JPS6349459B2 - - Google Patents

Info

Publication number
JPS6349459B2
JPS6349459B2 JP55072062A JP7206280A JPS6349459B2 JP S6349459 B2 JPS6349459 B2 JP S6349459B2 JP 55072062 A JP55072062 A JP 55072062A JP 7206280 A JP7206280 A JP 7206280A JP S6349459 B2 JPS6349459 B2 JP S6349459B2
Authority
JP
Japan
Prior art keywords
charging
circuit
voltage
battery
sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55072062A
Other languages
Japanese (ja)
Other versions
JPS5733A (en
Inventor
Kotaro Matsura
Kenji Oyamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7206280A priority Critical patent/JPS5733A/en
Priority to DE3039119A priority patent/DE3039119C2/en
Priority to DE3050778A priority patent/DE3050778C2/de
Priority to FR8022334A priority patent/FR2474776A1/en
Priority to US06/228,684 priority patent/US4387332A/en
Publication of JPS5733A publication Critical patent/JPS5733A/en
Publication of JPS6349459B2 publication Critical patent/JPS6349459B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は個々の電池を個別に充電する複数の充
電枝路と、充電中の電池の所定充電状態を検出し
て充電枝路の給電を順次切換える制御回路とを備
えた電池の充電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes a plurality of charging branches that individually charge each battery, and a control circuit that detects a predetermined state of charge of the battery being charged and sequentially switches the power supply of the charging branches. The present invention relates to a battery charging device.

この種装置において、充電中の電池が内部短絡
した短絡電池であるとき、または給電中の充電枝
路に電池が正しく装着されていないとき等の場合
には、かかる異常状態を感知して、この充電枝路
の給電を停止し、次の充電枝路を給電するように
するのが望ましい。
In this type of device, when the battery being charged is a short-circuited battery with an internal short circuit, or when the battery is not properly installed in the charging branch that is being supplied with power, it is possible to detect such an abnormal condition and Preferably, the charging branch is de-energized and the next charging branch is supplied with power.

ところが、かかる異常状態を感知する感知回路
を設ける場合に、充電枝路の給電を切換える間、
いずれの充電枝路にも給電されないこととなり、
共通充電ラインには、電源からのリツプルあるい
はノイズが表われ、このリツプル又はノイズによ
つて感知回路が誤動作する虞れがある。
However, when a sensing circuit is provided to detect such abnormal conditions, while switching the power supply of the charging branch,
No power will be supplied to either charging branch,
The common charging line exhibits ripple or noise from the power supply that can cause the sensing circuit to malfunction.

本発明は、かかる点に鑑み発明されたものにし
て、以下本発明の一具体例を図面に基いて説明す
る。第1図は本発明による装置の概略図である。
この図面において、1は充電電源にして、商用電
源電圧を整流平滑し、その平滑電圧をインバータ
によつて降圧し、その降圧整流出力を電池に供給
するものである。この充電電源1には個々の電池
1〜2nを個別に充電する複数の充電枝路31
3nが並列接続される。各充電枝路は夫々電池の
接続端子4,4′とスイツチ回路51〜5nを備え
ており、各スイツチ回路は後述する自動切換回路
11の出力により1つのスイツチ回路のみが順次
閉成する如く開閉制御される。
The present invention has been invented in view of these points, and one specific example of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a device according to the invention.
In this figure, reference numeral 1 designates a charging power source that rectifies and smoothes a commercial power supply voltage, steps down the smoothed voltage using an inverter, and supplies the step-down rectified output to the battery. This charging power source 1 includes a plurality of charging branches 3 1 to 3 for individually charging individual batteries 2 1 to 2n.
3n are connected in parallel. Each charging branch is provided with battery connection terminals 4, 4' and switch circuits 51 to 5n, each of which is configured such that only one switch circuit is sequentially closed by the output of an automatic switching circuit 11, which will be described later. Opening/closing controlled.

6は充電中の電池の所定の充電状態を検出し
て、充電枝路の給電を順次切換える制御回路にし
て、次のように構成される。即ち、充電中の電池
の電池電圧又はその比例電圧を検出する検出回路
7と、前記電池電圧又はその比例電圧の最大電圧
より所定電圧低い電圧を記憶する記憶回路8と、
前記最大電圧を呈した後の低下する電圧回路7の
出力と記憶回路8の記憶電圧との所定の差電圧を
検出する比較回路9と、該比較回路の出力によつ
て単一パルスを発生するパルス発生回路10と、
前記単一パルスによつて出力Q1〜Qnが切換えら
れ、各充電枝路のスイツチ回路51〜5nをその
1つのみが順次閉成する如く切換える自動切換回
路11と、前記単一パルスによつて記憶回路8の
記憶電圧を初期状態に復帰する復帰回路12と、
給電中の充電枝路の異常電圧を感知してパルス発
生回路10から単一パルスを発生せしめる感知回
路13と、給電すべき充電枝路の切換信号として
の前記単一パルスにより感知回路13をリセツト
するリセツト回路14とからなる。感知回路13
は充電中の電池が内部短絡した短絡電池であるこ
とを感知する第1感知回路15と、給電中の充電
枝路に電池が正しく装着されていないことを感知
する第2感知回路16とよりなる。第1感知回路
15は共通充電ライン17の電圧が第1比較電圧
V1より小さいことを検出して出力を生ずる第1
演算増幅器O1からなり、第2感知回路16は共
通充電ライン17の電圧が第2比較電圧V2より
大きいとき出力を生ずる第2演算増巾器O2から
なる。リセツト回路14は第1及び第2感知回路
15,16を夫々リセツトする第1及び第2リセ
ツト手段18,19からなる。第1リセツト手段
18はパルス発生回路10からの単一パルスによ
り、該パルスの発生期間、第1演算増巾器O1
入力を持ち上げ、該増巾器の出力をリセツト状態
に保持するトランジスタQ1及び抵抗R1,R2と、
前記単一パルス消滅により第1感知回路15が作
動するのを遅延せしめる遅延手段20とからな
り、該遅延手段は抵抗R3及びコンデンサC1で構
成される。第2リセツト手段19はパルス発生回
路10からの単一パルスにより、該パルスの発生
期間第2演算増巾器O2の入力を落とし、該増巾
器の出力をリセツト状態に保持するトランジスタ
Q2と、前記単一パルスの消滅後の第2感知回路
16の作動を遅延せしめる遅延手段21からな
る。該遅延手段は抵抗R4及びコンデンサC2で構
成される。
Reference numeral 6 denotes a control circuit that detects a predetermined state of charge of the battery being charged and sequentially switches the power supply of the charging branch, and is configured as follows. That is, a detection circuit 7 that detects the battery voltage of the battery being charged or its proportional voltage, and a memory circuit 8 that stores a voltage that is a predetermined voltage lower than the maximum voltage of the battery voltage or its proportional voltage.
a comparator circuit 9 for detecting a predetermined difference voltage between the output of the voltage circuit 7 and the storage voltage of the storage circuit 8, which decreases after exhibiting the maximum voltage; and a single pulse is generated by the output of the comparison circuit. a pulse generation circuit 10;
an automatic switching circuit 11 in which the outputs Q 1 to Qn are switched by the single pulse and switches the switch circuits 5 1 to 5n of each charging branch in such a way that only one of them is sequentially closed; A recovery circuit 12 that therefore returns the storage voltage of the storage circuit 8 to its initial state;
A sensing circuit 13 that senses an abnormal voltage in the charging branch that is being supplied with power and causes the pulse generating circuit 10 to generate a single pulse; and the sensing circuit 13 is reset by the single pulse as a switching signal for the charging branch that is to be supplied with power. It consists of a reset circuit 14. Sensing circuit 13
consists of a first sensing circuit 15 that senses that the battery being charged is a short-circuited battery that has an internal short circuit, and a second sensing circuit 16 that senses that the battery is not correctly installed in the charging branch that is being supplied with power. . The first sensing circuit 15 detects that the voltage of the common charging line 17 is a first comparison voltage.
The first one detects that V is less than 1 and produces an output.
Consisting of an operational amplifier O 1 , the second sensing circuit 16 consists of a second operational amplifier O 2 which produces an output when the voltage on the common charging line 17 is greater than the second comparison voltage V 2 . The reset circuit 14 comprises first and second reset means 18, 19 for resetting the first and second sensing circuits 15, 16, respectively. The first reset means 18 uses a single pulse from the pulse generating circuit 10 to raise the input of the first operational amplifier O1 during the period of generation of the pulse, and the transistor Q to maintain the output of the amplifier in the reset state. 1 and resistors R 1 and R 2 ,
and delay means 20 for delaying activation of the first sensing circuit 15 due to the extinction of the single pulse, said delay means comprising a resistor R 3 and a capacitor C 1 . The second reset means 19 uses a single pulse from the pulse generating circuit 10 to reduce the input of the second operational amplifier O2 during the generation period of the pulse, and resets the transistor to maintain the output of the amplifier in the reset state.
Q 2 and a delay means 21 for delaying the activation of the second sensing circuit 16 after the disappearance of said single pulse. The delay means consists of a resistor R 4 and a capacitor C 2 .

次に電池の充電電圧特性は、第2図中Aで示さ
れ、ピーク点aを有し、その後低下する。この低
下領域において充電量特性Bは満充電になる。検
出回路7が電池電圧の比例電圧を検出する場合、
その比例電圧は特性Cとなる。また記憶回路8は
比例電圧の最大電圧Vpより所定電圧V低い電圧
を記憶するから、その電圧特性はDとなる。ピー
ク時点t1後の記憶電圧はピーク時点t1の電圧Vcと
なる。
Next, the charging voltage characteristic of the battery is indicated by A in FIG. 2, has a peak point a, and then decreases. In this decreasing region, the charge amount characteristic B becomes fully charged. When the detection circuit 7 detects the proportional voltage of the battery voltage,
The proportional voltage has characteristic C. Further, since the memory circuit 8 stores a voltage lower by a predetermined voltage V than the maximum voltage Vp of the proportional voltage, its voltage characteristic becomes D. The storage voltage after the peak time t1 becomes the voltage Vc at the peak time t1 .

検出電圧特性Cから明らかなように、ピーク時
点t1後、検出回路7の出力が低下し、この低下す
る検出回路出力と記憶電圧Vcとの所定の差電圧、
たとえば零電圧になる時点t2で比較回路9の出力
が生じる。この出力に基ずき、パルス発生回路1
0から単一パルスが出力され、該単一パルスによ
り自動切換回路11の出力が変つて、たとえば今
まで給電されていた充電枝路31のスイツチ回路
1が開成する。また前記単一パルスの消滅時か
ら次の充電枝路32のスイツチ回路52が閉成す
る。このため充電枝路31の電池21の充電が終了
し、次の充電枝路32の電池22が充電され始め
る。前記単一パルスにより、充電枝路の切換と同
時に記憶回路8の記憶電圧が復帰回路12にて、
初期状態に復帰する。
As is clear from the detection voltage characteristic C, after the peak time t1 , the output of the detection circuit 7 decreases, and a predetermined difference voltage between this decreasing detection circuit output and the storage voltage Vc,
For example, the output of the comparator circuit 9 occurs at time t2 when the voltage becomes zero. Based on this output, pulse generation circuit 1
A single pulse is output from 0, which changes the output of the automatic switching circuit 11, for example opening the switch circuit 5 1 of the hitherto supplied charging branch 3 1 . Also, from the moment the single pulse disappears, the switch circuit 5 2 of the next charging branch 3 2 is closed. Therefore, charging of the battery 2 1 of the charging branch 3 1 is completed, and charging of the battery 2 2 of the next charging branch 3 2 begins. Due to the single pulse, the storage voltage of the storage circuit 8 is changed in the recovery circuit 12 at the same time as the charging branch is switched.
Return to initial state.

このようにして全ての電池21〜2nが順次個
別に充電される。
In this way, all the batteries 2 1 to 2n are sequentially and individually charged.

而してたとえば第2の電池22が内部短絡した
電池であると、この第2の電池の充電時の共通充
電ライン17の電圧が第1比較電圧V1より低く、
この状態を第1感知回路15が感知して第1演算
増巾器O1から出力が生ずる。この出力によりパ
ルス発生回路10から単一パルスが生じ、前述と
同様に給電する充電枝路を32から33に切換え
る。
For example, if the second battery 22 is an internally shorted battery, the voltage of the common charging line 17 when charging this second battery is lower than the first comparison voltage V1 ,
This state is sensed by the first sensing circuit 15 and an output is generated from the first operational amplifier O1 . This output produces a single pulse from the pulse generating circuit 10, which switches the charging branch from 3 2 to 3 3 as before.

また、第2の電池22が接続端子4,4′に正し
く装着されていないときには、第2電池22の充
電時に共通充電ライン17の電圧が第2比較電圧
V2より大きく、この状態を第2感知回路16が
感知して第2演算増巾器O2から出力が生ずる。
この出力に基ずきパルス発生回路10から単一パ
ルスが生じ、前述の如く、給電する充電枝路を3
から33に切換える。
In addition, when the second battery 2 2 is not properly attached to the connection terminals 4 and 4', the voltage of the common charging line 17 changes to the second comparison voltage when the second battery 2 2 is charged.
V 2 , this condition is sensed by the second sensing circuit 16 and produces an output from the second operational amplifier O 2 .
Based on this output, a single pulse is generated from the pulse generating circuit 10, and as described above, the three charging branches to be supplied with power are
Switch from 2 to 3 3 .

次に充電枝路の切換時の感知回路13の入力波
形を第3図及び第4図に基いて説明する。第3図
はリセツト回路14を備えない場合、第4図はリ
セツト回路14を設けた場合の波形図である。ま
ず、リセツト回路14のない場合、第3図におい
て時点t3で第1の電池21の充電が終了して、パ
ルス発生回路10から単一パルスPが生じ、該パ
ルスの発生期間(T)後の時点t4から第2の電池
2の充電が開始する。この場合に第1及び第2
電池21,22が正常なものであり、正しく接続端
子4,4′に装着されていると、各電池の充電期
間では、第1感知回路15の入力は第1比較電圧
V1より大きく、また第2感知回路16の入力は
第2比較電圧V2より小さく、両感知回路15,
16から出力がでない。ところが、電圧の充電切
換期間即ち単一パルスPの発生期間(T)におい
ては、両感知回路15,16の入力信号は共通充
電ライン17の電圧となる。この期間の共通充電
ライン17には、充電電源1の回路電圧波形が表
われ、充電電源1の降圧手段として低周波トラン
スを用いるときには、商用周波数の整流脈動波形
が表われ、又降圧手段として具体例で説明したよ
うにコンバータを用いるときには、スイツチング
波形(発振波形)が表われる。第3図においては
発振波形Wを示す。この発振波形Wは第1比較電
圧V1より低いときがあり、又第2比較電圧V2
り大きいときがある。このため単一パルスPの発
生期間(T)内に第1及び第2感知回路15,1
6の出力が次々と生じ、単一パルスPが次々と発
生することになり、充電枝路31〜3nの給電を
順次切換えることができなくなる。
Next, the input waveform of the sensing circuit 13 when switching the charging branch will be explained based on FIGS. 3 and 4. FIG. 3 is a waveform diagram when the reset circuit 14 is not provided, and FIG. 4 is a waveform diagram when the reset circuit 14 is provided. First, in the case where the reset circuit 14 is not provided, charging of the first battery 21 ends at time t3 in FIG. Charging of the second battery 2 2 begins at a later time t 4 . In this case the first and second
If the batteries 2 1 and 2 2 are normal and correctly attached to the connection terminals 4 and 4', the input of the first sensing circuit 15 will be at the first comparison voltage during the charging period of each battery.
V 1 and the input of the second sensing circuit 16 is smaller than the second comparison voltage V 2 , both sensing circuits 15,
There is no output from 16. However, during the voltage charging switching period, that is, during the single pulse P generation period (T), the input signals of both sensing circuits 15 and 16 become the voltage of the common charging line 17. During this period, the circuit voltage waveform of the charging power source 1 appears on the common charging line 17, and when a low-frequency transformer is used as the step-down means of the charging power source 1, a rectified pulsating waveform of the commercial frequency appears, and the voltage waveform of the commercial frequency rectifier appears as a step-down means. As explained in the example, when a converter is used, a switching waveform (oscillation waveform) appears. In FIG. 3, an oscillation waveform W is shown. This oscillation waveform W is sometimes lower than the first comparison voltage V 1 and sometimes larger than the second comparison voltage V 2 . Therefore, within the generation period (T) of the single pulse P, the first and second sensing circuits 15, 1
6 outputs occur one after the other, single pulses P occur one after the other, and it is no longer possible to switch the power supply of the charging branches 3 1 to 3n one after the other.

かかる欠点を解消するためにリセツト回路14
を設けている。この場合に第4図に示すように、
単一パルスPが発生している期間(T)中、該単
一パルスによつてトランジスタQ1を導通して第
1演算増巾器O1の入力を電池電圧V3より持ち上
げて、リセツト状態に保持すると共に遅延手段2
0にて発振波形Wを一部吸収平滑する。また単一
パルスPによつてトランジスタQ2を導通して第
2演算増巾器O2の入力を第2比較電圧V2より低
いものに落とし、発振波形Wの一部を吸収平滑す
る。
In order to eliminate this drawback, the reset circuit 14 is
has been established. In this case, as shown in Figure 4,
During the period (T) during which a single pulse P is generated, the single pulse conducts the transistor Q1 to raise the input of the first operational amplifier O1 above the battery voltage V3 , thereby establishing a reset state. and delay means 2
0, the oscillation waveform W is partially absorbed and smoothed. Furthermore, the single pulse P turns on the transistor Q 2 to reduce the input of the second operational amplifier O 2 to a voltage lower than the second comparison voltage V 2 to absorb and smooth a part of the oscillation waveform W.

このようにリセツト回路14の存在により、単
一パルスPの発生期間(T)における充電電源1
からの商用周波数の整流脈動波形又はスイツチン
グ波形の影響を除くことができる。
As described above, due to the presence of the reset circuit 14, the charging power source 1 during the generation period (T) of the single pulse P
It is possible to eliminate the influence of the rectified pulsating waveform or switching waveform of the commercial frequency.

遅延手段20,21は前記整流脈動波形又はス
イツチング波形の一部を吸収平滑するだけではな
く、次の機能を有する。即ち充電する電池が過放
電電池である場合には、該過放電電池の充電開始
後の電圧立上りが遅く、充電初期に内部短絡電池
と同様に第1比較電圧V1より低い状態にあり、
第1感知回路15がただちにかかる状態を感知し
ないように、遅延手段20が設けられている。ま
た、充電枝路31〜3nに介挿される各スイツチ
回路51〜5nをリレースイツチで構成する場合
には、該リレースイツチの接片がチヤタリング現
象を起す。このためチヤタリングによつてリレー
スイツチが瞬時的に開成し、この開成時に共通充
電ライン17の電圧が第2比較電圧V2より大き
くなる。第2感知回路16がこの瞬時的状態を感
知しないように遅延手段21が設けられている。
The delay means 20 and 21 not only absorb and smooth a part of the rectified pulsating waveform or switching waveform, but also have the following functions. That is, when the battery to be charged is an over-discharged battery, the voltage rise after the start of charging of the over-discharged battery is slow, and the voltage is lower than the first comparison voltage V 1 at the beginning of charging, similar to an internally shorted battery.
Delay means 20 are provided to prevent the first sensing circuit 15 from sensing such a condition immediately. Furthermore, when each of the switch circuits 5 1 to 5n inserted in the charging branches 3 1 to 3n is constituted by a relay switch, the contacts of the relay switch cause a chattering phenomenon. Therefore, the relay switch is instantaneously opened due to the chatter, and when the relay switch is opened, the voltage of the common charging line 17 becomes higher than the second comparison voltage V2 . Delay means 21 are provided to prevent the second sensing circuit 16 from sensing this instantaneous condition.

以上の如く、本発明は充電電源にて個々の電池
を個別に充電する複数の充電枝路と、充電中の電
池の所定充電状態を検出して一定時間幅の切換信
号により前記充電枝路の給電を順次切換える制御
回路とを備え、該制御回路は、前記複数の充電枝
路の共通充電ラインに接続されて給電中の充電枝
路の電圧が前記電池の正常である場合に有する電
圧範囲を逸脱する異常電圧を感知する感知回路
と、前記切換信号により少なくとも該切換信号の
一定時間の間前記感知回路の出力を異常電圧の感
知前の定常出力に戻すリセツト回路とを有し、前
記充電枝路の切換えを前記切換信号の一定時間を
おいて行うと共に該切換時における前記感知回路
の異常電圧の感知を阻止することを特徴とするも
のであるから、給電中の充電枝路が異常電圧を呈
するときには、この充電枝路の給電を速やかに停
止して、次の充電枝路に給電することができ、全
体の充電時間を短くすることができ、特に、充電
枝路の切換時における充電電源からの商用周波数
の整流脈流信号又はスイツチング信号(発振信
号)の影響により、感知回路が誤動作するのを防
止することができる。
As described above, the present invention includes a plurality of charging branches for individually charging each battery using a charging power source, and detecting a predetermined state of charge of the battery being charged and switching the charging branches using a switching signal of a fixed time width. and a control circuit that sequentially switches the power supply, the control circuit having a voltage range that the voltage of the charging branch that is connected to the common charging line of the plurality of charging branches and is currently supplying power has when the battery is normal. a sensing circuit that senses a deviating abnormal voltage; and a reset circuit that returns the output of the sensing circuit to the steady output before sensing the abnormal voltage for at least a predetermined period of time according to the switching signal, and the charging branch The present invention is characterized in that the circuit is switched after a certain period of time for the switching signal and the sensing circuit is prevented from sensing an abnormal voltage at the time of the switching, so that the charging branch during power supply is prevented from detecting an abnormal voltage. When the charging branch is switched, the power supply of this charging branch can be quickly stopped and the power can be supplied to the next charging branch, which can shorten the overall charging time, especially when switching the charging branch. It is possible to prevent the sensing circuit from malfunctioning due to the influence of the commercial frequency rectified pulsating current signal or switching signal (oscillation signal) from the sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の一具体例を示す概
略図、第2図は電池の充電特性図、第3図及び第
4図はリセツト回路の有無による感知回路の入力
波形図である。 21〜2n……電池、31〜3n……充電枝路、
7……検出回路、8……記憶回路、9……比較回
路、13……感知回路、11……自動切換回路、
14……リセツト回路、20,21……遅延手
段。
FIG. 1 is a schematic diagram showing a specific example of the device according to the present invention, FIG. 2 is a charging characteristic diagram of a battery, and FIGS. 3 and 4 are input waveform diagrams of a sensing circuit with and without a reset circuit. 2 1 to 2n... battery, 3 1 to 3n... charging branch,
7...detection circuit, 8...memory circuit, 9...comparison circuit, 13...sensing circuit, 11...automatic switching circuit,
14...Reset circuit, 20, 21...Delay means.

Claims (1)

【特許請求の範囲】 1 充電電源にて個々の電池を個別に充電する複
数の充電枝路と、充電中の電池の所定充電状態を
検出して一定時間幅の切換信号により前記充電枝
路の給電を順次切換える制御回路とを備え、 該制御回路は、 前記複数の充電枝路の共通充電ラインに接続さ
れて給電中の充電枝路の電圧が前記電池の正常で
ある場合に有する電圧範囲を逸脱する異常電圧を
感知する感知回路と、 前記切換信号により少なくとも該切換信号の一
定時間の間前記感知回路の出力を異常電圧の感知
前の定常出力に戻すリセツト回路とを有し、 前記充電枝路の切換えを前記切換信号の一定時
間をおいて行うと共に該切換時における前記感知
回路の異常電圧の感知を阻止することを特徴とす
る電池の充電回路。 2 前記リセツト回路は遅延手段を備えてなる特
許請求の範囲第1項記載の電池の充電装置。
[Scope of Claims] 1. A plurality of charging branches that individually charge each battery using a charging power source, and a plurality of charging branches that detect a predetermined state of charge of the battery being charged and switch the charging branches using a switching signal of a fixed time width. and a control circuit that sequentially switches the power supply, the control circuit having a voltage range that exists when the voltage of the charging branch connected to the common charging line of the plurality of charging branches and being supplied with power is normal for the battery. a sensing circuit that senses abnormal voltage that deviates; and a reset circuit that returns the output of the sensing circuit to the steady output before sensing the abnormal voltage for at least a certain period of time according to the switching signal, and the charging branch 1. A battery charging circuit characterized in that the circuit is switched at a predetermined time interval of the switching signal, and the sensing circuit is prevented from sensing an abnormal voltage at the time of the switching. 2. The battery charging device according to claim 1, wherein the reset circuit includes delay means.
JP7206280A 1980-01-29 1980-05-28 Charger for battery Granted JPS5733A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7206280A JPS5733A (en) 1980-05-28 1980-05-28 Charger for battery
DE3039119A DE3039119C2 (en) 1980-01-29 1980-10-16 Charger for rechargeable batteries
DE3050778A DE3050778C2 (en) 1980-01-29 1980-10-16
FR8022334A FR2474776A1 (en) 1980-01-29 1980-10-17 Battery charger with automatic cut=out at full charge - monitors charging voltage to control supplied charging current using reference obtained from battery terminals
US06/228,684 US4387332A (en) 1980-01-29 1981-01-26 Apparatus for successively charging rechargeable batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7206280A JPS5733A (en) 1980-05-28 1980-05-28 Charger for battery

Publications (2)

Publication Number Publication Date
JPS5733A JPS5733A (en) 1982-01-05
JPS6349459B2 true JPS6349459B2 (en) 1988-10-04

Family

ID=13478524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7206280A Granted JPS5733A (en) 1980-01-29 1980-05-28 Charger for battery

Country Status (1)

Country Link
JP (1) JPS5733A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935646A (en) * 1989-02-22 1990-06-19 International Business Machines Corporation Fully static CMOS cascode voltage switch logic systems
US6663602B2 (en) 2000-06-16 2003-12-16 Novo Nordisk A/S Injection device
WO2006045526A1 (en) 2004-10-21 2006-05-04 Novo Nordisk A/S Dial-down mechanism for wind-up pen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149638A (en) * 1977-06-01 1978-12-27 Sanyo Electric Co Charging device for storage battery
JPS5460430A (en) * 1977-10-24 1979-05-15 Sony Corp Charging equipment
JPS54162140A (en) * 1978-06-12 1979-12-22 Matsushita Electric Ind Co Ltd Charger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149638A (en) * 1977-06-01 1978-12-27 Sanyo Electric Co Charging device for storage battery
JPS5460430A (en) * 1977-10-24 1979-05-15 Sony Corp Charging equipment
JPS54162140A (en) * 1978-06-12 1979-12-22 Matsushita Electric Ind Co Ltd Charger

Also Published As

Publication number Publication date
JPS5733A (en) 1982-01-05

Similar Documents

Publication Publication Date Title
US3790878A (en) Switching regulator having improved control circuiting
US4065676A (en) Battery backup for AC powered DC supply
JPS62296718A (en) Protective circuit of chopped source
US4238690A (en) AC-DC switching regulator to supply uninterruptible power
US5285452A (en) Microcomputer power failure control circuit
US4127743A (en) Muting circuit for loudspeaker
US4560886A (en) Alternating current power source
JPS6349459B2 (en)
EP0030816B1 (en) A.c. electrical supply signalling arrangements
JP3208484B2 (en) Control circuit of chop type power supply in standby mode
US4058738A (en) Method and circuit arrangement for starting up a converter having forced commutation with the correct phase
JPH0549255A (en) Device and method of regulating load in switching power supply
JPS61244271A (en) Switching regulator
US4340173A (en) Low voltage power supply
JPS6358034B2 (en)
JPH0345795B2 (en)
US4703192A (en) Alternating current power source with improved phase adjusting capability
JP3226079B2 (en) Signal generation circuit
JPS6070995A (en) Controller for motor
JP3862307B2 (en) Power supply
JPS6016129A (en) Power source resetting circuit
JPH0756137Y2 (en) Resistance welding equipment with after-flash prevention function
KR860002473Y1 (en) Reset circuit for initial setup
JPH0613591Y2 (en) Instantaneous voltage drop compensator
JPH0521987Y2 (en)