance from the bottomed circular inner cylinder. It consists mainly of a bottomed circular outer cylinder that expands in a divergent shape and has a plurality of pores in the outer peripheral portion closest to the bottom surface, and a separation tank that surrounds the tangible circular outer cylinder at a distance, The separation tank, the bottomed circular inner cylinder, and the bottomed circular outer cylinder provided with annular weirs that cover the entire circumference formed in a plurality of stages on the peripheral wall are rotated at high speed by a driving device via bearing means. It is a thing.

本発明の請求項2に記載の遠心分離法を用いた機械的に固体成分を除去する装置は、請求項1に記載の装置において、前記分離槽の内壁を、それぞれに環状堰を形成した部材間に封隙材を差し挟んだ状態で緊締手段を介して構成するよぅにしたものである。   The apparatus for mechanically removing solid components using the centrifugal separation method according to claim 2 of the present invention is the apparatus according to claim 1, wherein the inner wall of the separation tank is formed on each of the members formed with an annular weir It is intended to be configured through tightening means with a sealing material interposed therebetween.

本発明の請求項3に記載の遠心分離法を用いた固液分離装置は、請求項1に記載の装置において、前記タンク体の底面に再生液を導出する出口を形成してなるものである。   The solid-liquid separation device using the centrifugal separation method according to claim 3 of the present invention is the device according to claim 1, wherein an outlet for leading the regenerated liquid is formed on the bottom surface of the tank body. .


本発明の請求項4に記載の遠心分離法を用いた固液分離装置は、請求項1に記載の装置において、前記分離機の底面に前記軸受手段の中心に設けた廃液出口を形成してなるものである。

A solid-liquid separation device using the centrifugal separation method according to claim 4 of the present invention is the device according to claim 1, wherein a waste liquid outlet provided at the center of the bearing means is formed on the bottom surface of the separator. It will be.


本発明の請求項5に記載の機械的に固体成分を除去するための遠心分離方法によれば、分離槽の内部に垂設した洗浄廃液導入管の下端部のノズルから洗浄廃液を外方へ噴出させることにより、前記洗浄廃液導入管を包囲して形成され且つ高速回転している有底円形内筒に遠心力により押し付けられた洗浄廃液は、有底円形内筒の上部外周に形成した複数の細孔から外方へ放出させて有底円形外筒に付着させ、同じく高速回転しているこの有底円形外筒の下方に向かって末広がり状に拡開している面に沿って下向きに進行させ、この有底円形外筒の複数の細孔から外方へ放出させて、高速回転している分離槽の内壁に形成した環状堰を次々に乗り越えて上方へ移行する間に洗浄廃液に含まれている固形成分を分離槽の内壁に層状に沈降固着させてゆき、この間に固形成分を分離した再生液を最上段の堰からタンク体内に噴出させ、タンク体の底部に設けた流出口から回収し洗浄液として再使用に供し、分離槽内壁に沈降固着した固形成分の量が―定の段階に到達したときに、駆動手段により高速回転を急停止又は逆転することにより、分離槽の内部に残留している洗浄廃液に、固形成分を分離させたときよりもはるかに大きな流速を分離槽の内面の回転方向の流れとして生じさせて壁面に固着した固形成分を再拡散させて廃液として分離槽の底部から俳出させるものである。

According to the centrifugal separation method for mechanically removing solid components according to claim 5 of the present invention, the cleaning waste liquid is discharged outwardly from the nozzle at the lower end of the cleaning waste liquid introduction pipe suspended inside the separation tank. A plurality of cleaning waste liquids formed on the outer periphery of the upper part of the bottomed circular inner cylinder are formed by surrounding the cleaning waste liquid introduction pipe by being jetted and pressed against the bottomed circular inner cylinder rotating at high speed by centrifugal force. It is discharged outwardly from the pores of the bottom and attached to the bottomed circular outer cylinder, and downwards along the surface that expands downward toward the bottom of the bottomed circular outer cylinder that is also rotating at high speed. It is made to progress and is discharged to the outside from the plurality of pores of the bottomed circular outer cylinder. The solid components contained are settled and fixed in layers on the inner wall of the separation tank. In the meantime, the regenerated liquid from which the solid components have been separated is ejected from the uppermost weir into the tank body, recovered from the outlet provided at the bottom of the tank body, reused as a cleaning liquid, and settled and fixed on the inner wall of the separation tank When the amount of the component reaches a certain level, the high-speed rotation is suddenly stopped or reversed by the driving means, so that the washing waste liquid remaining in the separation tank is separated from the solid component. A much larger flow velocity is generated as a flow in the rotational direction of the inner surface of the separation tank, and the solid components fixed on the wall surface are re-diffused to be extracted from the bottom of the separation tank as waste liquid.


本発明の機械的に固体成分を除去するための遠心分離方法及び機械的に固体成分を除去するための遠心分離機によれば、特に汚れの激しい部品に付着した固形成分の洗浄や、部品の加工時に発生する研削粉などの洗浄物を、遠心力を利用して極めて有効に除去することが可能となった。

According to the centrifugal separation method for removing a solid component mechanically and the centrifugal separator for removing a solid component mechanically according to the present invention, cleaning of a solid component adhering to a particularly heavily contaminated part, It has become possible to remove the cleaning material such as grinding powder generated during processing extremely effectively using centrifugal force.

図1は、本発明を実施するための遠心分離法を用いた機械的に固体成分を除去する装置の全体構成を示す立面図、図2はその主要部分の拡大縦断面図で、図3は本発明の方法による洗浄液を再生する過程を示す説明図である。 FIG. 1 is an elevation view showing the overall configuration of an apparatus for mechanically removing solid components using a centrifugal separation method for carrying out the present invention, and FIG. 2 is an enlarged longitudinal sectional view of the main part thereof. FIG. 4 is an explanatory view showing a process of regenerating a cleaning solution by the method of the present invention.


まず、図1及び図2において、1は装置全体を支える架台であって、その上にタンク体2が搭載されている。蓋体3を備えるこのタンク体2には洗浄廃液導入管4と、有底円形内筒5と、有底円形外筒6と、分離槽7とが収容されている。この洗浄廃液導入管4は本発明の装置の高速回転部分である有底円形内筒5、有底円形外筒6及び分離槽7の回転中心に設けられている。

First, in FIGS. 1 and 2, reference numeral 1 denotes a pedestal that supports the entire apparatus, on which a tank body 2 is mounted. The tank body 2 having the lid 3 accommodates a cleaning waste liquid introduction pipe 4, a bottomed circular inner cylinder 5, a bottomed circular outer cylinder 6, and a separation tank 7. The washing waste liquid introduction pipe 4 is provided at the center of rotation of the bottomed circular inner cylinder 5, the bottomed circular outer cylinder 6 and the separation tank 7, which are high-speed rotating portions of the apparatus of the present invention.


洗浄廃液を供給するための洗浄廃液導入管4は、装置の中心部において、タンク体2の蓋体3から分離槽7の蓋体8を通過して分離槽7内に深く垂設され、この洗浄廃液導入管4の下端部分には外方へ開口するノズル9が設けられている。

The cleaning waste liquid introduction pipe 4 for supplying the cleaning waste liquid is deeply suspended in the separation tank 7 from the lid body 3 of the tank body 2 through the lid body 8 of the separation tank 7 in the center of the apparatus. A nozzle 9 that opens outward is provided at the lower end portion of the cleaning waste liquid introduction pipe 4.


前記洗浄廃液導入管4に対して、距離を保った有底円形内筒5と、この有底円形内筒5に対して距離を保った有底円形外筒6が、前記分離槽7の蓋体8に取り付けられるものとし、この際、有底円形内筒5は真っ直ぐな円筒形状を呈するのに対して、有底円形外筒6は下方に向かって末廣がり状に拡開した断面形状を有する。また、有底円形内筒5と有底円形外筒6とはそれぞれの底面において連結材10で連結されている。

A bottomed circular inner cylinder 5 kept at a distance from the cleaning waste liquid introduction pipe 4 and a bottomed circular outer cylinder 6 kept at a distance from the bottomed circular inner cylinder 5 are lids of the separation tank 7. At this time, the bottomed circular inner cylinder 5 has a straight cylindrical shape, whereas the bottomed circular outer cylinder 6 has a cross-sectional shape that expands downward in a descending shape. Have. The bottomed circular inner cylinder 5 and the bottomed circular outer cylinder 6 are connected to each other by a connecting member 10 on the bottom surface.


前記有底円形内筒5の上部外周には周面上に複数箇所に細孔11を設け、また有底円形外筒6の底面直近の外周面上に複数個所に細孔12を設けるものとする。

On the outer periphery of the bottomed circular inner cylinder 5 are provided with pores 11 at a plurality of locations on the peripheral surface, and on the outer peripheral surface closest to the bottom surface of the bottomed circular outer tube 6 are provided with pores 12 at a plurality of locations. To do.


分離槽7の内壁13は、それぞれ環状堰14を突設した複数の部材15からなる。部材15の断面はL状であり、L状断面の縦線に相当する部分は分離槽7の円筒壁面を構成し、L状断面の横繊に相当する部分は環状堰14を構成する断面である。これら環状堰14の高さ(幅)は、最上位のものaが、下位のものbよりほぼ2倍として構成している。cはa と同等かaより幾分高くすることができるが、有底円形外筒の有底部に接しない程度の高さにとどめるものとする。分離槽7の円筒壁を構成する部材の最下端の部材は円筒壁の部分と底壁25と一体となっている。前記部材15の分離槽7の円筒壁を構成する部分にはそれぞれ上面に凹所16を形成し、この凹所16に部分的に収容した封隙材 (パッキング)17を差し込むと共に、分離槽7の外壁18に設けた緊締手段19によって、各部材15を締結するものとする。すなわち、外壁18に形成した突起部分20に枢止されダブルナット21を有して先端部に鉤手22を形成した係止部分23と、外壁18に突設したフック24とにより、前記ダブルナット21による締結作用によって、分離槽7の内壁13を平滑に保つとともに、洗浄廃液及び洗浄廃液に含まれる固形成分の外部への漏出を防止している。

The inner wall 13 of the separation tank 7 includes a plurality of members 15 each having an annular weir 14 protruding therefrom . The cross section of the member 15 is L-shaped, the portion corresponding to the vertical line of the L-shaped cross section constitutes the cylindrical wall surface of the separation tank 7, and the portion corresponding to the horizontal fiber of the L-shaped cross section is the cross section constituting the annular weir 14. is there. The height (width) of these annular weirs 14 is configured so that the uppermost one a is almost twice as large as the lower one b. c can be equal to or somewhat higher than a, but it should be kept high enough not to touch the bottomed portion of the bottomed circular outer cylinder. The member at the lowest end of the members constituting the cylindrical wall of the separation tank 7 is integrated with the cylindrical wall portion and the bottom wall 25. Each of the parts constituting the cylindrical wall of the separation tank 7 of the member 15 is formed with a recess 16 on the upper surface, and a sealing material (packing) 17 partially accommodated in the recess 16 is inserted into the separation tank 7. Each member 15 is fastened by fastening means 19 provided on the outer wall 18. That is, the double nut 21 is formed by a locking portion 23 having a double nut 21 and having a double nut 21 formed on the outer wall 18 and a hook 22 projecting from the outer wall 18. Due to the fastening action, the inner wall 13 of the separation tank 7 is kept smooth, and leakage of the cleaning waste liquid and solid components contained in the cleaning waste liquid to the outside is prevented.


前記分離槽7の底壁25には、前記架台1の上面部26に軸受手段27により支承される中空回転支軸28を突設するものとし、前記洗浄廃液導入管4が形成されている中心軸線の延長上にあるこの中空回転支軸28は、前記分離槽7に連通する廃液出口29を形成し、この廃液出口29を介して前記中空回転支軸28から、前記架台1の内側に収容した廃液槽30に廃液を流下させるのである。

The bottom wall 25 of the separation tank 7 is provided with a hollow rotary shaft 28 that is supported by bearing means 27 on the upper surface portion 26 of the gantry 1, and the center where the cleaning waste liquid introduction pipe 4 is formed. The hollow rotary spindle 28 on the extension of the axis forms a waste liquid outlet 29 communicating with the separation tank 7, and is accommodated inside the mount 1 from the hollow rotary spindle 28 via the waste liquid outlet 29. The waste liquid is caused to flow down into the waste liquid tank 30.


前記架台1には、駆動装置 (例えばサ―ボモータ)31を取り付けてあり、この駆動袈置31の駆動軸に取り付けたプ―リ32、ベルト33及び前記中空回転支軸28に取り付けたプ―リ34により駆動装置31の高速回転を分離槽7、有底円形外筒6及び有底円形内筒5に伝達するのである。

A drive device (for example, a servo motor) 31 is attached to the gantry 1, and a pulley 32 attached to a drive shaft of the drive device 31, a belt 33, and a pulley attached to the hollow rotary support shaft 28. The high speed rotation of the driving device 31 is transmitted to the separation tank 7, the bottomed circular outer cylinder 6 and the bottomed circular inner cylinder 5 by the re-34.


前記タンク体1の底面には再生液を導出するための出口35が形成されており、この出口35から再生液が配管36を介して所望の施設に送られるものである。

An outlet 35 for leading out the regenerated liquid is formed on the bottom surface of the tank body 1, and the regenerated liquid is sent from the outlet 35 to a desired facility via the pipe 36.


次に、図3によって本発明の遠心分離機の作用を説明する。駆動装置31により中空回転支軸28を介して分離槽7、有底円形外筒6及び有底円形内筒5が高速回転をしている状態において、固形成分を含む洗浄廃液導入管4に導入され、廃液は洗浄廃液導入管4の下端部に形成されたノズルから外方へ噴出されて、有底円形内筒5に付着する。有底円形内筒5は高速回転しているので、洗浄廃液はこの有底円形内筒5の面に沿って遠心力により上方へ匍匐進行し,上部外周に形成した複数の細孔11から外方へ放出されて、有底円形外筒6に付着され、今度は末広がり状に形成されているこの有底円形外筒6の面に沿って遠心力により下方へ匍匐進行し、この面の下方に形成されている複数の細孔12から、分離槽7に向かって放出される。この間の廃液の流れは図3に破線をもって示している。 分離槽7の内壁付近では、遠心力により液体は内壁に向かって押し付けられ、分離槽の内壁とほぼ平行な水面を形成している。

Next, the operation of the centrifuge of the present invention will be described with reference to FIG. The separation tank 7, the bottomed circular outer cylinder 6 and the bottomed circular inner cylinder 5 are rotated at high speed by the drive device 31 through the hollow rotating spindle 28 and introduced into the cleaning waste liquid introduction pipe 4 containing solid components. Then, the waste liquid is ejected outward from a nozzle formed at the lower end of the cleaning waste liquid introduction pipe 4 and adheres to the bottomed circular inner cylinder 5. Since the bottomed circular inner cylinder 5 rotates at a high speed, the cleaning waste liquid moves upward along the surface of the bottomed circular inner cylinder 5 by centrifugal force, and is discharged from the plurality of pores 11 formed on the outer periphery of the upper part. And is attached to the bottomed circular outer cylinder 6, and this time, along the surface of the bottomed circular outer cylinder 6, which is formed in a divergent shape, advances downward by centrifugal force. Are released toward the separation tank 7 from the plurality of pores 12 formed in The flow of the waste liquid during this period is shown by broken lines in FIG. In the vicinity of the inner wall of the separation tank 7, the liquid is pressed toward the inner wall by centrifugal force to form a water surface substantially parallel to the inner wall of the separation tank.

高速で回転している分離槽7の壁面では、廃液が分離槽7の回転と等しい速度で回転方向の速度を持つ運動量を維持している。よって、このような廃液と内部の空間との境界面は環状堰a又はcにより規制された距離をほぼ保っている。本明細書ではこの境界面を水面と称している。この水面は分離槽7から見て静止しているような状態で垂直方向に乱れのない流れを形成することによって廃液中の固形成分が分離槽7の壁の方向へ遠心力を継続的に受けることになり微細な粒径の固形成分までも沈降させることができる。

しかし、有底円形内筒5有底円形外筒6が無い場合には洗浄廃液導入管4から噴射された廃液は回転方向には速度を持たないため、分離槽7の内壁面に押し付けられて分離槽7と等しい回転の速度を持っている廃液に触れると大きな速度差で液面を乱し、さらに液層の内部までも乱れた流れとなり微細な粒子を沈降させることができなくなる。

そこで、洗浄廃液導入管4から噴射された液はまず径が小さい有底円形内筒5の内側に噴射することによって速度差を小さくすると同時に、有底円形内筒5の内面に押し付けられて上昇する間に有底円形円筒5と同じ速度に至らしめ、さらに、外形の大きな有底円形外筒6に噴射して回転方向に速度をあげ、末広がりの有底円形外筒6を流れ下る間に分離槽7の速度に近づける。末広がりの有底円形外筒6では、半径に比例して遠心力が増加するため、壁面との摩擦による速度の伝達の度合いも半径の増加に比例し、さらに、半径が増すことによって、末広がりに拡がる壁面の円周が増加することから、壁面に付着しでいる廃液の厚みは薄くなり、壁面の回転方向への速度になじみ易くなる。この結果、末広がりの有底円形外筒6の下端付近にあけられた複数の細孔12から噴出する廃液と分離槽7の壁面に押し付けられている固液分離過程の液面との速度差がほとんどなくなり、発生する乱れは―段目の堰の内側で治まるため、2段目の堰以降の流れは垂直な流れだけとなり、微少な固形成分を沈降させることができる。
On the wall surface of the separation tank 7 rotating at high speed, the waste liquid maintains a momentum having a speed in the rotational direction at a speed substantially equal to the rotation of the separation tank 7 . Therefore, the boundary surface between the waste liquid and the internal space maintains a distance regulated by the annular weir a or c. In this specification, this boundary surface is called a water surface. This water surface is stationary as viewed from the separation tank 7 and forms a flow without disturbance in the vertical direction, so that the solid components in the waste liquid are continuously subjected to centrifugal force in the direction of the wall of the separation tank 7. In particular, even a solid component having a fine particle size can be precipitated.

However, when there is no bottomed circular inner cylinder 5 and bottomed circular outer cylinder 6, the waste liquid sprayed from the cleaning waste liquid introduction pipe 4 does not have a speed in the rotational direction, so it is pressed against the inner wall surface of the separation tank 7. When the waste liquid having the same rotational speed as that of the separation tank 7 is touched, the liquid level is disturbed by a large speed difference, and the flow is disturbed even inside the liquid layer, so that fine particles cannot be settled.

Therefore, the liquid sprayed from the cleaning waste liquid introduction pipe 4 is first sprayed inside the bottomed circular inner cylinder 5 with a small diameter, and at the same time, the speed difference is reduced, and at the same time, it is pushed against the inner surface of the bottomed circular inner cylinder 5 and rises. During this process, the speed reaches the same speed as that of the bottomed circular cylinder 5 and is further injected into the bottomed circular outer cylinder 6 having a large outer shape to increase the speed in the rotational direction. It approaches the speed of the separation tank 7. Since the centrifugal force increases in proportion to the radius of the bottomed circular outer cylinder 6 that spreads toward the end, the degree of speed transmission due to friction with the wall surface is also proportional to the increase in radius. Since the circumference of the expanding wall surface increases, the thickness of the waste liquid adhering to the wall surface becomes thin, and it becomes easy to adapt to the speed of the wall surface in the rotation direction. As a result, there is a speed difference between the waste liquid ejected from the plurality of pores 12 formed near the lower end of the bottomed circular outer cylinder 6 that is widened toward the bottom and the liquid level in the solid-liquid separation process pressed against the wall surface of the separation tank 7. The turbulence that occurs almost disappears and subsides inside the second stage weir, so the flow after the second stage weir is only a vertical flow, and it is possible to settle minute solid components.


ここにおいて、固形成分を含む洗浄廃液は、矢印をもって示すよぅな状況で環状堰14を
次々に乗り越えて上方へ移行する間に、比重差によって固形成分は分離槽7の内壁13に層状に沈降固着してゆき堆積層37を形成する。この上方への流れを詳細に分析すると水面付近の速度に対し壁面に接する部分では速度が異なり、壁面に接する部分の速度が遅くなる。この理由は、壁面との摩擦によるもの、壁面に近いほど円周か大きいことにより流れの幅が広くなり速度が減少すること、及び壁面に近いほど遠心力が大きくなり密度が上がるため流速が減少すること、等の相乗効果と考えられる。そこで、流れの途中に水面の流れを乱さない高さの堰を設けることにより、堰の直近での流れを水面とは逆の方向へ向けることができ、垂直断面で見ると堰近辺で回転する流れが生じることになる。この流れで沈降しつつある微粒の固形成分は水面近くの流れと逆に上方へ押しやられて堆積層37は下方では厚く上方に行くにしたがって薄くなる。図3において38は分離槽7の回転によって外方へ押し付けられている洗浄廃液の上清液を示し、39は洗浄廃液に遠心力がかかって回転している分離層7の内壁13に押し付けられて垂直な水面ができた場合の水面を示すものである。このような水面近くの流れと逆方向の壁面近くに生じる流れを繰り返し生じさせるためには、堰bは水面より低いことが望ましい。さらに、bの間隔は堰bの高さの略2倍とすることで、固形成分の沈降が少ない場合には垂直断面で見られる往復する流れが2つの円状になり沈降を促進することに加え、ある程度固形成分の沈降量が増加し時点で往復する流れは堰に近い部分の一つとなり堆積層は下方に偏ることになる。

Here, the cleaning waste liquid containing the solid component settles and adheres in layers to the inner wall 13 of the separation tank 7 due to the difference in specific gravity while moving over the annular weir 14 one after another in the situation indicated by the arrow. Then, the deposited layer 37 is formed. When the upward flow is analyzed in detail, the speed in the portion in contact with the wall surface is different from the speed in the vicinity of the water surface, and the speed in the portion in contact with the wall surface becomes slow. This is due to friction with the wall. The closer to the wall, the greater the circumference, the wider the flow width and the lower the speed, and the closer to the wall, the greater the centrifugal force and the higher the density, so the flow velocity decreases. This is considered to be a synergistic effect. Therefore, by providing a weir with a height that does not disturb the flow of the water surface in the middle of the flow, the flow in the immediate vicinity of the weir can be directed in the direction opposite to the water surface, and when viewed in a vertical section, it rotates around the weir A flow will occur. The solid component of the fine particles settling in this flow is pushed upward, contrary to the flow near the water surface, and the deposited layer 37 is thicker in the lower part and thinner as it goes upward. In FIG. 3, 38 indicates the supernatant of the cleaning waste liquid that is pressed outward by the rotation of the separation tank 7, and 39 is pressed against the inner wall 13 of the rotating separation layer 7 by applying centrifugal force to the cleaning waste liquid. This shows the water surface when a vertical water surface is formed. In order to repeatedly generate such a flow near the wall surface in the opposite direction to the flow near the water surface, the weir b is desirably lower than the water surface. Furthermore, the distance between b is approximately twice the height of the weir b, so that when the solid component is less settled, the reciprocating flow seen in the vertical cross-section becomes two circles to promote sedimentation. In addition, the settling amount of the solid component increases to some extent, and the reciprocating flow becomes one of the portions close to the weir, and the deposited layer is biased downward.


固形成分を分離した再生液は最上層の堰aを乗り越えタンク体2の壁面に飛来せしめ、壁面を流下して底部に至らしめ、底部の出口35から配管36を介して流出されるものとし、作業が―定の段階に到達したときに、駆動装置31による高速回転を急停止し又は逆転することにより、分離槽7の内部に残留している液体ともども、固形成分を分離させたときよりもはるかに大きな流速を分離槽7の内面の回転方向の流れとして生じさせて、分離槽7の内壁13に堆積層37として形成されていた固形成分を再拡散させて廃液として分離槽7底部に連通する廃液出口29から廃液槽30に流下させるのである。廃液を流下排出させるタイミングは、洗浄廃液中の固形成分の質や濃度により異なるため、固体を分離して得られた出口35の再生洗浄液の品質を評価して許容できる間隔とすればよい。

The regenerated liquid from which the solid component has been separated crosses over the topmost weir a and jumps to the wall surface of the tank body 2, flows down the wall surface to reach the bottom, and flows out from the bottom outlet 35 through the pipe 36. When the work reaches a certain stage, the high-speed rotation by the driving device 31 is suddenly stopped or reversed, so that the liquid remaining in the separation tank 7 and the solid components are separated. A much larger flow velocity is generated as a flow in the rotation direction of the inner surface of the separation tank 7, and the solid component formed as the deposition layer 37 on the inner wall 13 of the separation tank 7 is re-diffused to communicate with the bottom of the separation tank 7 as waste liquid. The waste liquid is discharged from the waste liquid outlet 29 to the waste liquid tank 30. The timing at which the waste liquid is discharged and discharged varies depending on the quality and concentration of the solid component in the cleaning waste liquid, and therefore it may be set at an acceptable interval by evaluating the quality of the regenerated cleaning liquid at the outlet 35 obtained by separating the solid.

堰aの高さは分離槽7の内径及び回転数により適切に選ぶ必要があるが、分離槽の直慶が300mmの場合は10ミリ以上30mm以下が望ましい。以下に堰aの高さが20mmの場合の処理速度の例を示す。
分離槽7で分離する場合の流速は、5リットル毎分の処理速度の場合、垂直方向の流れの速度は、分離槽7に保持されている液体の水平断面を通過する水量から計算できる。すなわち、壁面から水の表面までの距離を20mmとすると、直径280mmの分離槽7に対して断面積は、
(280/2)2×π―(240/2)2
×π = 61544―45216=16328平方mmとなる。
すなわち、163.3平方cmである。
The height of the weir a needs to be selected appropriately depending on the inner diameter and rotation speed of the separation tank 7, but when the separation tank is 300 mm, it is preferably 10 mm or more and 30 mm or less. An example of the processing speed when the height of the weir a is 20 mm is shown below.
In the case where the separation flow rate in the separation tank 7 is 5 liters per minute, the vertical flow speed can be calculated from the amount of water passing through the horizontal section of the liquid held in the separation tank 7. That is, if the distance from the wall surface to the surface of the water is 20 mm, the cross-sectional area for the separation tank 7 with a diameter of 280 mm is
(280/2) 2 × π― (240/2) 2
× π = 61544−45216 = 16328 square mm.
That is, 163.3 square cm.


この断面を1分に5リットル (5000cc)が通過するので、流速は秒で表すと、1秒の液通過量5000÷60=83.3cc/secを用いて、
83.3÷163.3=0.511cm/sec
となる。
(参考までに、堰14の上を越える時の流速は、断面積が約半分となりlcm/secの流速であるが、堰14と堰14の距離を堰の上部と水面までの距離の4倍以上としていることから、沈降する堰14の中間部分の速度にはあまり影響しない。)

この速度で、100Gの遠心力でほとんどすべての固形成分を沈降させることが実験で立証されている。

Since 5 liters (5000 cc) pass through this cross section per minute, when the flow rate is expressed in seconds, the liquid passage rate of 5000 ÷ 60 = 83.3 cc / sec per second,
83.3 ÷ 163.3 = 0.511cm / sec
It becomes.
(For reference, the flow velocity over the weir 14 is about half the cross-sectional area and lcm / sec, but the distance between the weir 14 and the weir 14 is four times the distance from the top of the weir to the water surface. (Because of the above, the speed of the intermediate portion of the weir 14 that sinks is not significantly affected.)

Experiments have demonstrated that at this speed, almost all solid components settle at 100G centrifugal force.


次に、遠心力が10Gになる時の回転数は、200rpm程度であるから、分離槽7を停止させる過程で、200rpmで分離槽7を急停止させると、液体が慣性で分離槽7に沿って回転を維持することになり、そのとき流速は、直径240mmの円を1分に200回転する速度であるから
円周 240×3.14=753.6mm・・・75.4 [cm/回転]
回転数 200÷60=3.3回転/sec

を用いて

75.4×3.3=248.9cm/sec
となるので分離槽7で分離を行っているときの流速0.5cm/secに対して

248.9÷0.5÷497

すなわち、497倍の流速となり、沈降させた固形成分を再ぴ液中に分散させるに十分な速度となる。さらに、長時間かけて固化しているような場合を想定して分離槽7を逆転させ、相対的な速度差をつけて、1000倍程度にすることで、沈降している固形成分のほとんどを液体に分散させて流し出すことができる。

Next, since the rotation speed when the centrifugal force becomes 10G is about 200 rpm, when the separation tank 7 is stopped suddenly at 200 rpm in the process of stopping the separation tank 7, the liquid is inertial and moves along the separation tank 7. In this case, the flow velocity is the speed of rotating a circle with a diameter of 240 mm 200 per minute, so the circumference is 240 × 3.14 = 753.6 mm ・ ・ ・ 75.4 [cm / rotation]
Rotation speed 200 ÷ 60 = 3.3 rotations / sec

Using

75.4 × 3.3 = 248.9cm / sec
Therefore, for the flow rate of 0.5 cm / sec when separating in the separation tank 7

248.9 ÷ 0.5 ÷ 497

That is, the flow rate is 497 times, and the flow rate is sufficient to disperse the settled solid component in the re-liquid. Furthermore, assuming the case of solidifying over a long period of time, the separation tank 7 is reversed, and the relative speed difference is set to about 1000 times, so that most of the precipitated solid components are It can be dispersed in a liquid and poured out.


別の計算としては、堰14で保持されている水の量は液体の水平断面積×垂直の長さであるから、分離槽7の深さを300mmとしたとき
163.3×30=4899cc である。

液が分離槽7の内部で対流させている時間を1分としたい場合は、4.9リットルを流せることになる。

また、流速を小さくすれば、滞留時間は長くなり、同―の加速度で小粒径のものまで取り除くことでできる。

必要な滞留時間の長さについて
微粒子の液体中での沈降速度は、
1.重力によって加速沈降する
2.液体から受ける抵抗が速度の自乗に比例するため、次第に加速度は鈍って沈降しようとする力と、抵抗力が釣り合って限りなく―定の速度 (終末速度)に近づく。

As another calculation, the amount of water retained by the weir 14 is the horizontal cross-sectional area of the liquid x the vertical length, so when the depth of the separation tank 7 is 300 mm
163.3 × 30 = 4899cc.

When the time for which the liquid is convected inside the separation tank 7 is 1 minute, 4.9 liters can be flowed.

Also, if the flow rate is reduced, the residence time becomes longer, and even small particles with the same acceleration can be removed.

The sedimentation rate of the fine particles in the liquid for the required residence time is:
1. Accelerated sedimentation by gravity
2. Since the resistance received from the liquid is proportional to the square of the speed, the acceleration gradually slows down, and the resistance force balances with the resistance force as much as possible-approaching a constant speed (end speed).


また、速度に比例する抵抗の価は流体の粘性係数に影饗される。さらに、流体に分散している物質の沈降時間は、粒径により終末速度が異なる。このような複雑な条件で、単純に加速度と時間の関係を計算することはできないため、沈降に要する時間は実験によるしかないので、本発明では、2硫化モリブデン入りグリスが使われた部品を洗浄した廃液を実験した結果、良好な結果が得られている。

The value of the resistance proportional to the speed is influenced by the viscosity coefficient of the fluid. Further, the sedimentation time of the substance dispersed in the fluid varies depending on the particle size. Under such complicated conditions, it is not possible to simply calculate the relationship between acceleration and time, so the time required for sedimentation is only experimental, so in the present invention, parts that use grease containing molybdenum disulfide are cleaned. As a result of experimenting with the waste liquid, good results have been obtained.

実験の結果では、地球重力下 (lG)で静置した場合、すなわち終末速度で沈降させた場合、実験した液体ではほとんどの固形成分を沈降させるために3日程度の (72時間以上)を必要とした。しかし、試作した装置では100Gで10分の滞留時間で完全に固形成分を取り除くことができた。さらに、1000G程度に加速度を上げたところ、1分の滞留時間で固形成分をほぼ回収できた。   The results of the experiment show that when it is left standing under the earth's gravity (lG), that is, when it settles at the terminal velocity, it takes about 3 days (72 hours or more) to settle most solid components in the liquid tested. It was. However, the prototype device was able to remove the solid components completely with a residence time of 10 minutes at 100G. Furthermore, when the acceleration was increased to about 1000G, solid components could be almost recovered with a residence time of 1 minute.

本発明の固液分離の方法を、自動車整備工場で部品の洗浄に使った灯油を床に設置した静置槽をモデルに説明する。自動車整備工場で行われる土と油で汚れた部品を洗浄する工程では、洗浄剤として灯油等の石油系洗浄剤を用いることが多い。灯油等の洗浄剤の比重は0.7〜0.9程度であるのに対し、固形成分の汚れ物質の大部分を占め砂や金属粉の比重は1.7〜11でその比重は洗浄液より大きい。このような部品の洗剤に用いた廃液を数日間容器に溜めて静置すると、固形の汚染物質は底に沈み、透明な上澄み液が回収でき再利用できること知られている。しかし、再生産率が悪く洗浄液の再利用には実用されていないが、本発明の遠心分離法による固液分離は原理的に同じであるので、廃液を静置する方法をモデルにして本発明の技術を解説する。   The solid-liquid separation method of the present invention will be described using a stationary tank in which kerosene used for cleaning parts in an automobile maintenance shop is installed on the floor. In the process of washing parts soiled with soil and oil in an automobile maintenance shop, petroleum-based cleaning agents such as kerosene are often used as cleaning agents. The specific gravity of a cleaning agent such as kerosene is about 0.7 to 0.9, whereas the specific gravity of sand and metal powder is 1.7 to 11, which is larger than that of the cleaning liquid. It is known that when the waste liquid used for the detergent for such parts is stored in a container for several days and left to stand, the solid contaminants sink to the bottom and the transparent supernatant can be recovered and reused. However, although the reproductivity is poor and it is not practically used for the reuse of the cleaning liquid, since the solid-liquid separation by the centrifugal method of the present invention is the same in principle, the present invention is modeled on the method of standing the waste liquid. Explain the technology.

洗浄廃液を静置して固形成分が沈降し、上澄み液を生じる原理は、重力の加速度1Gで廃液中の洗浄液と固形成分の比重差によって、比重の大きい成分が沈み上面には軽量の洗浄液の層が生じるという原理によるものである。溶液中に分散している固形成分が沈降する現象の理論として、ストークスの計算式が用いられる。ストークスの式は、
V=2/9×((ρ‐ρw)gr)/ η
である。但し、Vは沈降速度(cm/sec),ρ は粒子の密度(g/cm3,)、ρwは溶剤の密度(g/cm3)、gは重力の加速度(cm/sec)、rは粒子の半径(cm)、ηは溶剤の密度(g/cm.sec)である。
The principle of generating the supernatant liquid by allowing the cleaning waste liquid to settle and generating a supernatant liquid is that the component with a higher specific gravity sinks due to the gravity difference of the cleaning liquid and the solid component in the waste liquid at a gravitational acceleration of 1G. This is due to the principle that a layer is formed. As a theory of a phenomenon in which solid components dispersed in a solution settle, Stokes' calculation formula is used. The Stokes equation is
V = 2/9 × ((ρ−ρw) gr 2 ) / η
It is. Where V is the settling velocity (cm / sec), ρ is the particle density (g / cm 3 ), ρw is the solvent density (g / cm 3 ), g is the acceleration of gravity (cm / sec 2 ), r Is the particle radius (cm) and η is the solvent density (g / cm.sec).

自動車整備工場の洗浄廃液では、整備した車両の走行条件によって、粒径の分布や、粒子の比重などの分布が異なるが、一般的な洗浄廃液の固形成分を計測してみると、分布はガウス分布で近似でき、95%の粒子は粒径4ミクロン以上0.2mm以下、比重は2以上14以下であった。よって、自動車部品を洗浄した廃液を静置した場合に粒径4ミクロン、比重2の粒子が沈降すればそれ以上の粒径や比重の固形成分はすべて沈降していることになる。   In the cleaning waste liquid of an automobile maintenance shop, the distribution of particle size and the specific gravity of the particles vary depending on the running conditions of the vehicle that has been maintained, but when measuring the solid components of general cleaning waste liquid, the distribution is Gaussian. The distribution was approximated, and 95% of the particles had a particle size of 4 microns to 0.2 mm and a specific gravity of 2 to 14. Therefore, if the waste liquid from which the automobile parts are washed is allowed to stand, if solid particles having a particle size of 4 microns and specific gravity of 2 settle, all solid components having a particle size or specific gravity larger than that will settle.

ストークスの式に、比重2、粒径4ミクロンの粒子が粘度10-4 Pの灯油に拡散している状態として沈降する速度を求めると
V=2/9×〔(1)×1×(4×10−3 〕÷10−4 =3.4×10 −4cm/sec
となり、固形成分は0,034 mm/secの速度で沈降して1分間で約2mmの厚さの上澄み液ができることになる。静置したタンクに連続的に廃液を導入して、固形成分を沈降させ、表層の液を取り出すには図4のような構成のタンクを用意し、一端から液を静かに導入し他端から表層液を取り出す方法が考えられる。廃液は液導入管40に封入され最初の堰1から整流堰41に溢出する。堰1から溢れ出す液は表面張力によってほぼ堰1の上面に倣って槽の奥行き方向に均等に広がって整流層41に流れ出すが、液の注入のムラを完全に取り除くことはできない。整流層41は液の流れを均等にするためのものである。堰2は堰1より低く、沈降槽42の溢れ出る側の堰3より僅かに高く整流層41からの沈降槽42に静かに液が流れ込むように設定する。沈降槽42に流れ込んだ液は堰2の直近では乱流を生じているが、堰3方向に向かって移動する間に流れが整い底面に平行な整流となる。
Stokes equations, specific gravity 2, when the particle size 4 microns particles obtain a velocity which settle as a state of being diffused into kerosene viscosity 10- 4 P
V = 2/9 × [(1) × 1 × (4 × 10 −3 ) 2 ] ÷ 10 −4 = 3.4 × 10 −4 cm / sec
Thus, the solid component settles at a speed of 0.034 mm / sec, and a supernatant liquid having a thickness of about 2 mm is formed in one minute. To continuously introduce the waste liquid into the stationary tank, settle the solid components, and take out the liquid on the surface layer, prepare a tank with the configuration shown in Fig. 4 and gently introduce the liquid from one end and from the other end. A method of taking out the surface layer liquid is conceivable. The waste liquid is sealed in the liquid introduction pipe 40 and overflows from the first weir 1 to the rectifying weir 41. The liquid overflowing from the weir 1 spreads evenly in the depth direction of the tank almost following the upper surface of the weir 1 due to the surface tension and flows out to the rectifying layer 41, but the unevenness of the liquid injection cannot be completely removed. The rectifying layer 41 is for equalizing the liquid flow. The weir 2 is set lower than the weir 1 and slightly higher than the weir 3 on the overflowing side of the settling tank 42 so that the liquid gently flows into the settling tank 42 from the rectifying layer 41. The liquid flowing into the settling tank 42 generates a turbulent flow in the immediate vicinity of the weir 2, but the flow is adjusted while moving in the direction of the weir 3 and becomes a rectification parallel to the bottom surface.

この場合、液の深さが浅ければ浅いほど短い距離で整流になるが、この槽では底面に固形成分を沈降させる必要があるため固形成分が蓄積するための深さが必要である。この流れの変化を模式的に表現して図6に示した。図5,6で示したbは沈降領域で、液の流れが緩やかな定常流となり、廃液中の固形成分は静置したときと同じく下方に移動しながら上面の上澄み液とともに移動してゆく。液全体の流れは表層部分ほど速く底に近いほど遅くなるがその流れの変化は緩やかとなる。すなわち底または堆積層に接した部分では流速は0になっている。移動に従って沈降が進み上澄み液の厚みがます。堰3から溢出する液は図に示したように、表層液だけでなく下方からも吸い上げられるように流れ出す。そこで、堰3の近辺の上澄み液の厚みは一様な流れが始まった部分から堰3から流れ出す時に流れが変わる直前までの平均断面速度から計算して廃液滞留時間として計算する。この滞留時間で計算される上澄み液の厚さは、溢れ出す上澄み液の表層の流れに吸い込まれる下方の部分を配慮して、平均流出量に必要な断面積の2倍速度の余裕を見た滞留時間とすることが望ましい。   In this case, the shallower the liquid is, the shorter the rectification takes place. However, in this tank, it is necessary to allow the solid component to settle on the bottom surface, so a depth for accumulating the solid component is required. This change in flow is schematically represented in FIG. In FIGS. 5 and 6, b is a sedimentation region, and the liquid flow becomes a steady steady flow, and the solid components in the waste liquid move downward together with the supernatant liquid on the upper surface while moving downward. The flow of the entire liquid is faster as the surface layer is closer to the bottom, but the flow changes more slowly. That is, the flow velocity is 0 at the portion in contact with the bottom or the deposited layer. Sedimentation progresses with movement and the thickness of the supernatant liquid increases. As shown in the figure, the liquid overflowing from the weir 3 flows out so as to be sucked not only from the surface layer liquid but also from below. Therefore, the thickness of the supernatant liquid in the vicinity of the weir 3 is calculated as the waste liquid residence time by calculating from the average cross-sectional velocity immediately before the flow changes when flowing out from the weir 3 from the portion where the uniform flow starts. The thickness of the supernatant calculated by this residence time was taken into account the lower portion sucked into the overflow of the supernatant liquid that overflowed, and a margin of twice the cross-sectional area required for the average outflow rate was observed. It is desirable to set the residence time.

このモデルで説明した方法を図1に示したように、回転体の壁面に応用すると、回転体の遠心力は
Xg=(r×ω)/980
で求められるのであるから、半径140mmの円周の内面での加速度gの値は1000RPM で156g3000rpmで1408gとなるため、ストークスの計算式の重力の加速度gの代わりに遠心力を廃液に作用する力として、gの値を100〜150に置き換えることができる。すなわちモデルで説明した洗浄廃液を静置した場合の100倍以上の固液分離能力を発揮させることができることになる。
When the method described in this model is applied to the wall of a rotating body as shown in Fig. 1, the centrifugal force of the rotating body is
Xg = (r × ω 2 ) / 980
Since the acceleration g on the inner surface of the circumference with a radius of 140mm is 1000 RPM and 1408 g at 156 g 3000 rpm, the force that acts on the waste liquid instead of the acceleration g of gravity in the Stokes formula As a result, the value of g can be replaced with 100 to 150. That is, it is possible to exhibit a solid-liquid separation capacity 100 times or more that when the washing waste liquid described in the model is left standing.

回転体の壁面に形成した沈殿装置で連続的に液の注入、取り出しを行う場合には、回転方向の動きのない液を導入することになり、液導入管では激しい乱流が生じる。灯油のような低粘度の液体では新規に注入された廃液が回転速度に至るには時間がかかり、激しい乱流は沈殿槽にまで及び、一様な流れを作り出すことができない。そこで、本発明では回転する分離槽7の内側に有底円形内筒5及び有底円形外筒6を設け、導入液に槽の回転とほぼ等しい回転方向の動きを与えて、分離槽7の堰14の下部に導入する方法で静置したタンクに液を導入した場合に近い状態を作っている。また、遠心力の加速度が重力の加速度に較べ大きいため、大きな粒径の粒子や比重の重い粒子が堰を溢れ出して沈降槽に注がれた場合には、廃液は壁面に向かって勢いよく移動する。その結果、沈降槽の乱流領域が広くなり、十分な沈降速度が確保できなくなる。そこで、本発明では堰の数を説明モデルの2倍より増やし4段とし、廃液注入部分からの大きな粒径や比重の大きい粒子を壁面13方向に沈降させながら順次4個の堰を乗り溢れ出させながら、一様な流れになりやすい粒径及び比重の小さい粒子を残した廃液が沈降槽に注がれるようにした。   In the case where liquid is continuously injected and taken out by the precipitation device formed on the wall surface of the rotating body, liquid that does not move in the rotational direction is introduced, and intense turbulence occurs in the liquid introduction pipe. In a low-viscosity liquid such as kerosene, it takes time for the newly injected waste liquid to reach the rotational speed, and the violent turbulence reaches the settling tank, and a uniform flow cannot be created. Therefore, in the present invention, the bottomed circular inner cylinder 5 and the bottomed circular outer cylinder 6 are provided inside the rotating separation tank 7, and the introduced liquid is given a movement in the rotational direction substantially equal to the rotation of the tank, so that the separation tank 7 A state close to that when a liquid is introduced into a tank that has been allowed to stand by a method of introducing it under the weir 14 is created. In addition, since the acceleration of centrifugal force is larger than the acceleration of gravity, if large particles or heavy particles overflow the weir and are poured into the sedimentation tank, the waste liquid vigorously moves toward the wall. Moving. As a result, the turbulent flow area of the settling tank is widened, and a sufficient settling speed cannot be secured. Therefore, in the present invention, the number of weirs is increased from twice the explanatory model to four stages, and the four weirs are overflowed sequentially while sinking large particles from the waste liquid injection part and particles with large specific gravity in the direction of the wall 13. The waste liquid leaving particles with a small particle size and specific gravity that tends to be a uniform flow was poured into the sedimentation tank.

本発明を実施するための遠心分離法を用いた固液分離装置の全体構成を示す立面図である1 is an elevation view showing the overall configuration of a solid-liquid separation device using a centrifugal method for carrying out the present invention. 図1の主要部分の拡大縦断面図であるFIG. 2 is an enlarged longitudinal sectional view of a main part of FIG. 本発明による洗浄液再生の過程を示す説明図である。It is explanatory drawing which shows the process of cleaning liquid reproduction | regeneration by this invention. 連続的に廃液を導入して、固形成分を沈降させ、表層の液を取り出すタンクA tank that continuously introduces waste liquid, settles solid components, and removes surface liquid. 流れの変化を模式的に表現した図である。It is the figure which expressed the change of the flow typically. 流れの変化を模式的に表現する他の図である。It is another figure which expresses the change of a flow typically.

4 洗浄廃液導入管
5 有底円形内筒
6 有底円形外筒
7 分離槽
9 ノズル
11 細孔(有底円形内筒5の)
12 細孔(有底円形外筒6の)
13 内壁 (分離槽7の)
14 環状堰 (堰)
15 部材
25 底壁 (分離槽7の)
26 中空回転支軸
31 駆動装置 (サ―ボモータ)
40 液導入層
41 整流槽
42 沈降槽
a 乱流領域
b 沈降領域(一様な流れ領域)
43 堰1
44 堰2
45 堰3
46 乱流
47 乱流
48 一様な流れ
4 Cleaning waste liquid introduction pipe
5 Bottomed inner cylinder
6 Bottomed outer cylinder
7 Separation tank
9 nozzles
11 pores (bottom circular inner cylinder 5)
12 pores (bottomed round outer cylinder 6)
13 Inner wall (for separation tank 7)
14 Ring weir
15 parts
25 Bottom wall (for separation tank 7)
26 Hollow rotating spindle
31 Drive unit (Servo motor)
40 Liquid introduction layer
41 Rectifier tank
42 Settling tank
a Turbulence region
b Sedimentation zone (uniform flow zone)
43 Weir 1
44 Weir 2
45 Weir 3
46 Turbulence
47 Turbulence
48 Uniform flow

Claims (5)

タンク体内の底部に向かって垂設し下端部分に外方にノズルを設けた洗浄廃液導入管と、この洗浄廃液導入管を距離を保って包囲しかつ上部外周に複数の細孔を設けた有底円形内筒と、この有底円形内筒に対して距離を保って包囲し下方に向かって末広がり状に拡開しかつ底面部側近の外周に複数の細孔を設けた有底円形外筒と、さらにこの有底円形外筒を距離を保って包囲する分離槽から主としてなり、内周壁に複数段にわたって形成したそれぞれ全周をカバーする環状堰を設けた前記分離槽及び前記有底円形内筒並びに前記有底円形外筒を、軸受手段を介して駆動装置で高速回転させるようにしたことを特徴とする遠心分離法を用いた機械的に固液成分を除去する装置。 A cleaning waste liquid introduction pipe that hangs down toward the bottom of the tank body and has an outer nozzle at the bottom, and surrounds this cleaning waste liquid introduction pipe at a distance and has a plurality of pores on the outer periphery of the top. A bottomed circular inner cylinder and a bottomed circular outer cylinder that surrounds the bottomed circular inner cylinder while maintaining a distance, expands downward toward the bottom, and has a plurality of pores on the outer periphery near the bottom surface And a separation tank that surrounds the bottomed circular outer cylinder at a distance, and is provided with an annular weir formed on a plurality of steps on the inner peripheral wall and covering the entire circumference, and the bottomed circular inner An apparatus for mechanically removing solid-liquid components using a centrifugal separation method, characterized in that a cylinder and the bottomed circular outer cylinder are rotated at high speed by a drive device via a bearing means. 前記分離槽の内壁を、それぞれに環状堰を形成した部材間に封隙材を差し挟んだ状態で緊締手段を介して構成するようにした、請求項1に記載の遠心力を用いた機械的に固体成分を除去する装置。 Wherein the inner wall of the separation vessel and to be configured via the fastening means in a state of Sashihasan the Fusuki material between the members forming the annular dam, respectively, the mechanical using centrifugal force according to claim 1 A device that removes solid components . 前記タンク体の底面に再生液を導出する出口を形成してなる、請求項1に記載の遠心力を用いた機械的に固体成分を除去する装置。 2. The apparatus for removing a solid component mechanically using centrifugal force according to claim 1, wherein an outlet for leading the regenerated liquid is formed on the bottom surface of the tank body. 前記分離槽の底面に前記軸受手段の中心に設けた廃液出口を形成してなる、講求項1に記載の遠心力を用いた機械的に固体成分を除去する装置。 The apparatus for removing a solid component mechanically using centrifugal force according to claim 1, wherein a waste liquid outlet provided at the center of the bearing means is formed on the bottom surface of the separation tank. 分離槽の内部に垂設した洗浄廃液導入管の下端部のノズルから洗浄廃を外方へ噴出させることにより、前記洗浄廃液導入管を包囲して形成されかつ高速回転している有底円形内筒に遠心力により押し付けられて有底円形内筒内面に一様に広がった洗浄廃液は、上部外周に形成した複数の細孔から外方へ放出させて有底円形外筒に付着させ、同じく高速回転しているこの有底円形外筒の下方に向かって末広がり状に拡開している面に沿って下向きに進行させ、この有底円形外筒の複数の細孔から外方へ放出させて、高速回転しているこの有底円形外筒の下方に向かって末広がり状に拡開している面に沿って下向きに進行させ、この有底円形外筒の複数の細孔から外方へ放出させて、高速回転している分離槽に至らしめ、分離槽の内壁に形成した環状堰を次々に乗り越えて上方へ移行する間に洗浄廃液に含まれている固形成分を分離槽の内壁に層状に沈降固着させていき、この間に固形成分を分離した再生液を最上段の環状堰から外方へ放出させタンク体の底部から回収し、分離沈降した固形成分が―定の段階に到達したときに、駆動手段による高速回転を急停止し又は逆転することにより、分離層の内部に残留している液体に、固形成分を分離させたときよりもはるかに大きな流速を分離槽の内面の回転方向の流れとして生じさせて壁面に固着した固形成分を再拡散させて廃液として分離槽の底部から排出させることを特徴とする、機械的に固体成分を除去するための遠心分離方法。 Inside the bottomed circular shape that surrounds the cleaning waste liquid introduction pipe and rotates at high speed by ejecting the cleaning waste outward from the nozzle at the lower end of the cleaning waste liquid introduction pipe suspended in the separation tank The cleaning waste liquid that is pressed against the cylinder by centrifugal force and spreads uniformly on the inner surface of the bottomed circular inner cylinder is discharged outward from the plurality of pores formed on the outer periphery of the top, and attached to the bottomed circular outer cylinder. The bottomed circular outer cylinder rotating at a high speed is allowed to travel downward along a surface expanding in a divergent shape toward the bottom, and discharged outward from the plurality of pores of the bottomed circular outer cylinder. The bottomed circular outer cylinder rotating at a high speed is allowed to travel downward along the surface expanding in a divergent shape toward the bottom, and outward from the plurality of pores of the bottomed circular outer cylinder. by release, allowed to reach the separation vessel rotating at high speed, it was formed on the inner wall of the separation tank The solid component contained in the washing waste liquid is settled and fixed in layers on the inner wall of the separation tank while moving over the dams one after another, and the regenerative liquid from which the solid components are separated during this period The solid component separated and settled from the bottom of the tank body that is discharged from the weir and collected from the bottom of the tank body-when the high-speed rotation by the driving means stops suddenly or reverses, In the separation tank as a waste liquid, the solid component stuck to the wall surface is re-diffused by causing a flow rate in the rotational direction of the inner surface of the separation tank to generate a flow rate much higher than when separating the solid components in the liquid remaining in A centrifugal separation method for mechanically removing a solid component , characterized in that the solid component is discharged from the bottom of the plate.
JP2005359900A 2005-12-14 2005-12-14 Apparatus for removing solid components mechanically using centrifugal separation method and centrifugal separation method for removing solid components mechanically Expired - Fee Related JP5115684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359900A JP5115684B2 (en) 2005-12-14 2005-12-14 Apparatus for removing solid components mechanically using centrifugal separation method and centrifugal separation method for removing solid components mechanically

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359900A JP5115684B2 (en) 2005-12-14 2005-12-14 Apparatus for removing solid components mechanically using centrifugal separation method and centrifugal separation method for removing solid components mechanically

Publications (2)

Publication Number Publication Date
JP2007160220A JP2007160220A (en) 2007-06-28
JP5115684B2 true JP5115684B2 (en) 2013-01-09

Family

ID=38243725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359900A Expired - Fee Related JP5115684B2 (en) 2005-12-14 2005-12-14 Apparatus for removing solid components mechanically using centrifugal separation method and centrifugal separation method for removing solid components mechanically

Country Status (1)

Country Link
JP (1) JP5115684B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106943788B (en) * 2017-05-08 2023-08-25 惠安县丽佳智能设备有限公司 Centrifugal dispersion type sea salt mother liquor filtering device
CN109847953B (en) * 2018-12-29 2023-07-21 苏州丰亚达环保科技有限公司 High-precision centrifugal separation equipment
CN111822155B (en) * 2020-08-10 2024-04-09 海盐鼎丰紧固件股份有限公司 Centrifuge for corrosion-resistant high-strength hexagonal bolt galvanization production line
CN112624376B (en) * 2020-12-21 2023-10-31 安徽国星生物化学有限公司 Environment-friendly waste liquid secondary recovery processing device for 4-cyanopyridine purification
CN115028310A (en) * 2022-08-12 2022-09-09 嘉创环保科技有限公司 Multistage centrifugal sewage treatment plant
CN116651631B (en) * 2023-05-16 2024-03-22 中国科学院生态环境研究中心 Integrated device and method for leaching and centrifuging industrial waste salt

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127666U (en) * 1977-03-17 1978-10-11
JPS5554048A (en) * 1978-10-16 1980-04-21 Burijiyon Kogyo:Kk Holeless basket type centrifugal separator
JPS56161850A (en) * 1980-05-15 1981-12-12 Uingoo Kk Method and apparatus for continuous classification
US4824431A (en) * 1987-01-13 1989-04-25 Mcalister Steven A Centrifugal concentrator

Also Published As

Publication number Publication date
JP2007160220A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP5115684B2 (en) Apparatus for removing solid components mechanically using centrifugal separation method and centrifugal separation method for removing solid components mechanically
EP0462852B1 (en) Process and apparatus for the separation of a continuous fluid phase and a disperse phase and their application
CA2828922C (en) Multi-chambered hydroclone
US3241675A (en) Rotary filter and method
CN104302374A (en) Hydroclone with inlet flow shield
JPH0236301B2 (en)
JP2013513475A (en) Device for separating droplets from a feed gas stream containing droplets, with a liquid volume in excess of 10 liquid l / feed gas m3
JP2000061205A (en) Liquid separation method and device therefor
JP4122348B2 (en) Apparatus and method for separating and recovering waste liquid-containing components such as recovered coolant
CN204147714U (en) The solid four-phase separator of a kind of air water oil
US4406651A (en) Multi-phase self purging centrifuge
JPH08512237A (en) Device for filtering liquid containing particles
JP2001511703A (en) Centrifuge
KR102541106B1 (en) sedimentation tank
US5281195A (en) Centrifugal liquid cleaning apparatus and method
CN106853416B (en) Spiral centrifugal separator
EP1675666B1 (en) Grit trap
CN209772424U (en) Full-automatic formula centrifugal separation equipment that sprays convenient to maintain
CN102220184B (en) Hydraulic oil on-line purifying device based on supergravity technology
JP4714055B2 (en) centrifuge
GB2121325A (en) Cleaning centrifuge
CN105916590A (en) Self-cleaning centrifugal separator
CN217409991U (en) Centrifugal filtering equipment for metal processing industry
RU54824U1 (en) DEVICE FOR CLEANING OIL-CONTAINING WASTE WATERS
JPH046406B2 (en)

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100917

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees