JPS6349932B2 - - Google Patents

Info

Publication number
JPS6349932B2
JPS6349932B2 JP56151609A JP15160981A JPS6349932B2 JP S6349932 B2 JPS6349932 B2 JP S6349932B2 JP 56151609 A JP56151609 A JP 56151609A JP 15160981 A JP15160981 A JP 15160981A JP S6349932 B2 JPS6349932 B2 JP S6349932B2
Authority
JP
Japan
Prior art keywords
field effect
fet
effect transistor
effect transistors
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56151609A
Other languages
Japanese (ja)
Other versions
JPS5853220A (en
Inventor
Masahiro Hirayama
Ryoji Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56151609A priority Critical patent/JPS5853220A/en
Publication of JPS5853220A publication Critical patent/JPS5853220A/en
Publication of JPS6349932B2 publication Critical patent/JPS6349932B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/15Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
    • H03K5/151Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with two complementary outputs

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Manipulation Of Pulses (AREA)

Description

【発明の詳細な説明】 本発明は、1つの入力信号に基き、互に逆相の
2つの信号を発生する様になされた逆相信号発生
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an anti-phase signal generation circuit that generates two signals with anti-phase signals based on one input signal.

斯種逆相信号発生回路として、従来、第1図に
示す如く、エンハンスメント型(ノーマリオフ
型)の電界効果トランジスタQ1(以下簡単の為
FET−Q1と称す)とデプレツシヨン型(ノー
マリオン型)の電界効果トランジスタQ2(以下
簡単の為FET−Q2と称す)とが、FET−Q1
のドレインDをFET−Q2のソースSに接続せ
る態様を以つて直列に接続されてなる直列回路
が、電源線E1と電源線E2(接地されている)
との間に、FET−Q2を電源線E1側として接
続され、而してFET−Q1のゲートが入力線TO
に接続され、FET−Q2のゲートがFET−Q2
のソースSに接続され、一方FET−Q1のゲー
トより出力線T1が導出され、又FET−Q1及
びFET−Q2の接続中点より他の出力線T2が
導出されてなる構成のものが所謂直結型として提
案されている。
Conventionally, as this type of negative phase signal generation circuit, as shown in FIG.
FET-Q1) and depletion type (normally-on type) field effect transistor Q2 (hereinafter referred to as FET-Q2 for simplicity) are FET-Q1
A series circuit in which the drain D of the FET-Q2 is connected to the source S of the FET-Q2 is formed by connecting the power line E1 and the power line E2 (grounded).
, FET-Q2 is connected to the power line E1 side, and the gate of FET-Q1 is connected to the input line TO
and the gate of FET-Q2 is connected to FET-Q2
The configuration in which the output line T1 is led out from the gate of FET-Q1, and the other output line T2 is led out from the connection midpoint of FET-Q1 and FET-Q2 is called a direct connection. proposed as a model.

斯る構成によれば、入力線T0に2値表示で
「1」及び「0」をとる入力信号S0が、「1」で
供給された場合、FET−Q1がオンし、これに
基き出力線T2に出力信号S2が2値表示で
「0」をとるものとして得られ、又出力線T1に
出力信号S1が2値表示で「1」をとるものとし
て得られるものである。又入力線T0に入力信号
S0が「0」で供給された場合、出力線T1及び
T2に夫々出力信号S1及びS2が夫々「0」及
び「1」をとるものとして得られるものである。
According to this configuration, when the input signal S0, which takes "1" and "0" in binary display, is supplied as "1" to the input line T0, the FET-Q1 turns on, and based on this, the output line An output signal S2 is obtained at T2 as a binary value "0", and an output signal S1 is obtained on an output line T1 as a binary value "1". Furthermore, when the input signal S0 is supplied as "0" to the input line T0, the output signals S1 and S2 are obtained as "0" and "1" on the output lines T1 and T2, respectively.

従つて、第1図に示す従来の逆相信号発生回路
の構成の場合、1つの入力信号S0に基き、互に
逆相の2つの信号S1及びS2を発生することが
できるものということができる。然し乍ら、第1
図の構成の場合、出力信号S2が、出力信号S1
に基き、FET−Q1及びFET−Q2の直列回路
を伝播して得られる態様の構成を有するので、出
力信号S1及びS2間に、出力信号S2が出力信
号S1に対して遅延せる関係で、互に位相差を有
して得られ、従つて出力信号S1及びS2を厳密
に逆相関係で得ることができないという欠点を有
していた。
Therefore, in the case of the configuration of the conventional anti-phase signal generation circuit shown in FIG. 1, it can be said that two signals S1 and S2 of mutually anti-phase can be generated based on one input signal S0. . However, the first
In the case of the configuration shown in the figure, the output signal S2 is the output signal S1
Based on this, it has a configuration obtained by propagating through a series circuit of FET-Q1 and FET-Q2, so there is mutual interaction between output signals S1 and S2 in such a manner that output signal S2 is delayed with respect to output signal S1. Therefore, the output signals S1 and S2 cannot be obtained with a strictly opposite phase relationship.

又従来、第2図を伴なつて次に述べる構成の逆
相信号発生回路も提案されている。即ちエンハン
スメント型の電界効果トランジスタX1〜X4
(以下簡単の為夫々FET−X1〜X4と称す)
と、ゲートGをソースSに接続してなる負荷とし
てのデプレツシヨン型の電界効果トランジスタX
5及びX6と、ゲートGをソースに接続せる定電
流回路としてのデプレツシヨン型の電界効果トラ
ンジスタX7と、レベルシフト用のダイオードD
1及びD2と、負荷としての抵抗R1及びR2
と、基準信号源Aとを有し、而してFET−X1
及びX2のドレインDが夫々抵抗R1及びR2を
通じて電源線E1に、ソースSがFET−X7を
通じて電源線E1に接続され、又FET−X3及
びX4のドレインDが電源線E1、ソースSが
夫々ダイオードD1及びD2を通じ更にFET−
X5及びX6を通じて電源線E1に接続され、更
にFET−X1及びX2のゲートGが夫々入力線
T0及び基準信号源Aに接続され、尚更にFET
−X3及びX4のゲートが、夫々FET−X1及
び抵抗R1の接続中点、及びFET−X2及び抵
抗R2の接続中点に接続され、又ダイオードD1
及びFET−X5の接続中点、及びダイオードD
2及びFET−X6の接続中点より、夫々出力線
T1及びT2が導出されている。
Also, a negative phase signal generating circuit having the configuration described below with reference to FIG. 2 has been proposed. That is, enhancement type field effect transistors X1 to X4.
(Hereinafter, each will be referred to as FET-X1 to X4 for simplicity)
and a depletion type field effect transistor X as a load with the gate G connected to the source S.
5 and X6, a depletion type field effect transistor X7 as a constant current circuit that connects the gate G to the source, and a level shift diode D.
1 and D2 and resistors R1 and R2 as loads.
and a reference signal source A, and FET-X1
The drains D of and Further FET- through D1 and D2
It is connected to the power supply line E1 through X5 and X6, and the gates G of FET-X1 and
- The gates of X3 and X4 are connected to the midpoint of connection between FET-X1 and resistor R1, and the midpoint of connection between FET-X2 and resistor R2, respectively, and are connected to the midpoint of connection between FET-X1 and resistor R2, and the diode D1
and the connection midpoint of FET-X5, and diode D
Output lines T1 and T2 are led out from the connection midpoints of FET-2 and FET-X6, respectively.

斯る第2図に示す構成によれば、入力線T0に
入力信号S0が「1」で供給された場合、FET
−X1及びX2が夫々オン及びオフし、之に基き
FET−X3及びX4が夫々オフ及びオンし、依
つて出力線T1及びT2に出力信号S1及びS2
が夫々「0」及び「1」をとるものとして得られ
るものである。
According to the configuration shown in FIG. 2, when the input signal S0 is supplied as "1" to the input line T0, the FET
- X1 and X2 are turned on and off respectively, based on
FET-X3 and X4 turn off and on respectively, thus providing output signals S1 and S2 on output lines T1 and T2.
are obtained when the values are respectively "0" and "1".

従つて第2図に示す従来の逆相信号発生回路の
場合、第1図の場合と同様に1つの入力信号S0
に基き互に逆相の2つの信号S1及びS2を得る
ことができ、この場合、信号S1が信号S0に基
き、FET−X1,X2及びX7を含む回路と、
FET−X3及びX5を含む回路とを伝播して得
られ、又信号S2が信号S0に基き、FET−X
1,X2及びX6を含む回路と、FET−X4及
びX6を含む回路とを伝播して得られ、FET−
X3及びX5を含む回路とFET−X4及びX6
を含む回路とが同じ構成であるので、2つの信号
S1及びS2が厳密に逆相関係で得られるもので
ある。然し乍ら、第2図の構成の場合、電界効果
トランジスタX1〜X7と、ダイオードD1及び
D2と、抵抗R1及びR2と多くの部品を要し、
又FET−X7が定電流回路を構成しているを要
している為、電源線E1及びE2間に比較的高い
電圧の電源を接続するを要する等の欠点を有して
いた。
Therefore, in the case of the conventional negative phase signal generation circuit shown in FIG. 2, one input signal S0 is used as in the case of FIG.
Two signals S1 and S2 having mutually opposite phases can be obtained based on , in this case, signal S1 is based on signal S0, and a circuit including FET-X1, X2 and X7;
The signal S2 is obtained by propagating through the circuit including FET-X3 and
1, X2 and X6, and a circuit containing FET-X4 and X6.
Circuit containing X3 and X5 and FET-X4 and X6
Since the circuit including the circuit has the same configuration, the two signals S1 and S2 are obtained with strictly opposite phase relationship. However, in the case of the configuration shown in FIG. 2, many components are required, including field effect transistors X1 to X7, diodes D1 and D2, and resistors R1 and R2.
Furthermore, since the FET-X7 is required to constitute a constant current circuit, it has the disadvantage that a relatively high voltage power supply must be connected between the power supply lines E1 and E2.

依つて本発明は第1図及び第2図にて上述せる
欠点のない新規な逆相信号発生回路を提案せんと
するもので、以下詳述する所より明らかとなるで
あろう。
Therefore, the present invention aims to propose a novel anti-phase signal generating circuit which does not have the drawbacks described above in FIGS. 1 and 2, and this will become clear from the detailed description below.

第3図は本願第1番目の発明による逆相信号発
生回路の第1の実施例を示し、エンハンスメント
型の電界効果トランジスタM1とデプレツシヨン
型の電界効果トランジスタM2との直列回路と、
エンハンスメント型の電界効果トランジスタM3
とデプレツシヨン型の電界効果トランジスタM4
との直列回路と、エンハンスメント型の電界効果
トランジスタM5とデプレツシヨン型の電界効果
トランジスタM6との直列回路とが、電源線E1
と電源線E2(接地されている)間に、電界効果
トランジスタM2,M4及びM6を電源線E1側
として、互に並列に接続されている。以下電界効
果トランジスタM1〜M6を簡単の為FET−M
1〜M6と称す。
FIG. 3 shows a first embodiment of an anti-phase signal generation circuit according to the first invention of the present application, which includes a series circuit of an enhancement type field effect transistor M1 and a depletion type field effect transistor M2,
Enhancement type field effect transistor M3
and depression type field effect transistor M4.
A series circuit of an enhancement type field effect transistor M5 and a depletion type field effect transistor M6 is connected to the power supply line E1.
and a power line E2 (grounded), field effect transistors M2, M4, and M6 are connected in parallel to each other with the field effect transistors M2, M4, and M6 on the power line E1 side. Below, the field effect transistors M1 to M6 are FET-M for simplicity.
They are called 1 to M6.

この場合FET−M1,M3及びM5のドレイ
ンDが夫々FET−M2,M4及びM6のソース
に接続されているものとする。
In this case, it is assumed that the drains D of FET-M1, M3 and M5 are connected to the sources of FET-M2, M4 and M6, respectively.

而してFET−M1,M3及びM6のゲートG
が入力線T0に接続され、又FET−M2のゲー
トGがFET−M2のソースSに接続され、更に
FET−M4及びM5のゲートGがFET−M1及
びM2の接続中点に接続され、尚更にFET−M
3及びM4の接続中点及びFET−M5及びM6
の接続中点より夫々出力線T1及びT2が導出さ
れている。
Therefore, the gate G of FET-M1, M3 and M6
is connected to the input line T0, the gate G of FET-M2 is connected to the source S of FET-M2, and
The gates G of FET-M4 and M5 are connected to the connection midpoint of FET-M1 and M2, and furthermore, FET-M
3 and M4 connection midpoint and FET-M5 and M6
Output lines T1 and T2 are led out from the connection midpoints, respectively.

以上が本願第1番目の発明の第1の実施例の構
成であるが、斯る構成によれば、入力線T0に2
値表示で「1」及び「0」をとる入力信号S0
が、「1」で供給された場合、FET−M1がオン
になつてFET−M1及びM2の接続中点に「0」
の出力が得られ、而してその「0」の出力によつ
てFET−M4がオフになり、一方その「0」の
出力によつてFET−M5はオンにならず従つて
オフを保ち、又入力信号S0が「1」で供給され
たことにより、FET−M3がオンとなり、更に
FET−M6はオンを保ち、依つて出力線T1及
びT2に夫々出力信号S1及びS2が夫々「0」
及び「1」をとるものとして得られるものであ
る。又入力信号S0が供給された場合、FET−
M1がオフを保ち、この為FET−M1及びM2
の接続中点に「1」の出力が得られ、而してその
「1」の出力によつてFET−M5がオンになり、
一方入力信号S0が「0」で供給されたことによ
り、FET−M3はオンにならず、従つてオフを
保ち、又FET−M6はオフになり、更にFET−
M4はオンを保ち、依つて出力線T1及びT2に
夫々出力信号S1及びS2が夫々「1」及び
「0」をとるものとして得られるものである。
The above is the configuration of the first embodiment of the first invention of the present application. According to this configuration, two lines are connected to the input line T0.
Input signal S0 that takes "1" and "0" in the value display
is supplied with "1", FET-M1 turns on and "0" is applied to the connection midpoint of FET-M1 and M2.
The output of ``0'' turns off FET-M4, while the output of ``0'' does not turn on FET-M5, so it remains off. Also, since the input signal S0 is supplied as "1", FET-M3 is turned on, and further
FET-M6 remains on, so the output signals S1 and S2 are "0" on the output lines T1 and T2, respectively.
and "1". Also, when input signal S0 is supplied, FET-
M1 remains off, thus FET-M1 and M2
An output of "1" is obtained at the midpoint of the connection, and the FET-M5 is turned on by the output of "1".
On the other hand, since the input signal S0 is supplied as "0", FET-M3 is not turned on and therefore remains off, and FET-M6 is turned off, and FET-M3 is not turned on and therefore remains off.
M4 remains on, so that output signals S1 and S2 are obtained as "1" and "0" on output lines T1 and T2, respectively.

従つて第3図に示す本願第1番目の発明の第1
の実施例の構成の場合、1つの入力信号S0に基
き、互に逆相の2つの信号S1及びS2を発生す
ることができるものである。而してこの場合、信
号S1が信号S0に基き、FET−M1及びM2
を含む回路と、FET−M3及びM4を含む回路
とを伝播して得られ、又信号S2が信号S0に基
き、FET−M1及びM2を含む回路とFET−M
5及びM6を含む回路とを伝播して得られる態様
を有し、そしてこの場合FET−M3及びM4を
含む回路と、FET−M5及びM6を含む回路と
が同じ構成を有するので、2つの信号S1及びS
2が厳密に逆相関係で得られるという特徴を有す
るものである。
Therefore, the first aspect of the first invention of the present application shown in FIG.
In the case of the configuration of the embodiment, two signals S1 and S2 having mutually opposite phases can be generated based on one input signal S0. In this case, signal S1 is based on signal S0, and FET-M1 and M2
and a circuit including FET-M3 and M4, and the signal S2 is obtained by propagating the circuit including FET-M1 and M2 and the circuit including FET-M3 based on the signal S0.
In this case, since the circuit including FET-M3 and M4 and the circuit including FET-M5 and M6 have the same configuration, the two signals S1 and S
2 is obtained in a strictly antiphase relationship.

このことは、FET−M1〜M6のゲート長に
対して信号S1及びS2間の位相差を測定した
所、第4図の曲線に示す如く、ゲート長が大と
なつても、位相差が略々零で得られたことよりし
ても明らかとなつた。因みに、第1図の従来の構
成の場合、そのFET−Q1のゲート長に対する
信号S1及びS2間の位相差を測定した所、第4
図の曲線に示す如く、ゲート長が大となるに応
じて位相差が大となつて得られた。
This shows that when the phase difference between signals S1 and S2 is measured with respect to the gate length of FET-M1 to M6, as shown in the curve in Figure 4, even when the gate length becomes large, the phase difference is almost constant. This became clear from what was obtained with Zero. Incidentally, in the case of the conventional configuration shown in FIG. 1, when the phase difference between signals S1 and S2 with respect to the gate length of FET-Q1 was measured,
As shown by the curve in the figure, the larger the gate length, the larger the phase difference obtained.

又第3図に示す本発明の実施例の場合、上述せ
る特徴が、6つのFET−M1〜M6を用いるの
みの簡易な構成で得られるという大なる特徴を有
するものである。更にFET−M1及びM2の直
列回路と、FET−M3及びM4の直列回路と、
FET−M5及びM6の直列回路とが電源線E1
及びE2間に直接接続されてなる構成を有するの
で、電源線E1及びE2間に接続する電源に高い
電圧の得られるものを要しない等の大なる特徴を
有する。
Further, the embodiment of the present invention shown in FIG. 3 has a great feature in that the above-mentioned features can be obtained with a simple configuration using only six FETs M1 to M6. Furthermore, a series circuit of FET-M1 and M2, a series circuit of FET-M3 and M4,
The series circuit of FET-M5 and M6 is the power line E1
Since it has a configuration in which it is directly connected between the power lines E1 and E2, it has great features such as not requiring a high voltage power source to be connected between the power lines E1 and E2.

次に第5図を伴なつて本願第1番目の発明の第
2の実施例を述べるに、第3図との対応部分には
同一符号を附して詳細説明はこれを省略するも、
第3図にて上述せる構成に於て、デプレツシヨン
型の電界効果トランジスタM7及びM8(以下
夫々FET−M7及びM8と称す)とが、前者の
ドレインDを後者のソースSに接続せる態様を以
つて直列に接続され、而してその直列回路が電源
線E1及びE2間に接続され、而してFET−M
7及びM8の接続中点に第3図の場合の入力線T
0がFET−M7及びM8を含む回路の出力線と
して接続され、更にFET−M7のゲートGより
入力線S0′が導出されてなることを除いては第
3図の場合と同様の構成を有する。
Next, a second embodiment of the first invention of the present application will be described with reference to FIG. 5. Parts corresponding to those in FIG.
In the configuration described above in FIG. 3, the manner in which the depletion type field effect transistors M7 and M8 (hereinafter referred to as FET-M7 and M8, respectively) connect the drain D of the former to the source S of the latter will be described below. are connected in series, and the series circuit is connected between the power supply lines E1 and E2, and the FET-M
In the case of Fig. 3, connect the input line T to the connection midpoint of 7 and M8.
It has the same configuration as the case in Fig. 3, except that 0 is connected as the output line of the circuit including FET-M7 and M8, and the input line S0' is further derived from the gate G of FET-M7. .

以上が本願第2番目の発明の第2の実施例の構
成であるが、斯る構成によれば、それが上述せる
事項を除いては第3図の場合と同様の構成を有
し、而して入力線T0′に第3図の場合と同様の
入力信号S0を「1」及び「0」で各別に供給す
れば、FET−M7及びM8の接続中点に各別に
「0」及び「1」の出力が得られること明らかで
あるので、出力線T1及びT2に、入力信号S0
が「1」の場合、出力信号S1及びS2が夫々
「1」及び「0」で得られ、又入力信号S0が
「0」の場合、出力信号S1及びS2が夫々「0」
及び「1」で得られるものである。
The above is the configuration of the second embodiment of the second invention of the present application. According to this configuration, it has the same configuration as the case of FIG. 3 except for the matters mentioned above, and If the same input signal S0 as in the case of FIG. 3 is supplied to the input line T0' as "1" and "0", respectively, "0" and "0" are respectively supplied to the connection midpoint of FET-M7 and M8. Since it is clear that an output of "1" is obtained, the input signal S0 is applied to the output lines T1 and T2.
When is "1", output signals S1 and S2 are obtained as "1" and "0", respectively, and when input signal S0 is "0", output signals S1 and S2 are obtained as "0", respectively.
and "1".

従つて本願発明の第2の実施例の場合も、1つ
の入力信号S0に基き、互に逆相の2つの信号S
1及びS2を発生することができるものである。
而してこの場合も、第3図の場合と同様に、信号
S1及びS2が厳密に逆相関係で簡易な構成で得
られ、又電源線E1及びE2間に高い電圧の電源
を要しないという特徴を有するものである。尚第
3図の場合、入力信号S0にその電圧振幅の約1/
2に相当する電圧の直流バイアスを重畳せしめる
を要するものであるが、第5図の本例の場合、
FET−M7及びM8を含む回路を有するので、
入力信号S0に斯る直流バイアスを重畳せしめる
要がないという特徴も併せ有するものである。
Therefore, also in the case of the second embodiment of the present invention, two signals S0 having mutually opposite phases are generated based on one input signal S0.
1 and S2.
In this case as well, as in the case of Fig. 3, the signals S1 and S2 can be obtained with a strictly antiphase relationship with a simple configuration, and a high voltage power source is not required between the power lines E1 and E2. It has characteristics. In the case of Fig. 3, the input signal S0 has approximately 1/1/1 of its voltage amplitude.
However, in the case of this example shown in Fig. 5,
Since it has a circuit including FET-M7 and M8,
It also has the feature that there is no need to superimpose such a DC bias on the input signal S0.

次に第6図を伴なつて本願第2番目の発明の実
施例を述べるに、第3図との対応部分に同一符号
を附し詳細説明はこれを省略するも、第3図にて
上述せる構成に於て、そのFET−M1及びM3
がエンハンスメント型であるに代え、デプレツシ
ヨン型に置換されてなることを除いては、第3図
の場合と同様の構成を有する。
Next, an embodiment of the second invention of the present application will be described with reference to FIG. 6. Parts corresponding to those in FIG. In the configuration, the FET-M1 and M3
The configuration is similar to that of the case shown in FIG. 3, except that the enhancement type is replaced with a depletion type.

以上が本願第2番目の発明の実施例の構成であ
るが、斯る構成によれば、それが上述せる事項を
除いては第3図の場合と同様であるので、詳細説
明はこれを省略するも、第3図の場合と同様の作
用効果が得られる。但し本例の場合、入力信号S
0の供給されるFET−M1及びM3が共にデプ
レツシヨン型であるので、第5図の場合と同様に
入力信号S0に直流バイアスを重畳せしめる要が
ないという特徴を有するものである。
The above is the configuration of the embodiment of the second invention of the present application, but according to this configuration, it is the same as the case of FIG. 3 except for the matters mentioned above, so detailed explanation thereof will be omitted. However, the same effect as in the case of FIG. 3 can be obtained. However, in this example, the input signal S
Since the FETs M1 and M3 to which 0 is supplied are both depletion type, there is no need to superimpose a DC bias on the input signal S0, as in the case of FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の回路を示す接続図、
第3図は本願第1番目の発明の実施例を示す接続
図、第4図はその説明に供する曲線図、第5図は
本願第1番目の発明の第2の実施例を示す接続
図、第6図は本願第2番目の発明の実施例を示す
接続図である。
Figures 1 and 2 are connection diagrams showing conventional circuits;
3 is a connection diagram showing an embodiment of the first invention of the present application, FIG. 4 is a curve diagram for explaining the same, FIG. 5 is a connection diagram showing a second embodiment of the first invention of the present application, FIG. 6 is a connection diagram showing an embodiment of the second invention of the present application.

Claims (1)

【特許請求の範囲】 1 エンハンスメント型の第1の電界効果トラン
ジスタとデプレツシヨン型の第2の電界効果トラ
ンジスタとの第1の直列回路と、エンハンスメン
ト型の第3の電界効果トランジスタとデプレツシ
ヨン型の第4の電界効果トランジスタとの第2の
直列回路と、エンハンスメント型の第5の電界効
果トランジスタとデプレツシヨン型の第6の電界
効果トランジスタとの第3の直列回路とが、第1
及び第2の電源線間に、第2、第4及び第6の電
界効果トランジスタを第1の電源線側として互に
並列に接続され、上記第1、第3及び第6の電界
効果トランジスタのゲートが入力線に接続され、
上記第2の電界効果トランジスタのゲートが当該
第2の電界効果トランジスタの上記第1の電界効
果トランジスタに接続せる側に接続せるソース又
はドレインに接続され、上記第4及び第5の電界
効果トランジスタのゲートが上記第1及び第2の
電界効果トランジスタの接続中点に接続され、上
記第3及び第4の電界効果トランジスタの接続中
点及び上記第5及び第6の電界効果トランジスタ
の接続中点より夫々第1及び第2の出力線が導出
されてなる事を特徴とする逆相信号発生回路。 2 デプレツシヨン型の第1及び第2の電界効果
トランジスタの第1の直列回路と、デプレツシヨ
ン型の第3及び第4の電界効果トランジスタの第
2の直列回路と、エンハンスメント型の第5の電
界効果トランジスタとデプレツシヨン型の第6の
電界効果トランジスタとの第3の直列回路とが、
第1及び第2の電源線間に、第2、第4及び第6
の電界効果トランジスタを第1の電源線側として
互に並列に接続され、上記第1、第3及び第6の
電界効果トランジスタのゲートが入力線に接続さ
れ、上記第2の電界効果トランジスタのゲートが
当該第2の電界効果トランジスタの上記第1の電
界効果トランジスタに接続せる側に接続せるソー
ス又はドレインに接続され、上記第4及び第5の
電界効果トランジスタのゲートが上記第1及び第
2の電界効果トランジスタの接続中点に接続さ
れ、上記第3及び第4の電界効果トランジスタの
接続中点及び上記第5及び第6の電界効果トラン
ジスタの接続中点より夫々第1及び第2の出力線
が導出されてなる事を特徴とする逆相信号発生回
路。
[Scope of Claims] 1. A first series circuit including a first enhancement type field effect transistor and a depletion type second field effect transistor, a third enhancement type field effect transistor and a depletion type fourth field effect transistor. a second series circuit with a fifth field effect transistor of an enhancement type and a sixth field effect transistor of a depletion type;
and a second power supply line, the second, fourth and sixth field effect transistors are connected in parallel with each other with the first power supply line side, and the first, third and sixth field effect transistors are The gate is connected to the input line,
The gate of the second field effect transistor is connected to the source or drain of the second field effect transistor connected to the side connected to the first field effect transistor, and the gate of the second field effect transistor is connected to the source or drain of the second field effect transistor connected to the first field effect transistor. a gate connected to a connection midpoint of the first and second field effect transistors, and from a connection midpoint of the third and fourth field effect transistors and a connection midpoint of the fifth and sixth field effect transistors; An anti-phase signal generation circuit characterized in that first and second output lines are respectively derived. 2. A first series circuit of depletion type first and second field effect transistors, a second series circuit of depletion type third and fourth field effect transistors, and an enhancement type fifth field effect transistor. and a sixth field effect transistor of the depletion type.
between the first and second power supply lines;
field effect transistors are connected in parallel to each other with the first power supply line side connected, the gates of the first, third and sixth field effect transistors are connected to the input line, and the gate of the second field effect transistor is connected to the input line. is connected to the source or drain of the second field effect transistor connected to the side connected to the first field effect transistor, and the gates of the fourth and fifth field effect transistors are connected to the first and second field effect transistors. first and second output lines connected to the connection midpoint of the field effect transistors, respectively from the connection midpoint of the third and fourth field effect transistors and the connection midpoint of the fifth and sixth field effect transistors; An anti-phase signal generation circuit characterized in that the following is derived.
JP56151609A 1981-09-25 1981-09-25 Opposite phase signal producing circuit Granted JPS5853220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56151609A JPS5853220A (en) 1981-09-25 1981-09-25 Opposite phase signal producing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56151609A JPS5853220A (en) 1981-09-25 1981-09-25 Opposite phase signal producing circuit

Publications (2)

Publication Number Publication Date
JPS5853220A JPS5853220A (en) 1983-03-29
JPS6349932B2 true JPS6349932B2 (en) 1988-10-06

Family

ID=15522268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56151609A Granted JPS5853220A (en) 1981-09-25 1981-09-25 Opposite phase signal producing circuit

Country Status (1)

Country Link
JP (1) JPS5853220A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188936A (en) * 1982-04-28 1983-11-04 Sony Corp High-speed frequency dividing circuit
US5541527A (en) * 1995-10-31 1996-07-30 Sgs-Thomson Microelectronics, Inc. PECL buffer

Also Published As

Publication number Publication date
JPS5853220A (en) 1983-03-29

Similar Documents

Publication Publication Date Title
US4435654A (en) Output level adjustment means for low fanout ECL lacking emitter follower output
US5049761A (en) CMOS pulse width modulator
JPS60247733A (en) Logical arithmetic circuit
JPS6349932B2 (en)
US4891535A (en) Single supply ECL to CMOS converter
JP3909865B2 (en) Distortion compensation for capacitively loaded follower circuits
JPH0793567B2 (en) Power supply circuit for constant current source control of current switching type logic circuit
JPH03270319A (en) Level conversion circuit
JPS6334360Y2 (en)
JPH03172020A (en) Semiconductor integrated circuit
JPS644695B2 (en)
JPS63253722A (en) Level shift circuit
KR930015326A (en) Semiconductor integrated circuit for switching output
JPS63232711A (en) Differential type invertor circuit
JPH01180107A (en) Bias generating circuit
JPS6362412A (en) Logical gate circuit
JPS6331123B2 (en)
KR970077976A (en) Differential amplifier
JPH0671201B2 (en) Level converter
JPS59111334U (en) inverter circuit
JPH03227115A (en) Semiconductor integrated circuit
JPH05299978A (en) Comparator
JPH04180410A (en) Input buffer circuit
JPS63280515A (en) Logic circuit
JPH0344458B2 (en)