JP3542382B2 - Classifier - Google Patents

Classifier Download PDF

Info

Publication number
JP3542382B2
JP3542382B2 JP15090594A JP15090594A JP3542382B2 JP 3542382 B2 JP3542382 B2 JP 3542382B2 JP 15090594 A JP15090594 A JP 15090594A JP 15090594 A JP15090594 A JP 15090594A JP 3542382 B2 JP3542382 B2 JP 3542382B2
Authority
JP
Japan
Prior art keywords
rotor
housing
particles
classification
classifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15090594A
Other languages
Japanese (ja)
Other versions
JPH0810641A (en
Inventor
功一 中林
陽一 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP15090594A priority Critical patent/JP3542382B2/en
Publication of JPH0810641A publication Critical patent/JPH0810641A/en
Application granted granted Critical
Publication of JP3542382B2 publication Critical patent/JP3542382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は,湿式により微粒子を高精度に分離/分級することのできる分級装置に関するものである。
【0002】
【従来の技術】
一般に,ファインセラミックス,高分子材料,エレクトロニクス材料など,いわゆる新素材と呼ばれる材料の原料素材や中間素材のほとんどは粉体である。そして,この材料特性は,粉体によって制御されており,粒度調整が重要なウエイトを占める。従って,原料粉体の粒度調整には厳しい均一性と完全性が求められる。
一方,従来,乾式分級の分野ではサブミクロン粒子の分級も行われているが,粒子表面への微粒子の付着や凝集などによる分級性能の低下が問題となっている。そこで,分級精度や確実性を要求する場合には,湿式分級に頼らざる得ないのが現状である。
この湿式分級の乾式分級に対する利点は,粒子間及び粒子・器壁間付着,凝集力がはるかに小さいことである。これは,液体分子同士の分子間力が大きく,相対的に粒子間に作用する分子間力が弱められること及び粒子・液体境界面の電気二重層により,粒子内に電気的反発力が発生するためであると考えられている。また,粒子の付着・凝集を防止するために,乾式分級においては粒子の体積濃度を極めて低く抑えなければならないが,湿式分級ではかなりの高固体濃度においても実用上可能である。
そして,湿式によりさらに精度よく微粒子を分級するために,分級ゾーンでの流体乱れを少なくすることが追求されている。
このような目的で開発された湿式分級装置としては,例えば特公平3−97号公報に開示のものが知られている。
【0003】
上記公報に開示の技術では,断面円形状の回動体と該回動体と同軸にして回動する内円筒との間に微粉体を含むスラリの旋回流を形成させる一方,上記内円筒と,該内円筒と同軸にして回動する外円筒との間に水などの液体の旋回流を形成させ,この旋回流と上記スラリの旋回流を上記内円筒の下方において互いに合流させてスプリッタにより分級するように構成されている。
すなわち,上記スラリは,上記内円筒の内部に形成される流路を流下し,補助となる上記液体は,上記内円筒と外円筒との間に形成された流路を旋回しながら流下し,これらは上記内円筒と外円筒との間の下方に形成された分級室内で合流する。この分級室内では,スラリ中に含まれた微粉体中の粗粒のものは微粒のものと比較して,スラリ旋回流による遠心力の影響を大きく受け,粒子が粒径(厳密には粒子重さ)によって分離される。その結果,下方のスプリッタにおいて,中央部分では微粒の微粉体が,その周囲の側部においては粗粒の微粉体がそれぞれ分級されて回収される。
【0004】
【発明が解決しようとする課題】
上記構成に係る分級装置においては,回動体と内円筒の壁面が流体と共に回転しているため,この流体と壁面との速度差が少なく,流体の乱れは少ない。しかし,スラリと流体との境界の乱れは避けきれずに,微粒中に粗粒が混入するなどの問題を避けることができなかった。
さらに,上記装置においては,上方に位置する内円筒や下方に位置するスプリッタの影響を受けて,分級室内において流体の乱れを引き起こすという不具合もあった。
そこで,本発明は,上記事情に鑑みて創案されたものであり,分級室内において流体の乱れを引き起こすことなく,微粒産物への粗大粒子の混入を完全に防止して,高精度の分級を可能とする分級装置の提供を目的とするものである。
【0005】
【課題を解決するための手段】
上記目的を達成するために,本発明が採用する主たる手段は,その要旨とするところが,一体的に回転する略球状のロータと該ロータを内部に含むハウジングとを備え,該ロータの表面と該ハウジングの内周壁面の間の隙間に,粒度の異なる粒体を含む流体を連続して供給し,上記粒体の大きさの違いによって生じる上記粒体にかかる遠心力の差異に基づいて比較的粒度の小さい粒体を含む流体を,上記隙間に連通する排出孔から流出させる分級装置において,上記ロータ及びハウジングを準剛体回転流が生じる速度で回転させ,粗粒子については上記ハウジングの内周壁面に付着させて捕集することを特徴とする分級装置である。
【0006】
【作用】
上記ロータ及びハウジングを例えば高速で一体的に回転させ,このロータとハウジングとの間に形成された分級室に液体及び原料スラリを供給する。これにより,上記分級室内においては,エクマン層,剪断層(ステワートソン層),内部領域及び剛体回転領域からなる安定した準剛体回転成層流が生成される。
分級は,主として剪断層で行われ,剛体回転領域へ取り込まれた粗粒子(粗粒産物)は,再び剛体回転領域の外へ出ることはなく,高精度の分級をなし得るものである。
【0007】
【実施例】
以下添付図面を参照して,本発明を具体化した実施例につき説明し,本発明の理解に供する。尚,以下の実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の一実施例に係る分級装置の側断面図,図2は図1における要部拡大図,図3は上記分級装置による分級結果を示すグラフ,図4は図3における分級結果に基づいて求めた部分分級効率を示すグラフ,図5は分級の数値シミュレーションを説明するための分級装置の模式図,図6は所定条件の準剛体回転成層流において球形粒子に対して求めた運動軌跡から得られた部分分級効率を示すグラフ,図7は本発明の他の実施例に係る分級装置の概略構成図である。
この実施例に係る分級装置1では,図1及び図2に示すごとく,ベース2に軸受3及び4を介して回転軸5が回転自在に支持されており,その下部には,駆動力を伝達するためのプーリ6が取り付けられている。上記回転軸5の上端部には,表面が円柱球形状をなしたロータ7と,内周面が球面形状をなしたハウジング8とが同一軸芯上で一体的に取り付けられており,このロータ7の外周面とハウジング8の内周面との間の隙間により分級室9が形成されている。
【0008】
上記ハウジング8の上端部には流入側スリップリング10が接続されており,この流入側スリップリング10の軸芯位置に第1の供給口11が設けられ,その外側に第2の供給口12が設けられている。そして,上記第1の供給口11から原料スラりが,上記第2の供給口12から水がそれぞれ上記分級室9に供給される。
上記分級室9の下方軸芯位置には第1の排出孔13が配設されており,この第1の排出孔13は,上記回転軸5の軸芯位置に貫通された第2の排出孔14に連通されている。そして,この第2の排出孔14は,上記回転軸5の下端部に接続された流出側スリップリング15に連通され,この流出側スリップリング15に設けられた排出口16から微粒産物が排出される。
他方,粗粒産物は,上記ハウジング8の内周壁面に付着することにより捕集される。
以下,上記分級装置1における主要部分の具体的寸法(単位はmm)及び流量の関係を示す。
R =72.64:ロータ7の円柱部分の半径
R =87.90:ロータ7の球部分の半径
H =94.49:ハウジング8の球面部分の半径
O =8 :原料スラリの供給管(第1の供給口11)の内径(外径は10)
W =10.9 :水の供給円筒部の内径
S =36 :ロータ7とのはめあい部での回転軸5の軸径
F =6 :微粒産物の排出円筒部(第2の排出孔14において3段階に変化する直径の中間部分)の半径
O :原料スラリの流量
Q :原料スラリと水の合計流量=微粒産物の流量
Q−QO :水の流量
【0009】
上記のような分級装置1において,分級室9に水及び原料スラリを供給すると共に,ロータ7及びハウジング8を一体的に高速回転させることにより,上記分級室9内で準剛体回転成層流を生成する。そして,この準剛体回転成層流内で,上記原料スラリを分級することにより,粗大粒子の混入を完全に防止された微粒産物のみが排出口16から排出される。
ここで,上記分級装置1における分級条件について詳述する。
即ち,安定的な準剛体回転成層流が得られるためのエクマン数 E=ν/(ΩrR 2 )およびロスビー数ε=Q/(4πΩrR 3 0.5 )の条件は,流れの可視化実験よりε≦1.59E0.46と求められた。従って,上記分級装置1を用いた実験では,E=5.37×10-6 ,ε=8.30×10-3に設定した。ここではνは水の動粘度,Ωはロータ7及びハウジング8の角速度,rR はロータ7の円柱部分の半径である。
そして,原料粉体としては,真比重が1.19のポリメタクリル酸メチルの真球粒子を用い,これを分散媒の水に重量濃度0.50%で加えて原料スラリとしたものである。なお,分散剤として液体合成洗剤を小量加えた原料スラリと水の合計流量Qに対する原料スラリ流量QO の比,Q0 /Qは,最大で約0.3に設定できるが,この比は小さい方が分級性能がよくなるので,本実験では,0.113に設定した。
【0010】
得られた分級結果は,以下のとおりである。
ここで図3において,原料スラリ,微粒産物,粗粒産物の積算分布をそれぞれRO ,RF ,RC で示す。なお,粗粒産物RC は直接測定して求めたものではなく,原料スラリRO と微粒産物RF 及び微粒産物RF の回収率ηF =0.38から求めたものである(RC =(RO −ηF F )/(1−ηF ))。そして,図中の実線は,実験点の多項式近似曲線を示す。
次に,図4は,図3の近似多項式を微分して求めた頻度分布より得た部分分級効率Δηを示す。これにより,50%粒径DP50 (分級点)が4.3μm,分級の鋭さDP25 /DP75 (分級精度)が1.52と求められた。
引き続き,図5に示す単段の分級装置17について分級の数値シミュレーションを行った結果を以下に示す。
上記分級装置17は,高速で一体回転する円板形状のロータ18と円筒タンク形状のハウジング19からなり,原料スラリは流入口20より供給される。微粒産物は流出口21で捕集されるが,粗粒産物はハウジング19の円柱内周壁部分に付着することにより捕集される。
上記分級装置17における主要部分の寸法関係を以下に示す。
a :ロータ18の半径
ha=0.3a :ロータ18の軸長
R =0.7a :流入,流出口20,21の半径
h1=Dh2=0.15a:ロータ18とハウジング19の軸方向すきま幅
1 =0.3a :ロータ18とハウジング19の半径方向すきま幅
【0011】
尚,流れ場は,非圧縮性粘性流体の運動方程式(ナビィエ・ストークス式)を直接数値積分することにより求められ,粒子の運動軌跡は,粒子の運動方程式(バセット・ブシネスク・オゼーン式,ただしバセット項と重力項は無視)を直接数値積分することにより求められる。
図6は,エクマン数E=ν/(Ωa2 )が1.67×10-5で,ロスビー数ε=UO /(Ωa)が1.67×10-3の場合の準剛体回転成層流において,種々の無次元直径DP′(=DP /{a(Eε)0.5 })の球形粒子に対して求めた運動軌跡から得た部分分級効率Δηを示す。
ここでνは流体の動粘度,Ωはロータ18とハウジング19の角速度,UO は流入,流出口20,21における一様な半径方向速度成分の大きさである。また,流体に対する粒子の密度比ρp /ρf は1.19で,流入口20における粒子の初期速度は,そこでの流体の速度と同じにした。さらに,流入口20における粒子(原料スラリ)の供給位置は,図に示すa〜eの5通りとした。例えば位置bの場合は,流入口20の無次元軸座標z′が0(ロータ壁)から0.5(すきま中央)までの範囲にのみ原料スラリを供給し,0.5から1(ハウジング壁)までの範囲には粒子を含まない流体を供給する。ここで原料スラリに含まれる粒子の粒径分布はz′に依存しないものとする。図から明らかなように,分級精度Dp25 /Dp75 (=D′p25 /D′p75 )は,ロータ壁付近にのみ原料スラリを供給する位置dの場合が最も良く,1.10の値をとり,この場合の分級点Dp50 =(D′P50 a(Eε)0.5 )は,3.05a(Eε)0.5 の値をとる。
【0012】
引き続き,図7に基づいて,本発明の他の実施例に係る分級装置22について説明する。
即ち,上記分級装置22は,ロータ23の外周面及びハウジング24の内周面の各半径寸法をその軸芯方向へ向けて段階的(本実施例では3段階)に異ならせることにより,複数の分級室25a,25b,25cを形成したものである。
そして,各段の分級室25a,25b,25cの入口におけるハウジング24上のエクマン層には,粒子を含まない流体(水)を供給する。この流体の流量を主にコントロールすることにより,各分級室25a,25b,25cとも安定的な準剛体回転成層流が得られる。
本実施例に係る分級装置は上記したように構成されているため,各分級室内においては乱れの全く生じない準剛体回転成層流を生成して,これにより原料スラリの分級がなされるため,原理的にはサブミクロン領域のシャープな分級が可能となる。特に微粒産物への粗大粒子の混合を完全に防止することができる。
そして,安定的な準剛体回転成層流が得られるエクマン数とロスビー数の範囲においては,ロータおよびハウジングの回転数と水などの流体の流量を変化させることにより,その分級すべき粒径を自由にコントロールすることができる。
また,このように制御変数としては回転数と流量のみであることから,装置の自動制御化が容易に実現し得るものである。
【0013】
【発明の効果】
本発明は,上記したように,一体的に回転する略球状のロータと該ロータを内部に含むハウジングとを備え,該ロータの表面と該ハウジングの内周壁面の間の隙間に,粒度の異なる粒体を含む流体を連続して供給し,上記粒体の大きさの違いによって生じる上記粒体にかかる遠心力の差異に基づいて比較的粒度の小さい粒体を含む流体を,上記隙間に連通する排出孔から流出させる分級装置において,上記ロータ及びハウジングを準剛体回転流が生じる速度で回転させ,粗粒子については上記ハウジングの内周壁面に付着させて捕集することを特徴とする分級装置であるから,分級室内において流体の乱れを引き起こすことなく,微粒産物への粗大粒子の混入を完全に防止して,高精度な分級を可能とすることができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る分級装置の側断面図。
【図2】図1における要部拡大図。
【図3】上記分級装置による分級結果を示すグラフ。
【図4】図3における分級結果に基づいて求めた部分分級効率を示すグラフ。
【図5】分級の数値シミュレーションを説明するための分級装置の模式図。
【図6】所定条件の準剛体回転成層流において球形粒子に対して求めた運動軌跡から得られた部分分級効率を示すグラフ。
【図7】本発明の他の実施例に係る分級装置の概略構成図。
【符号の説明】
1,17,22…分級装置
7,18,23…ロータ
8,19,24…ハウジング
9,25a,25b,25c…分級室
[0001]
[Industrial applications]
TECHNICAL FIELD The present invention relates to a classification device capable of separating / classifying fine particles with high accuracy by a wet method.
[0002]
[Prior art]
Generally, most of raw materials and intermediate materials of so-called new materials such as fine ceramics, polymer materials, and electronic materials are powders. The material properties are controlled by the powder, and the adjustment of particle size occupies an important weight. Therefore, strict uniformity and completeness are required for adjusting the particle size of the raw material powder.
On the other hand, conventionally, in the field of dry classification, classification of submicron particles has also been performed, but there has been a problem of deterioration in classification performance due to adhesion and aggregation of fine particles on the particle surface. Therefore, in the case where classification accuracy and certainty are required, it is presently necessary to rely on wet classification.
The advantage of this wet classification over the dry classification is that adhesion between particles and between particles and vessel walls and cohesion are much smaller. This is because the intermolecular force between liquid molecules is large, the intermolecular force acting between particles is relatively weakened, and an electric repulsion force is generated in the particles due to the electric double layer at the particle-liquid interface. It is believed to be. Further, in order to prevent adhesion and agglomeration of particles, the volume concentration of the particles must be extremely low in the dry classification, but the wet classification is practically possible even at a considerably high solid concentration.
In order to classify fine particles more accurately by a wet method, it is pursued to reduce fluid turbulence in a classification zone.
As a wet classification device developed for such a purpose, for example, one disclosed in Japanese Patent Publication No. 3-97 is known.
[0003]
According to the technology disclosed in the above publication, a swirling flow of a slurry containing fine powder is formed between a rotating body having a circular cross section and an inner cylinder which rotates coaxially with the rotating body, while the inner cylinder and the inner cylinder are rotated. A swirling flow of liquid such as water is formed between the inner cylinder and the outer cylinder that rotates coaxially, and the swirling flow and the swirling flow of the slurry are joined together below the inner cylinder and classified by a splitter. It is configured as follows.
That is, the slurry flows down the flow path formed inside the inner cylinder, and the auxiliary liquid flows down while turning the flow path formed between the inner cylinder and the outer cylinder, These meet in a classifying chamber formed below between the inner cylinder and the outer cylinder. In this classifying chamber, coarse particles in the fine powder contained in the slurry are greatly affected by the centrifugal force due to the swirling flow of the slurry as compared with fine particles, and the particles have a particle size (strictly speaking, particle weight). A). As a result, in the lower splitter, fine fine powder is classified and collected in the center portion and coarse fine powder is separated and collected in the peripheral side portion.
[0004]
[Problems to be solved by the invention]
In the classifier according to the above configuration, since the rotating body and the wall surface of the inner cylinder rotate together with the fluid, the speed difference between the fluid and the wall surface is small, and the fluid is not disturbed. However, turbulence at the boundary between the slurry and the fluid was unavoidable, and the problem of coarse particles being mixed into fine particles could not be avoided.
Furthermore, in the above-mentioned apparatus, there is a problem that the fluid is disturbed in the classification chamber under the influence of the inner cylinder positioned above and the splitter positioned below.
Therefore, the present invention has been made in view of the above circumstances, and completely prevents coarse particles from being mixed into fine products without causing turbulence in a classifying chamber, thereby enabling high-precision classification. The purpose of the present invention is to provide a classifier.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the main means adopted by the present invention includes, as a gist, a substantially spherical rotor which rotates integrally and a housing which contains the rotor inside , and the surface of the rotor and the housing are provided. A fluid containing particles having different particle sizes is continuously supplied to the gap between the inner peripheral wall surfaces of the housing, and based on the difference in centrifugal force applied to the particles caused by the difference in size of the particles, In a classifier for discharging a fluid containing small-sized particles from a discharge hole communicating with the gap, the rotor and the housing are rotated at a speed at which a quasi-rigid rotating flow is generated. This is a classification device characterized in that it is attached to and collected on a surface.
[0006]
[Action]
The rotor and the housing are integrally rotated at a high speed, for example, and a liquid and a raw material slurry are supplied to a classifying chamber formed between the rotor and the housing. Thereby, a stable quasi-rigid rotating stratified flow composed of the Ekman layer, the shear layer (Stewartson layer), the inner region, and the rigid rotating region is generated in the classifying chamber.
Classification is mainly performed in a shear layer, and coarse particles (coarse product) taken into the rigid rotation region do not go out of the rigid rotation region again, and can perform high-precision classification.
[0007]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings to facilitate understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
Here, FIG. 1 is a side sectional view of a classifier according to one embodiment of the present invention, FIG. 2 is an enlarged view of a main part in FIG. 1, FIG. 3 is a graph showing a classification result by the classifier, and FIG. Is a graph showing the partial classification efficiency obtained based on the classification result in Fig. 5, Fig. 5 is a schematic diagram of a classification device for explaining a numerical simulation of classification, and Fig. 6 is a graph showing a spherical particle in a quasi-rigid rotating stratified flow under predetermined conditions. FIG. 7 is a graph showing a partial classification efficiency obtained from the obtained motion trajectory, and FIG. 7 is a schematic configuration diagram of a classification device according to another embodiment of the present invention.
In the classifier 1 according to this embodiment, as shown in FIGS. 1 and 2, a rotating shaft 5 is rotatably supported on a base 2 via bearings 3 and 4, and a driving force is transmitted to a lower portion thereof. Pulley 6 is mounted. At the upper end of the rotating shaft 5, a rotor 7 having a cylindrical surface and a housing 8 having a spherical inner peripheral surface are integrally mounted on the same axis. A classifying chamber 9 is formed by a gap between the outer peripheral surface of the housing 7 and the inner peripheral surface of the housing 8.
[0008]
An inflow-side slip ring 10 is connected to the upper end of the housing 8. A first supply port 11 is provided at a position of the axis of the inflow-side slip ring 10, and a second supply port 12 is provided outside the first supply port 11. Is provided. Then, raw material slurry is supplied from the first supply port 11 and water is supplied from the second supply port 12 to the classification chamber 9.
A first discharge hole 13 is provided at a lower axis position of the classifying chamber 9, and the first discharge hole 13 is a second discharge hole penetrated at the axis position of the rotary shaft 5. 14. The second discharge hole 14 is communicated with an outflow-side slip ring 15 connected to the lower end of the rotary shaft 5, and fine products are discharged from an outlet 16 provided in the outflow-side slip ring 15. You.
On the other hand, the coarse product is collected by adhering to the inner peripheral wall surface of the housing 8.
Hereinafter, the relationship between the specific dimensions (unit: mm) of the main part and the flow rate in the classification device 1 will be described.
r R = 72.64: radius of the cylindrical portion of the rotor 7 R R = 87.90: radius of the spherical portion of the rotor 7 R H = 94.49: radius of the spherical portion of the housing 8 d O = 8: of raw material slurry Inner diameter (outer diameter is 10) of supply pipe (first supply port 11)
d W = 10.9: inner diameter d S = 36 of the water supply cylindrical portion: shaft diameter d F = 6 of the rotary shaft 5 at the fitting portion with the rotor 7: discharge cylindrical portion of the fine particle product (second discharge hole) The radius Q O of the intermediate part of the diameter, which changes in three steps in 14): the flow rate of the raw slurry Q: the total flow rate of the raw slurry and water = the flow rate of the fine product Q−Q O : the flow rate of water
In the classifying apparatus 1 as described above, the quasi-rigid rotary stratified flow is generated in the classifying chamber 9 by supplying water and raw material slurry to the classifying chamber 9 and rotating the rotor 7 and the housing 8 integrally at a high speed. I do. Then, by classifying the raw material slurry in the quasi-rigid rotating stratified flow, only the fine product completely prevented from mixing coarse particles is discharged from the discharge port 16.
Here, the classification conditions in the classification device 1 will be described in detail.
That is, the conditions of the Ekman number E = ν / (Ωr R 2 ) and the Rossby number ε = Q / (4πΩr R 3 E 0.5 ) for obtaining a stable quasi-rigid rotating stratified flow are obtained from the flow visualization experiment. ≤ 1.59E 0.46 . Therefore, in an experiment using the classifier 1, E = 5.37 × 10 −6 and ε = 8.30 × 10 −3 . Here, ν is the kinematic viscosity of water, Ω is the angular velocity of the rotor 7 and the housing 8, and r R is the radius of the cylindrical portion of the rotor 7.
And, as the raw material powder, true spherical particles of polymethyl methacrylate having a true specific gravity of 1.19 are used and added to water of a dispersion medium at a weight concentration of 0.50% to form a raw material slurry. The ratio of the raw material slurry flow rate Q O to the total flow rate Q of the raw material slurry and water to which a small amount of liquid synthetic detergent is added as a dispersant, Q 0 / Q, can be set to about 0.3 at the maximum. Since the smaller the value, the better the classification performance, the value was set to 0.113 in this experiment.
[0010]
The classification results obtained are as follows.
Here, in FIG. 3, the integrated distributions of the raw material slurry, fine product, and coarse product are indicated by R O , R F , and R C , respectively. It should be noted that the coarse product R C was not determined by direct measurement, but was determined from the raw slurry S O , the fine product R F, and the recovery η F = 0.38 of the fine product R F (R C = (R O -η F R F ) / (1-η F)). The solid line in the figure indicates a polynomial approximation curve at the experimental point.
Next, FIG. 4 shows the partial classification efficiency Δη obtained from the frequency distribution obtained by differentiating the approximate polynomial in FIG. As a result, the 50% particle diameter D P50 (classification point) was determined to be 4.3 μm, and the classification sharpness D P25 / D P75 (classification accuracy) was determined to be 1.52.
Subsequently, the result of numerical simulation of classification for the single-stage classification device 17 shown in FIG. 5 is shown below.
The classifier 17 includes a disk-shaped rotor 18 and a cylindrical tank-shaped housing 19 that rotate integrally at a high speed. Raw material slurry is supplied from an inlet 20. The fine-grained product is collected at the outlet 21, while the coarse-grained product is collected by adhering to the cylindrical inner peripheral wall of the housing 19.
The dimensional relationship of the main parts in the classifier 17 will be described below.
a: radius of the rotor 18 D ha = 0.3a: the axis of the rotor 18 length R = 0.7a: inflow, radial D outlets 20,21 h1 = D h2 = 0.15a: the axis of the rotor 18 and the housing 19 Directional clearance width D 1 = 0.3a: Radial clearance width between rotor 18 and housing 19
The flow field is obtained by directly numerically integrating the equation of motion of the incompressible viscous fluid (Navier-Stokes equation), and the trajectory of the particle is expressed by the equation of motion of the particle (Basset, Boussinesq-Oseen equation, Term and gravitational term are ignored).
FIG. 6 shows a quasi-rigid rotating stratified flow when the Ekman number E = ν / (Ωa 2 ) is 1.67 × 10 −5 and the Rossby number ε = U O / (Ωa) is 1.67 × 10 −3. , The partial classification efficiency Δη obtained from the motion trajectories obtained for the spherical particles having various dimensionless diameters D P ′ (= D P / {a (Eε) 0.5 }) is shown.
Here, ν is the kinematic viscosity of the fluid, Ω is the angular velocity between the rotor 18 and the housing 19, and U O is the magnitude of the uniform radial velocity component at the inflow and outflow 20, 21. The density ratio ρ p / ρ f of the particles to the fluid was 1.19, and the initial velocity of the particles at the inlet 20 was the same as the velocity of the fluid there. Further, the supply positions of the particles (raw material slurry) at the inflow port 20 were five kinds of a to e shown in the figure. For example, in the case of the position b, the raw material slurry is supplied only in a range where the dimensionless axis coordinate z 'of the inlet 20 is from 0 (rotor wall) to 0.5 (center of the clearance), and from 0.5 to 1 (housing wall). ) Is supplied with a fluid containing no particles. Here, it is assumed that the particle size distribution of the particles contained in the raw slurry does not depend on z ′. As is clear from the figure, the classification accuracy Dp25 / Dp75 (= D' p25 / D' p75 ) is best at the position d where the raw material slurry is supplied only near the rotor wall, and the value of 1.10. In this case, the classification point D p50 = (D ′ P50 a (Eε) 0.5 ) takes a value of 3.05a (Eε) 0.5 .
[0012]
Next, a classifier 22 according to another embodiment of the present invention will be described with reference to FIG.
That is, the classifying device 22 changes a plurality of radial dimensions of the outer peripheral surface of the rotor 23 and the inner peripheral surface of the housing 24 in a stepwise manner (three steps in the present embodiment) toward the axis thereof, thereby providing a plurality of classifications. The classification chambers 25a, 25b, 25c are formed.
Then, a fluid (water) containing no particles is supplied to the Ekman layer on the housing 24 at the entrances of the classification chambers 25a, 25b, 25c of each stage. By mainly controlling the flow rate of this fluid, a stable quasi-rigid rotary stratified flow can be obtained in each of the classifying chambers 25a, 25b, and 25c.
Since the classifying apparatus according to the present embodiment is configured as described above, a quasi-rigid rotary stratified flow without any turbulence is generated in each classifying chamber, thereby classifying the raw material slurry. Specifically, sharp classification in the submicron region is possible. In particular, it is possible to completely prevent the coarse particles from being mixed into the fine product.
In the range of the Ekman number and the Rossby number at which a stable quasi-rigid rotating stratified flow can be obtained, the particle size to be classified can be freely adjusted by changing the rotation speed of the rotor and housing and the flow rate of fluid such as water. Can be controlled.
In addition, since only the number of revolutions and the flow rate are control variables, automatic control of the apparatus can be easily realized.
[0013]
【The invention's effect】
As described above, the present invention includes a substantially spherical rotor that rotates integrally and a housing that includes the rotor therein, and a gap having a different particle size is provided in a gap between the surface of the rotor and the inner peripheral wall surface of the housing. A fluid containing particles is continuously supplied, and a fluid containing particles having a relatively small particle size is communicated with the gap based on a difference in centrifugal force applied to the particles caused by a difference in size of the particles. A classifier that rotates the rotor and the housing at a speed at which a quasi-rigid rotary flow is generated, and collects coarse particles by adhering to the inner peripheral wall surface of the housing. Therefore, it is possible to completely prevent coarse particles from being mixed into fine products without causing disturbance of the fluid in the classification chamber, and to perform high-precision classification.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a classification device according to an embodiment of the present invention.
FIG. 2 is an enlarged view of a main part in FIG.
FIG. 3 is a graph showing a classification result by the classification device.
FIG. 4 is a graph showing a partial classification efficiency obtained based on the classification result in FIG. 3;
FIG. 5 is a schematic diagram of a classification device for explaining a numerical simulation of classification.
FIG. 6 is a graph showing a partial classification efficiency obtained from a motion trajectory obtained for a spherical particle in a quasi-rigid rotating stratified flow under a predetermined condition.
FIG. 7 is a schematic configuration diagram of a classification device according to another embodiment of the present invention.
[Explanation of symbols]
1, 17, 22 ... Classifier 7, 18, 23 ... Rotor 8, 19, 24 ... Housing 9, 25a, 25b, 25c ... Classification room

Claims (3)

一体的に回転する略球状のロータと該ロータを内部に含むハウジングとを備え,該ロータの表面と該ハウジングの内周壁面の間の隙間に,粒度の異なる粒体を含む流体を連続して供給し,上記粒体の大きさの違いによって生じる上記粒体にかかる遠心力の差異に基づいて比較的粒度の小さい粒体を含む流体を,上記隙間に連通する排出孔から流出させる分級装置において,上記ロータ及びハウジングを準剛体回転流が生じる速度で回転させ,粗粒子については上記ハウジングの内周壁面に付着させて捕集することを特徴とする分級装置。A substantially spherical rotor that rotates integrally and a housing containing the rotor therein , and a fluid containing particles having different particle sizes is continuously supplied to a gap between a surface of the rotor and an inner peripheral wall surface of the housing. A classifying device for supplying and discharging a fluid containing particles having a relatively small particle size from a discharge hole communicating with the gap based on a difference in centrifugal force applied to the particles caused by a difference in size of the particles. A classifier , wherein the rotor and the housing are rotated at a speed at which a quasi-rigid rotating flow is generated, and coarse particles are attached to and collected on the inner peripheral wall surface of the housing . 上記ロータの外周面及び上記ハウジングの内周面の各半径寸法をその軸芯方向に沿って段階的に異ならせることにより複数の分級室を構成することとした請求項1記載の分級装置。2. The classifying apparatus according to claim 1, wherein a plurality of classifying chambers are configured by making each radial dimension of an outer peripheral surface of the rotor and an inner peripheral surface of the housing vary stepwise along the axial direction. 上記ロータ及び上記ハウジングをε≦1.59E0.46(ε:ロスビー数,E:エクマン数)の条件で運転することとした請求項1又は2記載の分級装置。The classifier according to claim 1 or 2, wherein the rotor and the housing are operated under the condition of ε ≦ 1.59E 0.46 (ε: Rossby number, E: Ekman number).
JP15090594A 1994-07-01 1994-07-01 Classifier Expired - Fee Related JP3542382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15090594A JP3542382B2 (en) 1994-07-01 1994-07-01 Classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15090594A JP3542382B2 (en) 1994-07-01 1994-07-01 Classifier

Publications (2)

Publication Number Publication Date
JPH0810641A JPH0810641A (en) 1996-01-16
JP3542382B2 true JP3542382B2 (en) 2004-07-14

Family

ID=15506956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15090594A Expired - Fee Related JP3542382B2 (en) 1994-07-01 1994-07-01 Classifier

Country Status (1)

Country Link
JP (1) JP3542382B2 (en)

Also Published As

Publication number Publication date
JPH0810641A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
EP0241930B1 (en) Particulate material treating apparatus
US5279463A (en) Methods and apparatus for treating materials in liquids
EP1534436B1 (en) Apparatus and method for separating particles
KR890001390B1 (en) Separator for sorting particulate material
JP2752585B2 (en) Method and apparatus for separating fine solids into two particle groups
US4660776A (en) Vertical grinding mill
JP3542382B2 (en) Classifier
JP7166351B2 (en) Classifying rotor and classifier
JP3517692B2 (en) Airflow classifier
HU195746B (en) Method and apparatus for separating the aggregation of grains of smaller than 300 micron size into fine and coarse phase
US4596497A (en) Powder disperser
JP2829662B2 (en) Centrifugal classifier
JP2946231B2 (en) Ultra fine powder classifier
JP2003251217A (en) Multistage classification apparatus
JPH05117722A (en) Production of aluminum pigment
JP2003251217A5 (en)
JP2946230B2 (en) Ultra fine powder classifier
JP2624102B2 (en) Cyclone collector
JPS60161721A (en) Method and apparatus for mixing powders by air stream
JPH08173826A (en) Wet dispersing pulverizer and method thereof
CA1256414A (en) Vertical grinding mill
KR890003745B1 (en) A crusher
KR100646847B1 (en) Classifier of corpuscle
JPS5918110B2 (en) Rotating disk type classification device
KR200310844Y1 (en) Dispersion device of classifier for powder

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees