JPS634904B2 - - Google Patents
Info
- Publication number
- JPS634904B2 JPS634904B2 JP17474885A JP17474885A JPS634904B2 JP S634904 B2 JPS634904 B2 JP S634904B2 JP 17474885 A JP17474885 A JP 17474885A JP 17474885 A JP17474885 A JP 17474885A JP S634904 B2 JPS634904 B2 JP S634904B2
- Authority
- JP
- Japan
- Prior art keywords
- dispersed
- wear resistance
- based alloy
- carbides
- alloy sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 25
- 239000000956 alloy Substances 0.000 claims description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 150000001247 metal acetylides Chemical class 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 9
- 230000032683 aging Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 230000035882 stress Effects 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000005242 forging Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
〔産業上の利用分野〕
この発明は、すぐれた耐摩耗性を有し、かつ耐
熱性にもすぐれたCo基合金板材の製造法に関す
るものである。
〔従来の技術〕
一般に、チエンソーガイドや、木工加工用並び
に軽金属および合金切断用のこ歯、さらに蒸気タ
ービンのブレードなどの製造には、すぐれた耐摩
耗性と耐熱性が要求されることから、各種のCo
基合金板材が用いられている。
また、これらの各種Co基合金板材のうちの1
つとして、重量%で(以下%は重量%を示す)、
C:0.05〜2%、
WおよびMoのうちの1種または2種:2〜20
%、
Cr:15〜35%、
を含有し、さらに必要に応じて、
NiおよびFeのうちの1種または2種:1〜25
%、
を含有し、残りがCoと不可避不純物からなる組
成を有するCo基合金板材が広く知られている。
このCo基合金板材は、通常、鋳造後のインゴ
ツトに、分塊鍛造や分塊圧延、さらに熱間圧延や
冷間圧延を施して、板厚:約1〜4mmを有する板
材とし、これに1100〜1250℃の温度で溶体化処理
を施すことによつて製造され、この状態で実用に
供されている。
〔発明が解決しようとする問題点〕
しかし、近年、上記の利用分野においても高速
化や高性能化が要求されるようになつており、こ
れに伴つて、上記の従来Co基合金板材のもつ耐
摩耗性のより一層の向上が望まれている。
〔問題点を解決するための手段〕
そこで、本発明者等は、上述のような観点か
ら、上記の従来Co基合金板材に着目し、これの
もつ耐摩耗性を一段と向上せしめるべく研究を行
なつた結果、上記従来Co基合金板材は、溶体化
処理後、素地に1次炭化物が分散し、かつ2次炭
化物が結晶粒界だけに析出した組織をもつが、こ
の溶体化処理後のCo基合金板材に対して、これ
を定盤間にはさんだ応力付加状態で、700〜1000
℃の温度で時効処理を施すと、この結果のCo基
合金板材においては、1次炭化物が素地中に、ま
た2次炭化物が結晶粒界に分散した状態で存在す
るが、さらに2次炭化物が結晶粒内に析出した組
織をもつようになり、しかもこの結晶粉内に析出
した2次炭化物は直径:1μm以下の微細なもの
であるため、結晶粒内の硬さが、従来Co基合金
板材ではビツカース硬さで約250であつたものが、
同300程度にまで向上し、耐摩耗性の著しい改善
がはかれるようになり、さらに前記の溶体化処理
後のCo基板材に「そり」があれば、これが矯正
されるようになるばかりでなく、このそりは前記
2次炭化物の析出を促進させるように働くという
知見を得たのである。
したがつて、この発明は、上記知見にもとづい
てなされたものであつて、
C:0.05〜2%、
WおよびMoのうちの1種または2種:2〜20
%、
Cr:15〜35%、
を含有し、さらに必要に応じて、
NiおよびFeのうちの1種または2種:1〜25
%、
を含有し、残りがCoと不可避不純物からなる組
成を有し、かつ通常の条件で溶体化処理を施した
Co基合金板材に対して、さらに、これを耐熱鋼
やステンレス鋼製などの定盤間にはさんだ応力付
加状態で、700〜1000℃の温度で時効処理を施す
ことによつて、素地中に1次炭化物が、また結晶
粒界に2次炭化物が分散し、さらに結晶粒内に直
径:1μm以下の2次炭化物が分散した組織を有
する。耐摩耗性の著しくすぐれたCo基合金板材
を製造する方法に特徴を有するものである。
つぎに、この発明の方法において、Co基合金
板材の成分組成および時効処理温度を上記の通り
に限定した理由を説明する。
A 成分組成
(a) C
C成分には、炭化物を形成して耐摩耗性を
向上させる作用があるが、その含有量が0.05
%未満では、特に2次炭化物の析出が不十分
となり、所望の耐摩耗性を確保することがで
きず、一方その含有量が2%を越えると、塑
性加工が困難になることから、その含有量を
0.05〜2%と定めた。
(b) WおよびMo
これらの成分には、一部が素地に固溶し
て、これを強化するほか、炭化物を形成して
耐摩耗性を向上させる作用があるが、その含
有量が2%未満では前記作用に所望の効果が
得られず、一方その含有量が20%を越える
と、塑性加工性が低下するようにるほか、板
材に脆化傾向が現われるようになることか
ら、その含有量を2〜20%と定めた。
(c) Cr
Cr成分には、素地に固溶して耐熱性を向
上させるほか、炭化物を形成して耐摩耗性を
向上させる作用があるが、その含有量が15%
未満では前記作用に所望の効果が得られず、
一方その含有量が35%を越えると、σ相など
の脆化相が出現するようになつて塑性加工性
および延性が低下するようになることから、
その含有量を15〜35%と定めた。
(d) NiおよびFe
これらの成分には、素地に固溶して、延性
および塑性加工性を向上させる作用があるの
で、特にこれらの特性が要求される場合に必
要に応じて含有されるが、その含有量が1%
未満では前記作用に所望の向上効果が得られ
ず、一方その含有量が25%を越えると耐摩耗
性の低下が著しくなることから、その含有量
を1〜25%と定めた。
B 時効処理温度
その温度が700℃未満では、結晶粒内に微細
な2次炭化物を十分析出させることができず、
一方その温度が1000℃を越えると、2次炭化物
が粗大化するようになつて所望の耐摩耗性を確
保することができないことから、その温度を
700〜1000℃と定めた。
なお、時効処理に際しての付加応力および保
持時間に特に制限はなく、Co基合金板材の組
成や板厚、さらにそりの程度などによつて適宜
定めてやればよいが、付加応力にあつては、
100〜500g/cm2、保持時間にあつては15分〜20
時間を目やすとすればよい。
〔実施例〕
つぎに、この発明の方法を実施例により具体的
に説明する。
通常の溶解法を用い、それぞれ第1表に示され
る成分組成をもつたCo基合金溶湯を調製し、鋳
造して直径:90mmφ×長さ:350mmの寸法をもつ
たインゴツトとした後、このインゴツトに、1200
〜1000℃の温度での熱間鍛造、並びに1200〜1000
℃での熱間圧延を施して板厚:2mmの熱延板と
し、さらにこの熱延板に温度:1200℃に30分間保
持後、空冷の条件で溶体化処理を施し、ついでこ
の溶体化処理後の幅:200mm×厚さ:2mm×長
さ:300mmの寸法をもつた板材:3枚を、幅:500
mm×厚さ:50mm×長さ:1000mmの寸法をもつた耐
熱鋼製下部定盤、並びに幅:500mm×厚さ:100mm
×長さ:1000mmの寸法をもつた耐熱鋼製上部定盤
の間
[Industrial Application Field] The present invention relates to a method for producing a Co-based alloy plate material that has excellent wear resistance and heat resistance. [Prior Art] In general, excellent wear resistance and heat resistance are required for manufacturing chain saw guides, saw teeth for woodworking, light metal and alloy cutting, and steam turbine blades. Various Co
Base alloy plate material is used. In addition, one of these various Co-based alloy sheet materials
In terms of weight% (hereinafter % indicates weight%), C: 0.05 to 2%, one or two of W and Mo: 2 to 20
%, Cr: 15 to 35%, and, if necessary, one or two of Ni and Fe: 1 to 25
%, with the remainder consisting of Co and unavoidable impurities. Co-based alloy sheet materials are widely known. This Co-based alloy sheet material is usually made into a sheet material having a thickness of approximately 1 to 4 mm by subjecting the ingot after casting to blooming forging, blooming rolling, hot rolling, and cold rolling. It is manufactured by solution treatment at a temperature of ~1250°C, and is put into practical use in this state. [Problems to be solved by the invention] However, in recent years, there has been a demand for higher speeds and higher performance even in the above-mentioned fields of application, and with this, the above-mentioned conventional Co-based alloy sheet materials have Further improvement in wear resistance is desired. [Means for solving the problem] Therefore, from the above-mentioned viewpoint, the present inventors focused on the above-mentioned conventional Co-based alloy sheet material and conducted research to further improve its wear resistance. As a result, after solution treatment, the conventional Co-based alloy sheet material described above has a structure in which primary carbides are dispersed in the matrix and secondary carbides are precipitated only at grain boundaries. 700 to 1000 when stress is applied to the base alloy plate material between surface plates.
When subjected to aging treatment at a temperature of It now has a structure precipitated within the crystal grains, and the secondary carbides precipitated within this crystal powder are fine particles with a diameter of 1 μm or less, so the hardness within the crystal grains is lower than that of conventional Co-based alloy sheets. Then, the one with a Bitkers hardness of about 250,
300, which significantly improves wear resistance.Furthermore, if there is any "warpage" in the Co substrate material after the solution treatment, it not only corrects this, but also improves wear resistance. It was found that this warping acts to promote the precipitation of the secondary carbides. Therefore, this invention was made based on the above findings, and includes: C: 0.05 to 2%, one or two of W and Mo: 2 to 20%.
%, Cr: 15 to 35%, and, if necessary, one or two of Ni and Fe: 1 to 25
%, with the remainder consisting of Co and unavoidable impurities, and was subjected to solution treatment under normal conditions.
The Co-based alloy plate material is further aged between 700 and 1000 degrees Celsius with stress placed between surface plates made of heat-resistant steel or stainless steel. It has a structure in which primary carbides are dispersed, secondary carbides are dispersed at grain boundaries, and secondary carbides with a diameter of 1 μm or less are further dispersed within the crystal grains. This method is characterized by a method for producing a Co-based alloy sheet material with extremely high wear resistance. Next, the reason why the composition and aging treatment temperature of the Co-based alloy sheet material are limited as described above in the method of the present invention will be explained. A Component composition (a) C C component has the effect of forming carbide and improving wear resistance, but if its content is 0.05
If the content is less than 2%, the precipitation of secondary carbides will be insufficient, making it impossible to secure the desired wear resistance.On the other hand, if the content exceeds 2%, plastic working will become difficult. quantity
It was set at 0.05-2%. (b) W and Mo These components partially form a solid solution in the base material and have the effect of strengthening it and forming carbides to improve wear resistance, but the content is 2%. If the content is less than 20%, the desired effect cannot be obtained; on the other hand, if the content exceeds 20%, the plastic workability will decrease and the plate material will tend to become brittle. The amount was set at 2-20%. (c) Cr The Cr component has the effect of improving heat resistance by forming a solid solution in the base material, as well as improving wear resistance by forming carbide, but the content is 15%.
If it is less than the desired effect, the desired effect cannot be obtained.
On the other hand, if the content exceeds 35%, embrittlement phases such as σ phase will appear and plastic workability and ductility will decrease.
Its content was set at 15-35%. (d) Ni and Fe These components dissolve in solid solution in the base material and have the effect of improving ductility and plastic workability, so they may be included as necessary when these properties are particularly required. , its content is 1%
If the content is less than 25%, the desired effect of improving the above action cannot be obtained, while if the content exceeds 25%, the wear resistance will be significantly lowered, so the content is set at 1 to 25%. B Aging treatment temperature If the temperature is less than 700°C, fine secondary carbides cannot be produced sufficiently within the crystal grains.
On the other hand, if the temperature exceeds 1000℃, the secondary carbides will become coarser and the desired wear resistance cannot be achieved.
The temperature was set at 700-1000℃. Note that there are no particular restrictions on the added stress and holding time during aging treatment, and they may be determined as appropriate depending on the composition and thickness of the Co-based alloy sheet material, as well as the degree of warpage.
100-500g/cm 2 , retention time 15-20 minutes
All you have to do is keep an eye on the time. [Example] Next, the method of the present invention will be specifically explained with reference to Examples. Molten Co-based alloys having the respective compositions shown in Table 1 are prepared using a normal melting method, and cast into ingots with dimensions of diameter: 90 mmφ x length: 350 mm. to, 1200
Hot forging at temperatures of ~1000℃, as well as 1200~1000
A hot-rolled plate with a thickness of 2 mm was obtained by hot rolling at ℃, and this hot-rolled plate was further held at a temperature of 1200℃ for 30 minutes, then subjected to solution treatment under air cooling conditions, and then this solution treatment Rear width: 200mm x Thickness: 2mm x Length: 300mm: 3 boards, Width: 500mm
Heat-resistant steel lower surface plate with dimensions of mm x thickness: 50 mm x length: 1000 mm, and width: 500 mm x thickness: 100 mm
× Length: Between the upper surface plates made of heat-resistant steel with dimensions of 1000 mm
【表】【table】
第1表に示される結果から、本発明法によつて
製造された板材においては、いずれも微細な2次
炭化物が結晶粒内に析出した組織をもつので、2
次炭化物が結晶粒界だけに析出した組織を有する
溶体化処理ままの板材に比してすぐれた耐摩耗性
を示すことが明らかである。
上述のように、この発明の方法によれば、直
径:1μm以下の微細な2次炭化物が結晶粒内に
析出した組織を有するCo基合金板材を製造する
ことができ、前記2次炭化物の析出によつて結晶
粒自体の硬さが著しく向上するようになるので、
前記Co基合金板材はきわめてすぐれた耐摩耗性
を示すようになるなど工業上有用な効果がもたら
されるのである。
From the results shown in Table 1, it can be seen that the plates manufactured by the method of the present invention all have a structure in which fine secondary carbides are precipitated within the crystal grains.
It is clear that the plate material exhibits superior wear resistance compared to the as-solution-treated plate material, which has a structure in which subcarbides are precipitated only at grain boundaries. As described above, according to the method of the present invention, it is possible to produce a Co-based alloy sheet material having a structure in which fine secondary carbides with a diameter of 1 μm or less are precipitated within the crystal grains, and the precipitation of the secondary carbides is As a result, the hardness of the crystal grain itself is significantly improved.
The Co-based alloy sheet material has industrially useful effects such as extremely excellent wear resistance.
Claims (1)
%、 Cr:15〜35%、 を含有し、残りがCoと不可避不純物からなる組
成(以上重量%)を有するCo基合金板材に、通
常の条件で溶体化処理を施した後、これを定盤間
にはさんだ応力付加状態で、700〜1000℃の温度
で時効処理を施すことによつて、その組織を、素
地中に1次炭化物が、また結晶粒界に2次炭化物
が分散し、かつ結晶粒内に直径:1μm以下の2
次炭化物が分散した組織とすることを特徴とする
耐摩耗性のすぐれたCo基合金板材の製造法。 2 C:0.05〜2%、 WおよびMoのうちの1種または2種:2〜20
%、 Cr:15〜35%、 を含有し、さらに、 NiおよびFeのうちの1種または2種:1〜25
%、 を含有し、残りがCoと不可避不純物からなる組
成(以上重量%)を有するCo基合金板材に、通
常の条件で溶体化処理を施した後、これを定盤間
にはさんだ応力付加状態で、700〜1000℃の温度
で時効処理を施すことによつて、その組織を、素
地中に1次炭化物が、また結晶粒界に2次炭化物
が分散し、かつ結晶粒内に直径:1μm以下の2
次炭化物が分散した組織とすることを特徴とする
耐摩耗性のすぐれたCo基合金板材の製造法。[Claims] 1 C: 0.05 to 2%, one or two of W and Mo: 2 to 20
%, Cr: 15 to 35%, and the remainder is Co and unavoidable impurities (weight%). After solution treatment is performed under normal conditions, this is determined. By performing aging treatment at a temperature of 700 to 1000℃ with stress applied between the discs, the structure is changed so that primary carbides are dispersed in the matrix and secondary carbides are dispersed at the grain boundaries. And within the crystal grains, there is a diameter of 1 μm or less.
A method for producing a Co-based alloy sheet material with excellent wear resistance characterized by a structure in which subcarbides are dispersed. 2 C: 0.05-2%, one or two of W and Mo: 2-20
%, Cr: 15-35%, and further contains one or two of Ni and Fe: 1-25
%, with the remainder consisting of Co and unavoidable impurities (weight %) is subjected to solution treatment under normal conditions, and then subjected to stress by sandwiching it between surface plates. By aging treatment at a temperature of 700 to 1000°C, the structure is changed such that primary carbides are dispersed in the matrix, secondary carbides are dispersed in the grain boundaries, and the grains have a diameter of: 2 less than 1μm
A method for producing a Co-based alloy sheet material with excellent wear resistance characterized by a structure in which subcarbides are dispersed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17474885A JPS6237354A (en) | 1985-08-08 | 1985-08-08 | Manufacture of co base alloy plate material superior in wear resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17474885A JPS6237354A (en) | 1985-08-08 | 1985-08-08 | Manufacture of co base alloy plate material superior in wear resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6237354A JPS6237354A (en) | 1987-02-18 |
JPS634904B2 true JPS634904B2 (en) | 1988-02-01 |
Family
ID=15983989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17474885A Granted JPS6237354A (en) | 1985-08-08 | 1985-08-08 | Manufacture of co base alloy plate material superior in wear resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6237354A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102624036B1 (en) * | 2022-11-29 | 2024-01-12 | 서울대학교산학협력단 | Longitudinal deployable vacuum suction cup |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2678292B2 (en) * | 1988-07-13 | 1997-11-17 | 株式会社神戸製鋼所 | Heat-treated aluminum alloy semi-finished product with excellent strength and method for manufacturing the product |
JP6497689B2 (en) * | 2012-09-14 | 2019-04-10 | 国立大学法人東北大学 | Co-Cr-W base alloy hot-worked material, annealed material, cast material, homogenized heat treatment material, Co-Cr-W-based alloy hot-worked material manufacturing method, and annealed material manufacturing method |
-
1985
- 1985-08-08 JP JP17474885A patent/JPS6237354A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102624036B1 (en) * | 2022-11-29 | 2024-01-12 | 서울대학교산학협력단 | Longitudinal deployable vacuum suction cup |
Also Published As
Publication number | Publication date |
---|---|
JPS6237354A (en) | 1987-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5887244A (en) | Copper base spinodal alloy strip and manufacture | |
TWI789871B (en) | Manufacturing method of Wostian iron-based stainless steel strip | |
JP3723924B2 (en) | Heat-resistant cast steel and method for producing the same | |
JPH0641623B2 (en) | Controlled expansion alloy | |
JPS5946300B2 (en) | Steel for cold forging with excellent machinability and its manufacturing method | |
JP3613395B2 (en) | Hot work tool steel | |
JPS634904B2 (en) | ||
JP3581028B2 (en) | Hot work tool steel and high temperature members made of the hot work tool steel | |
JPH0461057B2 (en) | ||
JPH0532442B2 (en) | ||
JPS5815529B2 (en) | Setsusaku Kougu Oyobi Sonoseizouhou | |
JP2738130B2 (en) | High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same | |
JPS634905B2 (en) | ||
JPS635464B2 (en) | ||
JP2697242B2 (en) | Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same | |
JP3417922B2 (en) | Cast iron for sizing press die | |
JPS634906B2 (en) | ||
JP3448021B2 (en) | Multi-layer roll for hot rolling | |
JP3099911B2 (en) | Damping alloy | |
JP3049567B2 (en) | Manufacturing method of Ni-base heat-resistant alloy material | |
JPH10152759A (en) | Maraging steel excellent in toughness | |
JP3188625B2 (en) | B-containing austenitic stainless steel excellent in hot workability and method for producing the same | |
JPH0236669B2 (en) | ||
JP2745647B2 (en) | Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability | |
JPH0665691A (en) | High ni alloy sheet strip excellent in corrosion resistance and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |