JP3862307B2 - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP3862307B2
JP3862307B2 JP31336895A JP31336895A JP3862307B2 JP 3862307 B2 JP3862307 B2 JP 3862307B2 JP 31336895 A JP31336895 A JP 31336895A JP 31336895 A JP31336895 A JP 31336895A JP 3862307 B2 JP3862307 B2 JP 3862307B2
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
charging
power failure
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31336895A
Other languages
Japanese (ja)
Other versions
JPH09163627A (en
Inventor
純 松▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP31336895A priority Critical patent/JP3862307B2/en
Publication of JPH09163627A publication Critical patent/JPH09163627A/en
Application granted granted Critical
Publication of JP3862307B2 publication Critical patent/JP3862307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する利用分野】
本発明は電源装置に関するものであり、更に詳しくは、交流電源の遮断時に負荷に電力供給を行う二次電池を備える電源装置に関する。
【0002】
【従来の技術】
従来、二次電池を備え、交流電源の遮断時つまり停電時にも電力供給を行う電源装置に於いて、交流電源の有無を検出する手段の1つとして、整流器の直流出力を平滑した直流電圧を基準電圧と比較するものがあり、その回路例を図5に示す。(第1従来例)
本回路は、交流電源Vacを電流トランスT1,整流器DBを介して全波整流して脈流電圧VDBを得、充電回路1を介して二次電池BATTを充電する充電装置と、交流電源Vacの有無を判断する停電検出回路とから構成される。停電検出回路は、脈流電圧VDBをダイオードD1,コンデンサC1を介して平滑した電圧Vc1と基準電圧Vrefとを比較器COMPoで比較することで交流電源の有無を検出する。
【0003】
しかし、上記第1従来例に於いては、以下に示す様な第1の問題点が生じる。電流トランスT1が理想変圧器でない場合は、二次電池BATTの充電などによる負荷変動によって電流トランスT1の出力電圧が変動すると、図6(a)に示す様に電圧Vc1も変動してしまうので、負荷変動の度合いによっては正しく停電検出を行わない場合が生じる可能性があり、つまり高精度な停電検出を行うことは困難になってしまう。また、コンデンサC1は比較的大容量のコンデンサであり、交流電源遮断後は、図6(a)に示す様に電圧Vc1は徐々に低下していくので、停電検出するまでに時間Tだけロスしてしまう。
【0004】
上記第1の問題点を解決する為に、コンデンサC1によって平滑された電圧Vc1を検出するのではなく、交流電源Vacを整流した脈流電圧VDBのピーク値を検出するものがあり、その回路図を図7に、その動作波形図を図8に示す。(第2従来例)
本回路は、脈流電圧VDBを抵抗R1〜R3で分圧して得られる電圧V1及び基準電圧Vref1を比較出力する比較器COMP1と、定電流源3により充電されるコンデンサC2と、コンデンサC2の両端電圧(以下、電圧と呼ぶ。)Vc2及び基準電圧Verfを比較出力する比較器COMP2と、比較器COMP2の出力信号(以下、停電信号と呼ぶ。)S1により制御されると共に抵抗R3の両端に接続されたスイッチング素子Q1と、抵抗R4を介してコンデンサC2の両端に接続されると共に比較器COMP1の出力信号(以下、出力信号と呼ぶ。)S2により制御されるスイッチング素子Q2と、整流器DBの出力端からダイオードD2,抵抗R7を介して二次電池BATTへと流れる充電電流を制御するスイッチング素子Q3と、抵抗R5,R6を介してスイッチング素子Q3を制御するスイッチング素子Q4と、NOTゲートN1を介した出力信号S2,停電信号S1,抵抗R7によって検出される二次電池BATTの充電電流検出信号S3の3つの信号を受けてスイッチング素子Q4を制御する充電電流制御回路4とから構成される。
【0005】
次に、図8を参照して動作を簡単に説明する。
基準電圧Vref1は出力信号S2で制御されることにより2つのレベルVrH1,VrL1(VrH1>VrL1)をとり、基準電圧Vref2は停電信号S1で制御されることにより2つのレベルVrH2,VrL2(VrH2>VrL2)をとる。図8(a)に示す様に、電圧V1がVrL1以下であれば比較器COMP1はLレベルの出力信号S2を出力してスイッチング素子Q2をオフし、図8(b)に示す様に、電圧Vc2は徐々に上昇すると共に、Lレベルの出力信号S2を受けて基準電圧Vref1はVrL1からVrH1へと上昇する。脈流電圧VDBが上昇することにより電圧V1がVrH1以上になると比較器COMP1はHレベルの出力信号S2を出力してスイッチング素子Q2をオンし、図8(b)に示す様に、電圧Vc2は抵抗R4,スイッチング素子Q2を介して徐々に低下すると共に、Hレベルの出力信号S2を受けて基準電圧Vref1はVrH1からVrL1へと低下する。正常時は電圧V1がVrH1を越える様に設定しておくことで電圧Vc2は一定値以上には充電されず、この時の電圧Vc2をVrH2よりも小さくなる様に設定しておくことで、正常時の比較器COMP2はLレベルの停電信号S1を出力する。
【0006】
Lレベルの出力信号S2とLレベルの停電信号S1とが充電電流制御回路4に入力されると、充電電流制御回路4はスイッチング素子Q4をオンすることによりスイッチング素子Q3をオンし、図8(d)に示す様な定電流の二次電池BATTの充電電流IBが得られる。ここで充電電流IBは、スイッチング素子Q3つまりスイッチング素子Q4のスイッチングで位相制御され、抵抗R7で充電電流IBを検出することで定電流充電を行うことができる。
【0007】
交流電源Vacが遮断される、つまり停電時には、図8(a)に示す様に電圧V1がVrH1を上回らなくなるので、比較器COMP1はLレベルの出力信号S2を出力し続けてスイッチング素子Q2をオフし、図8(b)に示す様に電圧Vc2は上昇し続ける。電圧Vc2がVrH2を越えると、図8(c)に示す様に、比較器COMP1はHレベルの停電信号S1を出力し、これにより停電を判断することができる。つまり停電は、電圧V1がVrH1を上回らず且つ電圧Vc2がVrH2に達することで判断される。
【0008】
本回路に於いて、充電電流IBの位相角を90度以下に保つような制御を行えば、0〜90度の位相では二次電池BATTの充電の有無によって負荷変動が生じて脈流電圧VDBの値が変わる、つまり二次電池BATTの充電が行われることにより図8(a)に示す様に電圧V1の値が低下するものの、90〜180度の位相では負荷変動がないために脈流電圧VDBの値が略一定となり、つまり二次電池BATTの充電がないために図8(a)に示す様に電圧V1の値が略一定となり、常に同条件での停電判断が可能になって停電検出レベルの精度を向上させることができる。
【0009】
【発明が解決しようとする課題】
しかし、上記第2従来例では以下に示す様な第2の問題点が生じてしまう。
【0010】
図7に示す回路では、充電を行う位相が0〜90度であるため、脈流電圧VDBが高電圧の場合にスイッチング素子Q4をオフして充電を停止させと、スイッチング素子Q4のオフによる負荷変動によって電流トランスT1を流れる電流が急激に減少して逆起電力が発生し、図8(a)に示す様に、電圧V1つまり脈流電圧VDBにサージが発生してしまう。このサージは比較器COMP1の正の入力端子にサージ吸収用のコンデンサC3を接続することで吸収できるが、適度な容量のコンデンサC3を選定しなければ脈流電圧VDBの波形に歪みが生じてしまい、停電検出レベルの精度を確保することが困難となってしまう為に、スイッチング素子Q4のオンオフによる負荷変動によって脈流電圧VDBの波形が変化してしまい、つまり電圧V1の波形が変化してしまい、停電検出レベルの精度が劣化してしまう。
【0011】
本発明は、上記全ての問題点に鑑みてなされたもので、その目的とするところは、負荷変動の影響を受けることなく停電検出レベルの精度を向上させると共に、瞬時に停電の判断が可能な電源回路を提供することである。
【0012】
【課題を解決するための手段】
上記問題点を解決するために、請求項1記載の発明によれば、交流電源の通常時に充電されると共に、前記交流電源の遮断時に負荷に電力供給を行う二次電池と、前記交流電源の遮断を検出する停電検出回路と、前記交流電源を電流トランスと整流器を介して整流した脈流出力のサイクル毎に前記二次電池の充電を行う充電回路とを備える電源装置に於いて、前記充電回路は前記脈流電圧が零ボルトから上昇していく過程での第1の所定の電圧を越えたことを検出した後に、前記二次電池の充電を開始し、前記脈流電圧が第1の所定の電圧よりも小さく、かつ、前記脈流電圧のピークを経過し前記脈流電圧が下降していく過程での第2の所定の電圧に達したときに前記二次電池の充電を停止すると共に、前記停電検出回路は前記脈流電圧が第2の所定の電圧に達した時点から所定の時間を経過した時点で、前記脈流電圧が第1の所定の電圧を越えていなかった場合に停電と判断する
ことを特徴とする。
【0018】
【実施の形態】
(実施の形態1)
本発明に係る第1の実施の形態の回路図を図1に、その動作波形図を図2に示す。
【0019】
図7に示した第2従来例と異なる点は、充電電流制御回路4を省略すると共に出力信号S2のみによりスイッチング素子Q4を制御することにより、準定電流方式の充電回路と停電検出回路とを組み合わせた構成としたことであり、その他の第2従来例と同一構成には同一符号を付すことにより説明を省略する。つまり、上記第2従来例では二次電池BATTの充電停止後に脈流電圧VDBを検出していたが、本実施の形態では、脈流電圧VDBを検出することによって交流電源Vacの有無を判断した後で二次電池BATTの充電を行う構成を有している。
【0020】
次に、図2を参照して動作を簡単に説明する。脈流電圧VDBが零ボルトから上昇していく過程では比較器COMP1はLレベルの出力信号S2を出力してスイッチング素子Q4をオフし二次電池BATTの充電を停止する電圧V1がVrH1に達した場合は、「交流電源有り」と判断し、比較器COMP1はHレベルの出力信号S2を出力してスイッチング素子Q2をオンし、コンデンサC2の充電電荷を放電する。同時にスイッチング素子Q4をオンして二次電池BATTへの充電を行い、図2(d)に示す様な充電電流IBが流れる。一方、電圧V1がVrH1に達しなかった場合は、比較器COMP1はLレベルの出力信号S2を出力してスイッチング素子Q2をオフすることによりコンデンサC2を充電するので、図2(b)に示す様に電圧Vc2は徐々に上昇し、電圧Vc2がVrH2に達した時点で「停電」と判断する。
【0021】
また、脈流電圧VDBつまり電圧V1がピークを過ぎて低下してVrL1に達したとき、Lレベルの出力信号S2によりスイッチング素子Q4をオフさせて二次電池BATTの充電を停止すると同時に、上述の様にコンデンサC2の充電を行う。充電電流IBの値は抵抗R7と基準電圧VrL1との値を変えることで任意に設定できる。
【0022】
「交流電源有り」と判断して二次電池BATTの充電を開始すると、二次電池BATTの充電時には電流トランスT1の負荷が変動するために脈流電圧が低下する、つまり図2(a)に示す様に電圧V1が低下するが、二次電池BATTの充電以前に停電検出を既に行っているので、電流トランスT1の負荷変動による停電検出の精度の劣化は生じない。また、二次電池BATTの充電停止時に交流電源Vacの有無を判断しているので、二次電池BATTへの充電電流IBの有無に関わらず停電検出を確実に行うことができ、よって停電検出の精度のレベルを向上することが可能となる。更に、上述の様に二次電池BATTへの充電停止時に逆起電力によるサージが発生するが、この時点では交流電源Vacの有無を判断を行わないので、停電検出の精度のレベルには影響を及ぼさない。仮にこの様なサージ電圧がVrH1を越えても、Hレベルの出力信号S2によりコンデンサC2の充電がリセットされるだけであり、停電検出の精度のレベルには影響を及ぼさない。このため、コンデンサC3の容量はノイズを除去する程度の小さいもので充分である。
【0023】
更にまた、上記第2従来例では脈流電圧VDBの位相が0度〜90度でのピーク電圧を検出するため、電圧Vc2がVrH2に達するポイントは、脈流電圧VDBの位相が0度〜90度より後で且つ脈流電圧VDBが立ち上がった後に設定する必要があった。しかし本実施の形態では、脈流電圧VDBの立ち上がり部分でピーク電圧を検出するため、この検出ポイントを脈流電圧VDBの位相が0度〜90度に設定でき、停電検出に要する時間Tを短縮することが可能である。
【0024】
(実施の形態2)
本発明に係る第2の実施の形態の回路図を図3に、その動作波形図を図4に示す。
【0025】
図7に示した第2従来例と異なる点は、NOTゲートN1を省略することにより、定電流充電方式の充電回路と停電検出回路とを組み合わせた構成としたことであり、その他の第2従来例と同一構成には同一符号を付すことにより説明を省略する。
【0026】
次に、図4を参照して動作を簡単に説明する。
電圧V1がVrH1に達した時点で充電電流制御回路4によりスイッチング素子Q4をオンさせ、図4(b)に示す様に二次電池BATTの充電を開始する。充電電流IBによって抵抗R7に電圧が発生するので、この電圧を検出し、充電電流IBが所定値に達した時点で充電電流制御回路4によりスイッチング素子Q4をオフさせて二次電池BATTの充電を停止する。充電停止後は、電圧V1がVrL1に達した時点でスイッチング素子Q2をオフし、停電検出用のコンデンサC2の充電を開始する。VrL1は、二次電池BATTの充電時に電圧V1がVrL1以下にならないように充分低く、且つ脈流電圧VDBの谷部近傍で電圧V1がVrL1以下になるような値に設定する。また、停電時には二次電池BATTの充電を行わないようにする、つまり停電信号S1がHレベルのときにはスイッチング素子Q4はオフとする。
【0027】
この様に構成したことにより、よって停電検出の精度のレベルを向上することが可能で、停電検出に要する時間Tを短縮することが可能であると共に、脈流電圧VDBが高い位相時で二次電池BATTの充電の開始及び停止を行う為、つまり、図4(b)に示す様に充電電流IBの位相幅が短くて済む為に、効率よく二次電池BATTの充電を行うことができる。また、上記第1の実施の形態に示した充電電流IBの位相幅と略等しいレベルまで充電電流IBの位相幅を広くすれば、電流トランスT1の出力電圧を下げても、第1の実施の形態に示した様な充電電流IBが得られるので、部品の小型化を図ることが可能となる。なお、上記第1の実施の形態に於いても、VrL1を高めに設定しておくことで、電源トランスの小型化を図ることが可能となる。
【0028】
【発明の効果】
請求項1に記載の発明によれば、負荷変動の影響を受けることなく停電検出レベルの精度を向上可能であると共に、瞬時に停電の判断が可能で、小型化が可能な電源回路を提供できる。
【図面の簡単な説明】
【図1】本発明に係る第1の実施の形態を示す回路図である。
【図2】上記実施の形態に係る動作波形図を示す。
【図3】本発明に係る第2の実施の形態を示す回路図である。
【図4】上記実施の形態に係る動作波形図を示す。
【図5】本発明に係る第1従来例を示す回路図である。
【図6】上記従来例に係る動作波形図を示す。
【図7】本発明に係る第2従来例を示す回路図である。
【図8】上記従来例に係る動作波形図を示す。
【符号の説明】
BATT 二次電池
Vac 交流電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device, and more particularly to a power supply device including a secondary battery that supplies power to a load when an AC power supply is shut off.
[0002]
[Prior art]
Conventionally, in a power supply device that has a secondary battery and supplies power even when the AC power supply is cut off, that is, when a power failure occurs, a DC voltage obtained by smoothing the DC output of the rectifier is used as one of means for detecting the presence or absence of the AC power supply. There is a comparison with a reference voltage, and an example of the circuit is shown in FIG. (First conventional example)
In this circuit, the AC power supply Vac is full-wave rectified via the current transformer T1 and the rectifier DB to obtain the pulsating voltage VDB, and the charging device 1 charges the secondary battery BATT, and the AC power supply Vac It is comprised from the power failure detection circuit which judges the presence or absence. The power failure detection circuit detects the presence or absence of an AC power source by comparing the voltage Vc1 obtained by smoothing the pulsating voltage VDB through the diode D1 and the capacitor C1 with the reference voltage Vref by the comparator COMPo.
[0003]
However, the first conventional example has the following first problem. When the current transformer T1 is not an ideal transformer, if the output voltage of the current transformer T1 fluctuates due to load fluctuation due to charging of the secondary battery BATT, etc., the voltage Vc1 also fluctuates as shown in FIG. Depending on the degree of load fluctuation, there is a possibility that the power failure detection is not correctly performed, that is, it is difficult to detect the power failure with high accuracy. The capacitor C1 is a relatively large capacitor, and after the AC power supply is cut off, the voltage Vc1 gradually decreases as shown in FIG. 6 (a). End up.
[0004]
In order to solve the first problem, there is a circuit that detects the peak value of the pulsating voltage VDB obtained by rectifying the AC power supply Vac instead of detecting the voltage Vc1 smoothed by the capacitor C1. FIG. 7 shows an operation waveform diagram thereof. (Second conventional example)
This circuit includes a comparator COMP1 that compares and outputs a voltage V1 obtained by dividing the pulsating voltage VDB with resistors R1 to R3 and a reference voltage Vref1, a capacitor C2 that is charged by the constant current source 3, and both ends of the capacitor C2. A comparator COMP2 that compares and outputs the voltage (hereinafter referred to as voltage) Vc2 and the reference voltage Verf, and an output signal (hereinafter referred to as a power failure signal) S1 of the comparator COMP2, and is connected to both ends of the resistor R3. Switching element Q1, the switching element Q2 connected to both ends of the capacitor C2 via the resistor R4 and controlled by the output signal (hereinafter referred to as an output signal) S2 of the comparator COMP1, and the output of the rectifier DB Switching element Q for controlling the charging current flowing from the end to secondary battery BATT via diode D2 and resistor R7 A switching element Q4 for controlling the switching element Q3 via the resistors R5 and R6, an output signal S2, a power failure signal S1 via the NOT gate N1, and a charging current detection signal S3 for the secondary battery BATT detected by the resistor R7. And a charging current control circuit 4 for controlling the switching element Q4 in response to the three signals.
[0005]
Next, the operation will be briefly described with reference to FIG.
The reference voltage Vref1 takes two levels VrH1, VrL1 (VrH1> VrL1) by being controlled by the output signal S2, and the reference voltage Vref2 has two levels VrH2, VrL2 (VrH2> VrL2 by being controlled by the power failure signal S1. ). As shown in FIG. 8A, if the voltage V1 is equal to or lower than VrL1, the comparator COMP1 outputs an L level output signal S2 to turn off the switching element Q2. As shown in FIG. Vc2 gradually rises, and the reference voltage Vref1 rises from VrL1 to VrH1 in response to the L level output signal S2. When the pulsating voltage VDB rises and the voltage V1 becomes equal to or higher than VrH1, the comparator COMP1 outputs an H level output signal S2 to turn on the switching element Q2. As shown in FIG. 8B, the voltage Vc2 is While gradually decreasing through the resistor R4 and the switching element Q2, the reference voltage Vref1 decreases from VrH1 to VrL1 in response to the H level output signal S2. By setting the voltage V1 to exceed VrH1 at normal time, the voltage Vc2 is not charged above a certain value, and by setting the voltage Vc2 at this time to be smaller than VrH2, it is normal The comparator COMP2 at the time outputs an L level power failure signal S1.
[0006]
When the L-level output signal S2 and the L-level power failure signal S1 are input to the charging current control circuit 4, the charging current control circuit 4 turns on the switching element Q3 by turning on the switching element Q4. A charging current IB of the secondary battery BATT having a constant current as shown in d) is obtained. The charging current IB is phase-controlled by switching of the switching element Q3, that is, the switching element Q4, and constant current charging can be performed by detecting the charging current IB with the resistor R7.
[0007]
When the AC power supply Vac is cut off, that is, when a power failure occurs, the voltage V1 does not exceed VrH1 as shown in FIG. 8A. Therefore, the comparator COMP1 continues to output the L level output signal S2 and turns off the switching element Q2. As shown in FIG. 8B, the voltage Vc2 continues to rise. When the voltage Vc2 exceeds VrH2, as shown in FIG. 8 (c), the comparator COMP1 outputs an H level power failure signal S1, so that a power failure can be determined. That is, a power failure is determined when the voltage V1 does not exceed VrH1 and the voltage Vc2 reaches VrH2.
[0008]
In this circuit, if the control is performed so that the phase angle of the charging current IB is maintained at 90 degrees or less, the load fluctuation occurs depending on whether or not the secondary battery BATT is charged at the phase of 0 to 90 degrees, and the pulsating voltage VDB. Although the value of the voltage V1 decreases as shown in FIG. 8A by charging the secondary battery BATT, there is no load fluctuation at the phase of 90 to 180 degrees. Since the value of the voltage VDB is substantially constant, that is, the secondary battery BATT is not charged, the value of the voltage V1 is substantially constant as shown in FIG. 8A, and it is always possible to determine the power failure under the same conditions. The accuracy of the power failure detection level can be improved.
[0009]
[Problems to be solved by the invention]
However, the second conventional example has the following second problem.
[0010]
In the circuit shown in FIG. 7, since the phase for charging is 0 to 90 degrees, when the pulsating voltage VDB is high, the switching element Q4 is turned off to stop charging, and the load due to the switching element Q4 being turned off Due to the fluctuation, the current flowing through the current transformer T1 rapidly decreases and a back electromotive force is generated, and as shown in FIG. 8A, a surge occurs in the voltage V1, that is, the pulsating voltage VDB. This surge can be absorbed by connecting the surge absorbing capacitor C3 to the positive input terminal of the comparator COMP1, but if the capacitor C3 having an appropriate capacity is not selected, the waveform of the pulsating voltage VDB is distorted. Since it becomes difficult to ensure the accuracy of the power failure detection level, the waveform of the pulsating voltage VDB changes due to the load fluctuation due to the on / off of the switching element Q4, that is, the waveform of the voltage V1 changes. Therefore, the accuracy of the power failure detection level is deteriorated.
[0011]
The present invention has been made in view of all the above-mentioned problems. The object of the present invention is to improve the accuracy of the power failure detection level without being affected by the load fluctuation and to determine the power failure instantly. A power supply circuit is provided.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, according to the invention described in claim 1, a secondary battery that is charged during normal operation of the AC power source and supplies power to a load when the AC power source is shut off, and the AC power source a power failure detection circuit for detecting a cutoff, in the power supply device and a charging circuit configured to charge the secondary battery with the AC power supply and a current transformer rectifier for each cycle of the pulse current output obtained by rectifying through the charging The circuit starts charging the secondary battery after detecting that the pulsating voltage has exceeded a first predetermined voltage in the process of rising from zero volts, and the pulsating voltage is rather smaller than the predetermined voltage, and stops the charging of the secondary battery when the pulsating voltage passed the peak of the ripple voltage has reached the second predetermined voltage in the process of lowered while, the power failure detection circuit is the pulsating voltage is first When the from the time when reaching the predetermined voltage has elapsed a predetermined time, wherein the pulsating voltage is judged to power failure if not exceeds the first predetermined voltage.
[0018]
Embodiment
(Embodiment 1)
A circuit diagram of a first embodiment according to the present invention is shown in FIG. 1, and an operation waveform diagram thereof is shown in FIG.
[0019]
The difference from the second conventional example shown in FIG. 7 is that the charging current control circuit 4 is omitted and the switching element Q4 is controlled only by the output signal S2, so that a quasi-constant current charging circuit and a power failure detection circuit are provided. This is a combined configuration, and the same components as those of the second conventional example are denoted by the same reference numerals, and the description thereof is omitted. That is, in the second conventional example, the pulsating voltage VDB is detected after the charging of the secondary battery BATT is stopped, but in the present embodiment, the presence or absence of the AC power supply Vac is determined by detecting the pulsating voltage VDB. The secondary battery BATT is charged later.
[0020]
Next, the operation will be briefly described with reference to FIG. In the process in which the pulsating voltage VDB rises from zero volts, the comparator COMP1 outputs an L level output signal S2, turns off the switching element Q4, and stops the charging of the secondary battery BATT . When the voltage V1 reaches VrH1, it is determined that “AC power is present”, and the comparator COMP1 outputs an H level output signal S2, turns on the switching element Q2, and discharges the charge of the capacitor C2. At the same time, the switching element Q4 is turned on to charge the secondary battery BATT, and a charging current IB as shown in FIG. 2 (d) flows. On the other hand, when the voltage V1 does not reach VrH1, the comparator COMP1 outputs the L level output signal S2 and turns off the switching element Q2, thereby charging the capacitor C2. Therefore, as shown in FIG. At this time, the voltage Vc2 gradually rises, and when the voltage Vc2 reaches VrH2, it is determined that a power failure has occurred.
[0021]
In addition, when the pulsating voltage VDB, that is, the voltage V1 decreases after reaching a peak and reaches VrL1, the switching element Q4 is turned off by the L level output signal S2 to stop the charging of the secondary battery BATT, and at the same time, Similarly, the capacitor C2 is charged. The value of the charging current IB can be arbitrarily set by changing the values of the resistor R7 and the reference voltage VrL1.
[0022]
When it is determined that “AC power is present” and charging of the secondary battery BATT is started, the load of the current transformer T1 fluctuates when the secondary battery BATT is charged, so that the pulsating voltage decreases, that is, as shown in FIG. As shown, the voltage V1 decreases, but the power failure detection has already been performed before the secondary battery BATT is charged. Therefore, the accuracy of the power failure detection due to the load variation of the current transformer T1 does not occur. In addition, since the presence or absence of the AC power supply Vac is determined when the charging of the secondary battery BATT is stopped, the power failure detection can be reliably performed regardless of the presence or absence of the charging current IB to the secondary battery BATT. It becomes possible to improve the level of accuracy. Furthermore, as described above, a surge due to the counter electromotive force occurs when charging to the secondary battery BATT is stopped, but at this point in time, the presence or absence of the AC power supply Vac is not judged, so the level of power failure detection accuracy is affected. Does not reach. Even if such a surge voltage exceeds VrH1, charging of the capacitor C2 is only reset by the H level output signal S2, and the level of power failure detection accuracy is not affected. For this reason, it is sufficient that the capacitance of the capacitor C3 is small enough to remove noise.
[0023]
Furthermore, in the second conventional example, since the peak voltage when the phase of the pulsating voltage VDB is 0 degree to 90 degrees is detected, the point where the voltage Vc2 reaches VrH2 is the phase of the pulsating voltage VDB being 0 degree to 90 degrees. It was necessary to set after the lapse of time and after the pulsating voltage VDB rose. However, in this embodiment, since the peak voltage is detected at the rising portion of the pulsating voltage VDB, the phase of the pulsating voltage VDB can be set to 0 degree to 90 degrees , and the time T required for detecting a power failure is shortened. Is possible.
[0024]
(Embodiment 2)
A circuit diagram of a second embodiment according to the present invention is shown in FIG. 3, and an operation waveform diagram thereof is shown in FIG.
[0025]
7 differs from the second conventional example shown in FIG. 7 in that the NOT gate N1 is omitted, and a constant current charging type charging circuit and a power failure detection circuit are combined. The same components as those in the example are denoted by the same reference numerals and the description thereof is omitted.
[0026]
Next, the operation will be briefly described with reference to FIG.
When the voltage V1 reaches VrH1, the charging current control circuit 4 turns on the switching element Q4, and charging of the secondary battery BATT is started as shown in FIG. Since a voltage is generated in the resistor R7 by the charging current IB, this voltage is detected, and when the charging current IB reaches a predetermined value, the switching element Q4 is turned off by the charging current control circuit 4 to charge the secondary battery BATT. Stop. After the charging is stopped, when the voltage V1 reaches VrL1, the switching element Q2 is turned off, and charging of the power failure detection capacitor C2 is started. VrL1 is set to a value that is sufficiently low so that the voltage V1 does not fall below VrL1 when the secondary battery BATT is charged, and that the voltage V1 falls below VrL1 near the valley of the pulsating voltage VDB. Further, the secondary battery BATT is not charged during a power failure, that is, the switching element Q4 is turned off when the power failure signal S1 is at the H level.
[0027]
By configuring in this way, it is possible to improve the level of accuracy of power failure detection, reduce the time T required for power failure detection, and at the same time secondary when the pulsating voltage VDB is at a high phase. In order to start and stop the charging of the battery BATT, that is, the phase width of the charging current IB is short as shown in FIG. 4B, the secondary battery BATT can be charged efficiently. Further, if the phase width of the charging current IB is increased to a level substantially equal to the phase width of the charging current IB shown in the first embodiment, the first embodiment can be achieved even if the output voltage of the current transformer T1 is lowered. Since the charging current IB as shown in the embodiment can be obtained, it is possible to reduce the size of the components. In the first embodiment as well, it is possible to reduce the size of the power transformer by setting VrL1 higher.
[0028]
【The invention's effect】
According to the first aspect of the present invention, it is possible to provide a power supply circuit that can improve the accuracy of the power failure detection level without being affected by the load fluctuation, can determine the power failure instantaneously, and can be downsized. .
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment according to the present invention.
FIG. 2 shows an operation waveform diagram according to the embodiment.
FIG. 3 is a circuit diagram showing a second embodiment according to the present invention.
FIG. 4 shows an operation waveform diagram according to the embodiment.
FIG. 5 is a circuit diagram showing a first conventional example according to the present invention.
FIG. 6 shows an operation waveform diagram according to the conventional example.
FIG. 7 is a circuit diagram showing a second conventional example according to the present invention.
FIG. 8 shows an operation waveform diagram according to the conventional example.
[Explanation of symbols]
BATT Secondary battery Vac AC power supply

Claims (1)

交流電源の通常時に充電されると共に、前記交流電源の遮断時に負荷に電力供給を行う二次電池と、前記交流電源の遮断を検出する停電検出回路と、前記交流電源を電流トランスと整流器を介して整流した脈流出力のサイクル毎に前記二次電池の充電を行う充電回路とを備える電源装置に於いて、前記充電回路は前記脈流電圧が零ボルトから上昇していく過程での第1の所定の電圧を越えたことを検出した後に、前記二次電池の充電を開始し、前記脈流電圧が第1の所定の電圧よりも小さく、かつ、前記脈流電圧のピークを経過し前記脈流電圧が下降していく過程での第2の所定の電圧に達したときに前記二次電池の充電を停止すると共に、前記停電検出回路は前記脈流電圧が第2の所定の電圧に達した時点から所定の時間を経過した時点で、前記脈流電圧が第1の所定の電圧を越えていなかった場合に停電と判断することを特徴とする電源装置。A secondary battery that is charged during normal operation of the AC power supply and supplies power to the load when the AC power supply is shut off, a power failure detection circuit that detects the interruption of the AC power supply, and the AC power supply via a current transformer and a rectifier And a charging circuit that charges the secondary battery every cycle of rectified pulsating output, wherein the charging circuit is a first in the process in which the pulsating voltage rises from zero volts. after it is detected that exceeds a predetermined voltage, starts charging of the secondary battery, the pulsating voltage is rather smaller than the first predetermined voltage, and passes a peak of the ripple voltage When the second predetermined voltage in the process of decreasing the pulsating voltage is reached, the charging of the secondary battery is stopped, and the power failure detection circuit detects that the pulsating voltage is the second predetermined voltage. when the from the time it reaches after the elapse of a predetermined time Power supply, characterized in that it is determined that a power failure when the pulsating voltage has not exceeded the first predetermined voltage.
JP31336895A 1995-11-30 1995-11-30 Power supply Expired - Fee Related JP3862307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31336895A JP3862307B2 (en) 1995-11-30 1995-11-30 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31336895A JP3862307B2 (en) 1995-11-30 1995-11-30 Power supply

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2004205379A Division JP2004328998A (en) 2004-07-13 2004-07-13 Power supply unit
JP2005009742A Division JP2005168296A (en) 2005-01-18 2005-01-18 Power supply device

Publications (2)

Publication Number Publication Date
JPH09163627A JPH09163627A (en) 1997-06-20
JP3862307B2 true JP3862307B2 (en) 2006-12-27

Family

ID=18040424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31336895A Expired - Fee Related JP3862307B2 (en) 1995-11-30 1995-11-30 Power supply

Country Status (1)

Country Link
JP (1) JP3862307B2 (en)

Also Published As

Publication number Publication date
JPH09163627A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
JP5050799B2 (en) Switching control circuit and AC / DC converter using the switching control circuit
JP2628642B2 (en) Automatic voltage switching power supply
JP5977950B2 (en) DC / DC converter and control circuit thereof, power supply using the same, power adapter, and electronic device
US20090103338A1 (en) Switching power source apparatus
US5978243A (en) Ac/dc converting circuit
JP3349781B2 (en) Switching regulator power supply
JP2784136B2 (en) Switching power supply overload and short circuit protection circuit
JP2001178146A (en) Portable generator
US5821740A (en) DC-to-DC converter having fast over-current detection and associated methods
JP5640830B2 (en) Switching power supply
JP2007295800A (en) Power-supply circuit
JP3542768B2 (en) Overvoltage protection circuit in regulated power supply
JPS5815478A (en) Current control device in speed control device of dc motor
JP3862307B2 (en) Power supply
JP2001119933A (en) Overcurrent protection circuit
KR200431523Y1 (en) Battery charging apparatus
JP2007104792A (en) Switching regulator
JP2005168296A (en) Power supply device
KR100339540B1 (en) Drive control circuit and method of step-up active filter for power factor control
JP2592346B2 (en) Power failure detection circuit
JP3557665B2 (en) Lighting equipment
JP2004328998A (en) Power supply unit
JPH0662577A (en) Power device
KR0117108Y1 (en) Phasefactor current detector
JPH0723558A (en) Power supply

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050125

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees