JP2004328998A - Power supply unit - Google Patents

Power supply unit Download PDF

Info

Publication number
JP2004328998A
JP2004328998A JP2004205379A JP2004205379A JP2004328998A JP 2004328998 A JP2004328998 A JP 2004328998A JP 2004205379 A JP2004205379 A JP 2004205379A JP 2004205379 A JP2004205379 A JP 2004205379A JP 2004328998 A JP2004328998 A JP 2004328998A
Authority
JP
Japan
Prior art keywords
charging
secondary battery
power supply
voltage
power failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004205379A
Other languages
Japanese (ja)
Inventor
Jun Matsuzaki
純 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004205379A priority Critical patent/JP2004328998A/en
Publication of JP2004328998A publication Critical patent/JP2004328998A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply circuit by which accuracy of a power interruption detecting level is improved without being affected by load fluctuation and the power interruption is momentarily discriminated. <P>SOLUTION: The power supply circuit comprises a comparator COMP1 which compares a voltage V1 and a reference voltage Vref1 to output, a capacitor C2 charged by a constant-current source 3, a comparator COMP2 which compares voltages Vc2 across ends of the capacitor C2 and a reference voltage Verf to output, a switching device Q1 controlled by a power interruption signal S1, a switching element Q2 controlled by an output signal S2 of the comparator COMP1, a switching element Q3 which controls a charging current flowing toward a secondary battery BATT, and a switching element Q4 which controls the switching element Q3 via resistors R5, R6 and is controlled by the output signal S2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電源装置に関するものであり、更に詳しくは、交流電源の遮断時に負荷に電力供給を行う二次電池を備える電源装置に関する。   The present invention relates to a power supply device, and more particularly, to a power supply device including a secondary battery that supplies power to a load when an AC power supply is shut off.

従来、二次電池を備え、交流電源の遮断時つまり停電時にも電力供給を行う電源装置に於いて、交流電源の有無を検出する手段の1つとして、整流器の直流出力を平滑した直流電圧を基準電圧と比較するものがあり、その回路例を図5に示す。(第1従来例)
本回路は、交流電源Vacを電流トランスT1,整流器DBを介して全波整流して脈流電圧VDBを得、充電回路1を介して二次電池BATTを充電する充電装置と、交流電源Vacの有無を判断する停電検出回路とから構成される。停電検出回路は、脈流電圧VDBをダイオードD1,コンデンサC1を介して平滑した電圧Vc1と基準電圧Vrefとを比較器COMPoで比較することで交流電源の有無を検出する。
2. Description of the Related Art Conventionally, in a power supply device having a secondary battery and supplying power even when an AC power supply is cut off, that is, at a power failure, as one of means for detecting the presence or absence of an AC power supply, a DC voltage obtained by smoothing a DC output of a rectifier is used. Some are compared with a reference voltage, and an example of the circuit is shown in FIG. (First conventional example)
This circuit includes a charging device that obtains a pulsating voltage VDB by full-wave rectifying an AC power supply Vac via a current transformer T1 and a rectifier DB, and charges a secondary battery BATT via a charging circuit 1; And a power failure detection circuit for determining the presence or absence. The power failure detection circuit detects the presence or absence of an AC power supply by comparing the reference voltage Vref with a voltage Vc1 obtained by smoothing the pulsating voltage VDB via the diode D1 and the capacitor C1.

しかし、上記第1従来例に於いては、以下に示す様な第1の問題点が生じる。電流トランスT1が理想変圧器でない場合は、二次電池BATTの充電などによる負荷変動によって電流トランスT1の出力電圧が変動すると、図6(a)に示す様に電圧Vc1も変動してしまうので、負荷変動の度合いによっては正しく停電検出を行わない場合が生じる可能性があり、つまり高精度な停電検出を行うことは困難になってしまう。また、コンデンサC1は比較的大容量のコンデンサであり、交流電源遮断後は、図6(a)に示す様に電圧Vc1は徐々に低下していくので、停電検出するまでに時間Tだけロスしてしまう。   However, the first conventional example has the following first problem. When the current transformer T1 is not an ideal transformer, if the output voltage of the current transformer T1 fluctuates due to a load fluctuation due to charging of the secondary battery BATT or the like, the voltage Vc1 also fluctuates as shown in FIG. Depending on the degree of the load fluctuation, there may be a case where the power failure detection is not performed correctly, that is, it is difficult to perform the power failure detection with high accuracy. Further, the capacitor C1 is a relatively large-capacity capacitor. After the AC power is cut off, the voltage Vc1 gradually decreases as shown in FIG. Would.

上記第1の問題点を解決する為に、コンデンサC1によって平滑された電圧Vc1を検出するのではなく、交流電源Vacを整流した脈流電圧VDBのピーク値を検出するものがあり、その回路図を図7に、その動作波形図を図8に示す。(第2従来例)
本回路は、脈流電圧VDBを抵抗R1〜R3で分圧して得られる電圧V1及び基準電圧Vref1を比較出力する比較器COMP1と、定電流源3により充電されるコンデンサC2と、コンデンサC2の両端電圧(以下、電圧と呼ぶ。)Vc2及び基準電圧Verfを比較出力する比較器COMP2と、比較器COMP2の出力信号(以下、停電信号と呼ぶ。)S1により制御されると共に抵抗R3の両端に接続されたスイッチング素子Q1と、抵抗R4を介してコンデンサC2の両端に接続されると共に比較器COMP1の出力信号(以下、出力信号と呼ぶ。)S2により制御されるスイッチング素子Q2と、整流器DBの出力端からダイオードD2,抵抗R7を介して二次電池BATTへと流れる充電電流を制御するスイッチング素子Q3と、抵抗R5,R6を介してスイッチング素子Q3を制御するスイッチング素子Q4と、NOTゲートN1を介した出力信号S2,停電信号S1,抵抗R7によって検出される二次電池BATTの充電電流検出信号S3の3つの信号を受けてスイッチング素子Q4を制御する充電電流制御回路4とから構成される。
In order to solve the first problem, there is a method of detecting a peak value of a pulsating voltage VDB obtained by rectifying an AC power supply Vac instead of detecting a voltage Vc1 smoothed by a capacitor C1. 7 is shown in FIG. 7, and the operation waveform diagram is shown in FIG. (Second conventional example)
This circuit includes a comparator COMP1 for comparing and outputting a voltage V1 obtained by dividing a pulsating voltage VDB by resistors R1 to R3 and a reference voltage Vref1, a capacitor C2 charged by a constant current source 3, and both ends of the capacitor C2. A comparator COMP2 that compares and outputs a voltage (hereinafter, referred to as a voltage) Vc2 and a reference voltage Verf, and is controlled by an output signal (hereinafter, referred to as a power failure signal) S1 of the comparator COMP2 and is connected to both ends of a resistor R3. Switching element Q1, a switching element Q2 connected to both ends of a capacitor C2 via a resistor R4 and controlled by an output signal (hereinafter, referred to as an output signal) S2 of a comparator COMP1, and an output of a rectifier DB. A switching element Q for controlling a charging current flowing from the end to the secondary battery BATT via the diode D2 and the resistor R7. A switching element Q4 for controlling the switching element Q3 via the resistors R5 and R6; an output signal S2 via the NOT gate N1; a power failure signal S1; and a charging current detection signal S3 for the secondary battery BATT detected by the resistor R7. And a charging current control circuit 4 that receives the three signals to control the switching element Q4.

次に、図8を参照して動作を簡単に説明する。基準電圧Vref1は出力信号S2で制御されることにより2つのレベルVrH1,VrL1(VrH1>VrL1)をとり、基準電圧Vref2は停電信号S1で制御されることにより2つのレベルVrH2,VrL2(VrH2>VrL2)をとる。図8(a)に示す様に、電圧V1がVrL1以下であれば比較器COMP1はLレベルの出力信号S2を出力してスイッチング素子Q2をオフし、図8(b)に示す様に、電圧Vc2は徐々に上昇すると共に、Lレベルの出力信号S2を受けて基準電圧Vref1はVrL1からVrH1へと上昇する。脈流電圧VDBが上昇することにより電圧V1がVrH1以上になると比較器COMP1はHレベルの出力信号S2を出力してスイッチング素子Q2をオンし、図8(b)に示す様に、電圧Vc2は抵抗R4,スイッチング素子Q2を介して徐々に低下すると共に、Hレベルの出力信号S2を受けて基準電圧Vref1はVrH1からVrL1へと低下する。正常時は電圧V1がVrH1を越える様に設定しておくことで電圧Vc2は一定値以上には充電されず、この時の電圧Vc2をVrH2よりも小さくなる様に設定しておくことで、正常時の比較器COMP2はLレベルの停電信号S1を出力する。   Next, the operation will be briefly described with reference to FIG. The reference voltage Vref1 has two levels VrH1 and VrL1 (VrH1> VrL1) by being controlled by the output signal S2, and the reference voltage Vref2 has two levels VrH2 and VrL2 (VrH2> VrL2) by being controlled by the power failure signal S1. Take). As shown in FIG. 8A, when the voltage V1 is equal to or lower than VrL1, the comparator COMP1 outputs an L-level output signal S2 to turn off the switching element Q2, and as shown in FIG. Vc2 gradually rises, and the reference voltage Vref1 rises from VrL1 to VrH1 in response to the L-level output signal S2. When the pulsating voltage VDB rises and the voltage V1 becomes equal to or higher than VrH1, the comparator COMP1 outputs an H-level output signal S2 to turn on the switching element Q2, and as shown in FIG. The reference voltage Vref1 gradually decreases from VrH1 to VrL1 in response to the H-level output signal S2 while gradually decreasing via the resistor R4 and the switching element Q2. By setting the voltage V1 so as to exceed VrH1 during normal operation, the voltage Vc2 is not charged to a certain value or more. By setting the voltage Vc2 at this time to be lower than VrH2, The comparator COMP2 outputs the L-level power failure signal S1.

Lレベルの出力信号S2とLレベルの停電信号S1とが充電電流制御回路4に入力されると、充電電流制御回路4はスイッチング素子Q4をオンすることによりスイッチング素子Q3をオンし、図8(d)に示す様な定電流の二次電池BATTの充電電流IBが得られる。ここで充電電流IBは、スイッチング素子Q3つまりスイッチング素子Q4のスイッチングで位相制御され、抵抗R7で充電電流IBを検出することで定電流充電を行うことができる。   When the L-level output signal S2 and the L-level power failure signal S1 are input to the charging current control circuit 4, the charging current control circuit 4 turns on the switching element Q4 to turn on the switching element Q3. A charging current IB of the secondary battery BATT having a constant current as shown in d) is obtained. Here, the phase of the charging current IB is controlled by switching of the switching element Q3, that is, the switching of the switching element Q4, and constant current charging can be performed by detecting the charging current IB with the resistor R7.

交流電源Vacが遮断される、つまり停電時には、図8(a)に示す様に電圧V1がVrH1を上回らなくなるので、比較器COMP1はLレベルの出力信号S2を出力し続けてスイッチング素子Q2をオフし、図8(b)に示す様に電圧Vc2は上昇し続ける。電圧Vc2がVrH2を越えると、図8(c)に示す様に、比較器COMP1はHレベルの停電信号S1を出力し、これにより停電を判断することができる。つまり停電は、電圧V1がVrH1を上回らず且つ電圧Vc2がVrH2に達することで判断される。   When the AC power supply Vac is cut off, that is, at the time of a power failure, the voltage V1 does not exceed VrH1 as shown in FIG. 8A, so that the comparator COMP1 keeps outputting the L level output signal S2 and turns off the switching element Q2. However, the voltage Vc2 continues to rise as shown in FIG. When the voltage Vc2 exceeds VrH2, as shown in FIG. 8C, the comparator COMP1 outputs an H-level power failure signal S1, which can determine a power failure. That is, the power failure is determined when the voltage V1 does not exceed VrH1 and the voltage Vc2 reaches VrH2.

本回路に於いて、充電電流IBの位相角を90度以下に保つような制御を行えば、0〜90度の位相では二次電池BATTの充電の有無によって負荷変動が生じて脈流電圧VDBの値が変わる、つまり二次電池BATTの充電が行われることにより図8(a)に示す様に電圧V1の値が低下するものの、90〜180度の位相では負荷変動がないために脈流電圧VDBの値が略一定となり、つまり二次電池BATTの充電がないために図8(a)に示す様に電圧V1の値が略一定となり、常に同条件での停電判断が可能になって停電検出レベルの精度を向上させることができる。
特開平7−31070号公報
In the present circuit, if control is performed so as to maintain the phase angle of the charging current IB at 90 degrees or less, a load fluctuation occurs in the phase of 0 to 90 degrees depending on whether the secondary battery BATT is charged, and the pulsating voltage VDB Is changed, that is, as the secondary battery BATT is charged, the value of the voltage V1 is reduced as shown in FIG. 8 (a). Since the value of the voltage VDB becomes substantially constant, that is, since the secondary battery BATT is not charged, the value of the voltage V1 becomes substantially constant as shown in FIG. 8A, and it is possible to always determine the power failure under the same condition. The accuracy of the power failure detection level can be improved.
JP-A-7-31070

しかし、上記第2従来例では以下に示す様な第2の問題点が生じてしまう。   However, the second conventional example has the following second problem.

図7に示す回路では、充電を行う位相が90度〜180度であるため、脈流電圧VDBが高電圧の場合にスイッチング素子Q4をオフして充電を停止させと、スイッチング素子Q4のオフによる負荷変動によって電流トランスT1を流れる電流が急激に減少して逆起電力が発生し、図8(a)に示す様に、電圧V1つまり脈流電圧VDBにサージが発生してしまう。このサージは比較器COMP1の正の入力端子にサージ吸収用のコンデンサC3を接続することで吸収できるが、適度な容量のコンデンサC3を選定しなければ脈流電圧VDBの波形に歪みが生じてしまい、停電検出レベルの精度を確保することが困難となってしまう為に、スイッチング素子Q4のオンオフによる負荷変動によって脈流電圧VDBの波形が変化してしまい、つまり電圧V1の波形が変化してしまい、停電検出レベルの精度が劣化してしまう。   In the circuit shown in FIG. 7, since the charging phase is 90 degrees to 180 degrees, when the pulsating voltage VDB is a high voltage, the switching element Q4 is turned off to stop charging. Due to the load fluctuation, the current flowing through the current transformer T1 sharply decreases to generate a back electromotive force, and as shown in FIG. 8A, a surge occurs in the voltage V1, that is, the pulsating voltage VDB. This surge can be absorbed by connecting a capacitor C3 for absorbing surge to the positive input terminal of the comparator COMP1, but the waveform of the pulsating voltage VDB will be distorted unless an appropriate capacitor C3 is selected. However, since it becomes difficult to secure the accuracy of the power failure detection level, the waveform of the pulsating voltage VDB changes due to a load change due to the turning on and off of the switching element Q4, that is, the waveform of the voltage V1 changes. As a result, the accuracy of the power failure detection level deteriorates.

本発明は、上記全ての問題点に鑑みてなされたもので、その目的とするところは、負荷変動の影響を受けることなく停電検出レベルの精度を向上させると共に、瞬時に停電の判断が可能な電源回路を提供することである。   The present invention has been made in view of all of the above problems, and its object is to improve the accuracy of a power failure detection level without being affected by load fluctuations, and to enable instantaneous power failure determination. It is to provide a power supply circuit.

上記問題点を解決するために、請求項1記載の発明によれば、交流電源の通常時に充電されると共に、前記交流電源の遮断時に負荷に電力供給を行う二次電池と、前記交流電源の遮断を検出する停電検出回路と、前記交流電源を整流した脈流出力のサイクル毎に前記二次電池の充電を行う充電回路とを備える電源装置に於いて、前記停電検出回路が前記脈流電圧が零ボルトから上昇していく過程での所定の電圧を越えたことを検出した後に、前記二次電池の充電を開始すると共に、前記充電回路は、前記二次電池の充電電流を限流すると共に、前記充電電流値が所定値に達した時点で二次電池の充電を停止させる準定電流充電を行うものであることを特徴とする。   In order to solve the above problems, according to the first aspect of the present invention, a secondary battery that is charged when an AC power supply is normal and supplies power to a load when the AC power supply is cut off, In a power supply device comprising: a power failure detection circuit that detects interruption; and a charging circuit that charges the secondary battery in each cycle of a pulsating output that rectifies the AC power, wherein the power failure detection circuit includes the pulsating voltage. After detecting that the voltage exceeds a predetermined voltage in the process of rising from zero volt, the charging of the secondary battery is started, and the charging circuit limits the charging current of the secondary battery. At the same time, when the charging current value reaches a predetermined value, a quasi-constant current charging for stopping charging of the secondary battery is performed.

請求項2記載の発明によれば、交流電源の通常時に充電されると共に、前記交流電源の遮断時に負荷に電力供給を行う二次電池と、前記交流電源の遮断を検出する停電検出回路と、前記交流電源を整流した脈流出力のサイクル毎に前記二次電池の充電を行う充電回路とを備える電源装置に於いて、前記停電検出回路が前記脈流電圧が零ボルトから上昇していく過程での所定の電圧を越えたことを検出した後に、前記二次電池の充電を開始すると共に、前記充電回路は、前記二次電池の充電電流値を検出し、前記充電電流値が所定値に達した時点で二次電池の充電を停止させる定電流充電を行うものであることを特徴とする。   According to the invention described in claim 2, a secondary battery that is charged at the time of normal operation of the AC power supply and supplies power to the load when the AC power supply is cut off, and a power failure detection circuit that detects the cut off of the AC power supply, A charging circuit for charging the secondary battery in each cycle of pulsating output in which the AC power is rectified, wherein the power failure detection circuit causes the pulsating voltage to rise from zero volts. After detecting that the predetermined voltage has been exceeded, the charging of the secondary battery is started, and the charging circuit detects a charging current value of the secondary battery, and the charging current value reaches a predetermined value. It is characterized by performing constant-current charging in which charging of the secondary battery is stopped at the time of reaching the current.

請求項1又は請求項2に記載の発明によれば、負荷変動の影響を受けることなく停電検出レベルの精度を向上可能であると共に、瞬時に停電の判断が可能で、小型化が可能な電源回路を提供できる。   According to the first or second aspect of the present invention, a power supply capable of improving the accuracy of a power failure detection level without being affected by a load fluctuation, and of being able to instantaneously determine a power failure and being downsized. Circuit can be provided.

(実施の形態1)
本発明に係る第1の実施の形態の回路図を図1に、その動作波形図を図2に示す。
(Embodiment 1)
FIG. 1 is a circuit diagram of the first embodiment according to the present invention, and FIG. 2 is an operation waveform diagram thereof.

図7に示した第2従来例と異なる点は、充電電流制御回路4を省略すると共に出力信号S2のみによりスイッチング素子Q4を制御することにより、準定電流方式の充電回路と停電検出回路とを組み合わせた構成としたことであり、その他の第2従来例と同一構成には同一符号を付すことにより説明を省略する。つまり、上記第2従来例では二次電池BATTの充電停止後に脈流電圧VDBを検出していたが、本実施の形態では、脈流電圧VDBを検出することによって交流電源Vacの有無を判断した後で二次電池BATTの充電を行う構成を有している。   The difference from the second conventional example shown in FIG. 7 is that the charging current control circuit 4 is omitted and the switching element Q4 is controlled only by the output signal S2, so that the quasi-constant current type charging circuit and the power failure detection circuit can be separated. This is a combined configuration, and the same components as those of the second conventional example are denoted by the same reference numerals, and description thereof is omitted. That is, in the second conventional example, the pulsating voltage VDB is detected after the charging of the secondary battery BATT is stopped, but in the present embodiment, the presence or absence of the AC power supply Vac is determined by detecting the pulsating voltage VDB. It has a configuration for charging the secondary battery BATT later.

次に、図2を参照して動作を簡単に説明する。脈流電圧VDBが零ボルトから上昇していく過程では比較器COMP1はLレベルの出力信号S2を出力してスイッチング素子Q4をオフし二次電池BATTの充電を停止する。停電検出は電圧V1がVrH1に達するか否かで判断する。電圧V1がVrH1に達した場合は、「交流電源有り」と判断し、比較器COMP1はHレベルの出力信号S2を出力してスイッチング素子Q2をオンし、コンデンサC2の充電電荷を放電する。同時にスイッチング素子Q4をオンして二次電池BATTへの充電を行い、図2(d)に示す様な充電電流IBが流れる。一方、電圧V1がVrH1に達しなかった場合は、比較器COMP1はLレベルの出力信号S2を出力してスイッチング素子Q2をオフすることによりコンデンサC2を充電するので、図2(b)に示す様に電圧Vc2は徐々に上昇し、電圧Vc2がVrH2に達した時点で「停電」と判断する。   Next, the operation will be briefly described with reference to FIG. While the pulsating voltage VDB is increasing from zero volts, the comparator COMP1 outputs the output signal S2 at the L level to turn off the switching element Q4 and stop charging the secondary battery BATT. The power failure detection is determined based on whether the voltage V1 reaches VrH1. When the voltage V1 has reached VrH1, it is determined that "AC power is present", and the comparator COMP1 outputs an H-level output signal S2, turns on the switching element Q2, and discharges the charge of the capacitor C2. At the same time, the switching element Q4 is turned on to charge the secondary battery BATT, and a charging current IB flows as shown in FIG. On the other hand, when the voltage V1 has not reached VrH1, the comparator COMP1 outputs the L-level output signal S2 and turns off the switching element Q2 to charge the capacitor C2. Then, the voltage Vc2 gradually increases, and when the voltage Vc2 reaches VrH2, it is determined that a "power failure" has occurred.

また、脈流電圧VDBつまり電圧V1がピークを過ぎて低下してVrL1に達したとき、Lレベルの出力信号S2によりスイッチング素子Q4をオフさせて二次電池BATTの充電を停止すると同時に、上述の様にコンデンサC2の充電を行う。充電電流IBの値は抵抗R7と基準電圧VrL1との値を変えることで任意に設定できる。   Further, when the pulsating voltage VDB, that is, the voltage V1 decreases past the peak and reaches VrL1, the switching element Q4 is turned off by the L-level output signal S2 to stop charging the secondary battery BATT, and at the same time, The capacitor C2 is charged as described above. The value of the charging current IB can be arbitrarily set by changing the values of the resistor R7 and the reference voltage VrL1.

「交流電源有り」と判断して二次電池BATTの充電を開始すると、二次電池BATTの充電時には電流トランスT1の負荷が変動するために脈流電圧が低下する、つまり図2(a)に示す様に電圧V1が低下するが、二次電池BATTの充電以前に停電検出を既に行っているので、電流トランスT1の負荷変動による停電検出の精度の劣化は生じない。また、二次電池BATTの充電停止時に交流電源Vacの有無を判断しているので、二次電池BATTへの充電電流IBの有無に関わらず停電検出を確実に行うことができ、よって停電検出の精度のレベルを向上することが可能となる。更に、上述の様に二次電池BATTへの充電停止時に逆起電力によるサージが発生するが、この時点では交流電源Vacの有無を判断を行わないので、停電検出の精度のレベルには影響を及ぼさない。仮にこの様なサージ電圧がVrH1を越えても、Hレベルの出力信号S2によりコンデンサC2の充電がリセットされるだけであり、停電検出の精度のレベルには影響を及ぼさない。このため、コンデンサC3の容量はノイズを除去する程度の小さいもので充分である。   When it is determined that “AC power is present” and the charging of the secondary battery BATT is started, the pulsating voltage decreases due to a change in the load of the current transformer T1 when charging the secondary battery BATT. As shown, the voltage V1 decreases, but since the power failure detection has already been performed before charging the secondary battery BATT, the accuracy of the power failure detection does not deteriorate due to the load fluctuation of the current transformer T1. Further, since the presence or absence of the AC power supply Vac is determined when the charging of the secondary battery BATT is stopped, the power failure can be reliably detected regardless of the presence or absence of the charging current IB to the secondary battery BATT. It is possible to improve the level of accuracy. Further, as described above, when the charging of the secondary battery BATT is stopped, a surge due to the back electromotive force occurs. At this time, the presence or absence of the AC power supply Vac is not determined, so that the accuracy level of the power failure detection is not affected. Has no effect. Even if such a surge voltage exceeds VrH1, only the charging of the capacitor C2 is reset by the H-level output signal S2, and does not affect the accuracy level of the power failure detection. Therefore, the capacity of the capacitor C3 is small enough to remove noise.

更にまた、上記第2従来例では脈流電圧VDBの位相が90度〜180度でのピーク電圧を検出するため、電圧Vc2がVrH2に達するポイントは、脈流電圧VDBの位相が90度〜180度より後で且つ脈流電圧VDBが立ち上がった後に設定する必要があった。しかし本実施の形態では、脈流電圧VDBの立ち上がり部分でピーク電圧を検出するため、この検出ポイントを脈流電圧VDBの位相が0度〜90度に設定でき、停電検出に要する時間Tを短縮することが可能である。   Furthermore, in the second conventional example, since the peak voltage at the phase of the pulsating voltage VDB of 90 to 180 degrees is detected, the point at which the voltage Vc2 reaches VrH2 is at the point where the phase of the pulsating voltage VDB is 90 to 180 degrees. It was necessary to set it after the temperature and after the pulsating voltage VDB rose. However, in the present embodiment, since the peak voltage is detected at the rising portion of the pulsating voltage VDB, the detection point can be set at a phase of the pulsating voltage VDB of 0 to 90 degrees, and the time T required for power failure detection is reduced. It is possible to do.

(実施の形態2)
本発明に係る第2の実施の形態の回路図を図3に、その動作波形図を図4に示す。
(Embodiment 2)
FIG. 3 is a circuit diagram of the second embodiment according to the present invention, and FIG. 4 is an operation waveform diagram thereof.

図7に示した第2従来例と異なる点は、NOTゲートN1を省略することにより、定電流充電方式の充電回路と停電検出回路とを組み合わせた構成としたことであり、その他の第2従来例と同一構成には同一符号を付すことにより説明を省略する。   The difference from the second conventional example shown in FIG. 7 is that the NOT gate N1 is omitted, so that the charging circuit of the constant current charging system and the power failure detection circuit are combined. The same components as in the example are denoted by the same reference numerals, and description thereof will be omitted.

次に、図4を参照して動作を簡単に説明する。電圧V1がVrH1に達した時点で充電電流制御回路4によりスイッチング素子Q4をオンさせ、図4(b)に示す様に二次電池BATTの充電を開始する。充電電流IBによって抵抗R7に電圧が発生するので、この電圧を検出し、充電電流IBが所定値に達した時点で充電電流制御回路4によりスイッチング素子Q4をオフさせて二次電池BATTの充電を停止する。充電停止後は、電圧V1がVrL1に達した時点でスイッチング素子Q2をオフし、停電検出用のコンデンサC2の充電を開始する。VrL1は、二次電池BATTの充電時に電圧V1がVrL1以下にならないように充分低く、且つ脈流電圧VDBの谷部近傍で電圧V1がVrL1以下になるような値に設定する。また、停電時には二次電池BATTの充電を行わないようにする、つまり停電信号S1がHレベルのときにはスイッチング素子Q4はオフとする。   Next, the operation will be briefly described with reference to FIG. When the voltage V1 reaches VrH1, the switching element Q4 is turned on by the charging current control circuit 4, and charging of the secondary battery BATT is started as shown in FIG. 4B. Since a voltage is generated in the resistor R7 by the charging current IB, this voltage is detected, and when the charging current IB reaches a predetermined value, the switching element Q4 is turned off by the charging current control circuit 4 to charge the secondary battery BATT. Stop. After the charging is stopped, when the voltage V1 reaches VrL1, the switching element Q2 is turned off, and charging of the power failure detection capacitor C2 is started. VrL1 is set to a value that is sufficiently low so that the voltage V1 does not fall below VrL1 when charging the secondary battery BATT, and that the voltage V1 falls below VrL1 near the valley of the pulsating voltage VDB. At the time of a power failure, charging of the secondary battery BATT is not performed. That is, when the power failure signal S1 is at the H level, the switching element Q4 is turned off.

この様に構成したことにより、よって停電検出の精度のレベルを向上することが可能で、停電検出に要する時間Tを短縮することが可能であると共に、脈流電圧VDBが高い位相時で二次電池BATTの充電の開始及び停止を行う為、つまり、図4(b)に示す様に充電電流IBの位相幅が短くて済む為に、効率よく二次電池BATTの充電を行うことができる。また、上記第1の実施の形態に示した充電電流IBの位相幅と略等しいレベルまで充電電流IBの位相幅を広くすれば、電流トランスT1の出力電圧を下げても、第1の実施の形態に示した様な充電電流IBが得られるので、部品の小型化を図ることが可能となる。なお、上記第1の実施の形態に於いても、VrL1を高めに設定しておくことで、電源トランスの小型化を図ることが可能となる。   With this configuration, it is possible to improve the level of accuracy of the power failure detection, shorten the time T required for the power failure detection, and perform the secondary operation at the time when the pulsating voltage VDB is in a high phase. In order to start and stop charging of the battery BATT, that is, to shorten the phase width of the charging current IB as shown in FIG. 4B, the secondary battery BATT can be charged efficiently. If the phase width of the charging current IB is increased to a level substantially equal to the phase width of the charging current IB described in the first embodiment, the first embodiment can be performed even if the output voltage of the current transformer T1 is lowered. Since the charging current IB as shown in the embodiment can be obtained, it is possible to reduce the size of components. In the first embodiment as well, by setting VrL1 to a higher value, it is possible to reduce the size of the power transformer.

本発明に係る第1の実施の形態を示す回路図である。FIG. 2 is a circuit diagram showing a first embodiment according to the present invention. 上記実施の形態に係る動作波形図を示す。FIG. 4 shows an operation waveform diagram according to the embodiment. 本発明に係る第2の実施の形態を示す回路図である。FIG. 4 is a circuit diagram showing a second embodiment according to the present invention. 上記実施の形態に係る動作波形図を示す。FIG. 4 shows an operation waveform diagram according to the embodiment. 本発明に係る第1従来例を示す回路図である。FIG. 2 is a circuit diagram showing a first conventional example according to the present invention. 上記従来例に係る動作波形図を示す。FIG. 4 shows an operation waveform diagram according to the conventional example. 本発明に係る第2従来例を示す回路図である。FIG. 4 is a circuit diagram showing a second conventional example according to the present invention. 上記従来例に係る動作波形図を示す。FIG. 4 shows an operation waveform diagram according to the conventional example.

符号の説明Explanation of reference numerals

BATT 二次電池
Vac 交流電源
BATT rechargeable battery Vac AC power supply

Claims (2)

交流電源の通常時に充電されると共に、前記交流電源の遮断時に負荷に電力供給を行う二次電池と、前記交流電源の遮断を検出する停電検出回路と、前記交流電源を整流した脈流出力のサイクル毎に前記二次電池の充電を行う充電回路とを備える電源装置に於いて、前記停電検出回路が前記脈流電圧が零ボルトから上昇していく過程での所定の電圧を越えたことを検出した後に、前記二次電池の充電を開始すると共に、前記充電回路は、前記二次電池の充電電流を限流すると共に、前記充電電流値が所定値に達した時点で二次電池の充電を停止させる準定電流充電を行うものであることを特徴とする電源装置。 A secondary battery that is charged during normal operation of the AC power supply and supplies power to the load when the AC power supply is cut off, a power failure detection circuit that detects the cut off of the AC power supply, and a pulsating output of the AC power supply that is rectified. And a charging circuit for charging the secondary battery for each cycle, wherein the power failure detection circuit detects that the pulsating voltage has exceeded a predetermined voltage in a process of rising from zero volts. After the detection, the charging of the secondary battery is started, and the charging circuit limits the charging current of the secondary battery and charges the secondary battery when the charging current value reaches a predetermined value. Characterized in that it performs quasi-constant current charging for stopping the power supply. 交流電源の通常時に充電されると共に、前記交流電源の遮断時に負荷に電力供給を行う二次電池と、前記交流電源の遮断を検出する停電検出回路と、前記交流電源を整流した脈流出力のサイクル毎に前記二次電池の充電を行う充電回路とを備える電源装置に於いて、前記停電検出回路が前記脈流電圧が零ボルトから上昇していく過程での所定の電圧を越えたことを検出した後に、前記二次電池の充電を開始すると共に、前記充電回路は、前記二次電池の充電電流値を検出し、前記充電電流値が所定値に達した時点で二次電池の充電を停止させる定電流充電を行うものであることを特徴とする電源装置。 A secondary battery that is charged during normal operation of the AC power supply and supplies power to the load when the AC power supply is cut off, a power failure detection circuit that detects the cut off of the AC power supply, and a pulsating output of the AC power supply that is rectified. And a charging circuit for charging the secondary battery for each cycle, wherein the power failure detection circuit detects that the pulsating voltage has exceeded a predetermined voltage in a process of rising from zero volts. After the detection, the charging of the secondary battery is started, and the charging circuit detects a charging current value of the secondary battery, and charges the secondary battery when the charging current value reaches a predetermined value. A power supply device for performing constant current charging to stop the power supply.
JP2004205379A 2004-07-13 2004-07-13 Power supply unit Pending JP2004328998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004205379A JP2004328998A (en) 2004-07-13 2004-07-13 Power supply unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004205379A JP2004328998A (en) 2004-07-13 2004-07-13 Power supply unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31336895A Division JP3862307B2 (en) 1995-11-30 1995-11-30 Power supply

Publications (1)

Publication Number Publication Date
JP2004328998A true JP2004328998A (en) 2004-11-18

Family

ID=33509396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004205379A Pending JP2004328998A (en) 2004-07-13 2004-07-13 Power supply unit

Country Status (1)

Country Link
JP (1) JP2004328998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217694A (en) * 2005-02-02 2006-08-17 Ckd Corp Servo motor controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217694A (en) * 2005-02-02 2006-08-17 Ckd Corp Servo motor controller
JP4545007B2 (en) * 2005-02-02 2010-09-15 シーケーディ株式会社 Servo motor control device

Similar Documents

Publication Publication Date Title
JP5557224B2 (en) Device for detection of power converter fault condition
KR101055340B1 (en) Switching regulator and its operation control method
JP5050799B2 (en) Switching control circuit and AC / DC converter using the switching control circuit
JP5799537B2 (en) Switching power supply control circuit and switching power supply
JP5343393B2 (en) Switching power supply control semiconductor device
US8411397B2 (en) Power supply apparatus and method
JP4637694B2 (en) Power factor correction circuit and output voltage control method thereof
JP2628642B2 (en) Automatic voltage switching power supply
US11496055B2 (en) Power converter, switch control circuit and short circuit detection method for current sensing resistor of the power converter
US9559597B2 (en) Detecting open connection of auxiliary winding in a switching mode power supply
EP2365346A2 (en) Switching power supply
US8582322B2 (en) Power reduction of a power supply unit at light loading or no loading
WO2017010031A1 (en) Discharge device, power source device, and discharge method
JP2784136B2 (en) Switching power supply overload and short circuit protection circuit
JP5176551B2 (en) AC detection circuit and DC power supply device
US8022672B2 (en) Charger control circuit and charger control method
JP6032749B2 (en) Switching power supply
US9331580B2 (en) Switching power supply system and control circuit of the switching power supply system
JP2004328998A (en) Power supply unit
JP2007104792A (en) Switching regulator
JP2009232215A (en) Reset circuit, and semiconductor integrated circuit for power supply control
JP2005168296A (en) Power supply device
JP3862307B2 (en) Power supply
KR100339540B1 (en) Drive control circuit and method of step-up active filter for power factor control
KR20150112838A (en) Power supply device comprising the same