JPS6348858A - Optical sensor array - Google Patents

Optical sensor array

Info

Publication number
JPS6348858A
JPS6348858A JP61193164A JP19316486A JPS6348858A JP S6348858 A JPS6348858 A JP S6348858A JP 61193164 A JP61193164 A JP 61193164A JP 19316486 A JP19316486 A JP 19316486A JP S6348858 A JPS6348858 A JP S6348858A
Authority
JP
Japan
Prior art keywords
layer
resistivity
discrete electrodes
electrodes
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61193164A
Other languages
Japanese (ja)
Other versions
JP2707540B2 (en
Inventor
Masakazu Ueno
正和 上野
Toshiaki Kato
利明 加藤
Shinji Nishiura
西浦 真治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61193164A priority Critical patent/JP2707540B2/en
Publication of JPS6348858A publication Critical patent/JPS6348858A/en
Application granted granted Critical
Publication of JP2707540B2 publication Critical patent/JP2707540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the resolution of a close contact type image sensor, in an optical sensor array using a semiconductor thin film having a P-I-N structure, by setting the resistivity of a P layer or an N layer on the side of discrete electrodes to be a specified value or more, thereby reducing leakage between the neighboring discrete electrodes. CONSTITUTION:Discrete electrodes 21, 22... comprising transparent conducting films are formed on a glass plate 1. An insulating film 5 is formed so as to cover the lead wire part of the discrete electrodes. An a-Si layer 3 and a common electrodes 4 are formed thereon. The insulating film 5 is formed as follows: an inorganic thin film comprising a resin such as polyimide or silicon nitride, silicon oxide and the like is formed, and thereafter patterning is performed by a photolithography method. The structure of the a-Si layer 3 comprises three P-I-N layers. The resistivity of the doped layer (in this case, the P layer 31) on the side of the discrete electrodes is controlled at 10<5> OMEGA.cm or more. Thus, a leaking current, which flows between the discrete electrode and a common electrode through the N layer, can be largely reduced. Therefore, dark current can be decreased and the S/N ratio can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、p、l、n3層の半導体薄膜で構成され、一
側に共通電極を有する光電変換層の他側にそれぞれ独立
の個別電極を設けてなる光電変換・?、要素を一線上に
配列した光センサアレイに関する。 そのようなセンサアレイは、ファクシミリ等のための密
着型イメージセンサに用いられる。
The present invention is a photoelectric conversion system consisting of three semiconductor thin films of p, l, and n layers, and a photoelectric conversion layer having a common electrode on one side and independent individual electrodes on the other side. , relates to an optical sensor array in which elements are arranged in a line. Such a sensor array is used in a contact image sensor for facsimile and the like.

【従来技術とその問題点】[Prior art and its problems]

ファクシミリの小型化、低価格化、さらには光学収差な
どによる信号読取りの誤差を小さくするために、ファク
シミリ用密着型イメージセンサの開発が進められている
。従来、このセンサにはCCD等の素子を用いて作られ
ていたが、大面積化が可能な薄膜半導体を用いるものに
開発が向かいつつある。 第2図は密着型イメージセンサユニットの実装概略図で
ある。ユニットは発光ダイオードアレイ11、屈折率分
布形レンズアレイ12および光センサアレイ13から構
成されている。原稿14の上の文字あるいは画像を、屈
折率分布形レンズ12を通してセンサアレイの光電変換
要素15に等寸法で結像させ、駆動IC16により時系
列信号に変換する。第1図は光電変換部を示し、第1図
fatは平面透視図、第1図中)および(C1はそれぞ
れ第1図ta+のA−A’面。 B−B”面における断面図である。ガラス板1上に透明
導電膜からなる個別量i21,22・・・を形成し、そ
の上に非晶質シリコン(a −St) N 3、さらに
その上に共通電極4を形成する。共通i極4は、その端
が取り出し電極部分41とつながっている。 また個別電極21〜25は一方の側が細かいリード線と
して形成されており、図示しないアナログスイッチ、増
幅器からなる駆動用ICと接続されている。このように
して単一光電変換要素は各個別量8i21〜25と共通
電極4の間に形成される。 a−3i層3は2層31.1層32.  n層33の3
層で出来ている。従来、a −5iは単結晶S1に比較
して抵抗が高いために、画素毎に分離する必要がないと
いわれてきた。しかし実際に試作してみると、画素間の
分離が悪く解像度の低下を招いていた。 画素間の分解能の低下は、主に個別電極例えば21の上
で発生した電流が2層31を通して隣接する個別電極2
2にリークする結果であることが別かった。 上記の問題を避けるために、a−5i層をフォトリソグ
へ、ソイ法等により分割する方法があるが、所望の分解
能は得られるものの、工程数が増すばかりでなく、エツ
チング面での短絡により歩留りが低く抑えられてしまう
BACKGROUND ART Contact type image sensors for facsimiles are being developed in order to make facsimiles smaller and cheaper, and to reduce errors in signal reading due to optical aberrations. Conventionally, this sensor has been made using elements such as CCDs, but development is moving toward sensors using thin film semiconductors that can be made larger in area. FIG. 2 is a schematic diagram of the implementation of the contact type image sensor unit. The unit is composed of a light emitting diode array 11, a gradient index lens array 12, and a photosensor array 13. Characters or images on the original 14 are imaged with equal dimensions on the photoelectric conversion element 15 of the sensor array through the gradient index lens 12, and converted into a time-series signal by the driving IC 16. FIG. 1 shows a photoelectric conversion unit, and FIG. 1 fat is a plan perspective view in FIG. . Individual portions i21, 22, . The end of the i-pole 4 is connected to the extraction electrode portion 41.One side of the individual electrodes 21 to 25 is formed as a fine lead wire, and is connected to a drive IC consisting of an analog switch and an amplifier (not shown). In this way, a single photoelectric conversion element is formed between each of the individual quantities 8i 21 to 25 and the common electrode 4. The a-3i layer 3 consists of two layers 31.1 layer 32.3 of the n layer 33.
It is made up of layers. Conventionally, it has been said that since a-5i has a higher resistance than single crystal S1, there is no need to separate each pixel. However, when we actually tried making a prototype, we found that the separation between pixels was poor, leading to a drop in resolution. The decrease in resolution between pixels is mainly due to the current generated on the individual electrode 21 flowing through the two layers 31 to the adjacent individual electrode 2.
The difference was that the result leaked to 2nd. In order to avoid the above problems, there is a method of dividing the A-5i layer into photolithography using the soy method, etc., but although the desired resolution can be obtained, it not only increases the number of steps but also reduces the yield due to short circuits on the etched surface. is kept low.

【発明の目的】[Purpose of the invention]

本発明は、各光電変換要素に共通に形成したp−1−n
構造の半導体薄膜を通してのリークを、半導体薄膜を要
素毎に分割することなく阻止した光センサアレイを提供
することを目的とする。
The present invention provides p-1-n formed commonly in each photoelectric conversion element.
It is an object of the present invention to provide a photosensor array in which leakage through a semiconductor thin film of a structure is prevented without dividing the semiconductor thin film into elements.

【発明の要点】[Key points of the invention]

本発明は、p−1−n構造の光電変換層を構成する半導
体薄膜のうち、個別電極に隣接する一導電形の層の抵抗
率を105Ω・1以上とすることにより、隣接個別電極
間のリーク電流を抑制して上記の目的を達成する。
In the present invention, by setting the resistivity of the layer of one conductivity type adjacent to the individual electrodes to 105Ω·1 or more among the semiconductor thin films constituting the photoelectric conversion layer of the p-1-n structure, the distance between the adjacent individual electrodes is improved. The above objective is achieved by suppressing leakage current.

【発明の実施例】[Embodiments of the invention]

a−5iは通常5iHeガス中の高周波グロー放電によ
り形成される。すなわち、公知の技術によりp層生成時
にはBzHh (ジボラン)ガスとさらに光学ギャップ
を広げ、感度を向上させるためにC*Hz(アセチレン
)等の炭化水素ガスを添加する。また、n層生成時には
PI!!(ホスフィン)ガスを添加する。p層またはn
1liの抵抗率を変化させるためには、これらドーピン
グガス、BzHiまたはPHsの濃度を変えればよい。 第3図は、イメージセンサの分解能を表すパラメータで
あるMTF  (モジュレーシヨン・トランスファ・フ
ァンクシラン)とそのpJ1生成時のガス中のaxis
濃度との関係を示したものである。なおC12のガス濃
度は5%である。はう素濃度が上がると2層31の抵抗
率が下がり、前記のようにリーク電流が多くなって分解
能が低下する。ところでMTFとは、第4図fatに示
すようなストライブパターンを光電変換したときの信号
電流が第4図中)のようになったとした場合、信号tf
Lの最大値1.1111と最小値f elmから次式で
求められる。 (I□、+1.五、1) 一般にファクシミリ用のイメージセンサはMTF〉50
%が要求されている。従って、第3図からBAH,濃度
は0.1%以下であることが必要となる。 ちなみにBIH&濃度が0.1%の時のp層の抵抗率は
約lXl0’Ω・国であり、1%の時は約lXl0’Ω
・備である。 以上の実験事実から、p−!−n構造のa −5t光セ
ンサアレイでは、個別電極に隣接するpNあるいはn層
の抵抗率は105Ω・1以上であることが必要である。 また、前記の理由により個別電極間のリークはp層又は
n層の抵抗率にのみ依存し、各々の組成、ドーパントの
種類には依らない、ただし、5IHaとB、H,から形
成したp層あるいはSiH*とPH3から形成したn層
では所望の高砥抗を得るためには、上述の例よりさらに
B、H,又はPH,濃度を下げる必要がある。しかしこ
うすることによって良好な接合が得られず、不安定であ
る。従って、個別itsに隣接する層は、反応ガスにメ
タン、アセチレン等の炭化水素ガスを加えて、非晶質シ
リコンカーバイド (a−5iC)とすることが望まし
い。 第5図は、本発明による他の構造を示している。 同図(a)は平面透視図を、(b)は(Illにおける
c−c’面の断面図を夫々示している。ガラスMl上に
遇明導電膜からなる個別電極21.22・・・を形成し
、その上に絶縁膜5を個別電極のリード線部分を覆う様
に形成する。その上にa−Stn層、更に共通雪掻4を
形成する。この絶縁膜5は、ポリイミド等の樹脂あるい
は窒化シリコン、酸化シリコン等の無機薄膜を形成した
後フォトリングラフィ法によりパターニングすることに
よるものである。また、a−3i1i3の構造は前例と
同じ<p−1−n3層であり、個別電極側のドープl(
この場合は2層31)の抵抗率は10SΩ・1以上に制
御される。 本実施例の特徴は、個別電極とa−3tNの間に絶縁膜
を挿入したことであり、これによりn層を通じて個別電
極−共通1i極間を流れるリーク電流を大幅に低減する
ことが出来る。従って、暗電流を減らしS/N比を向上
させることが出来るのである。
a-5i is usually formed by high frequency glow discharge in 5iHe gas. That is, when the p-layer is formed using a known technique, a hydrocarbon gas such as C*Hz (acetylene) is added in addition to BzHh (diborane) gas in order to further widen the optical gap and improve sensitivity. Also, when generating the n layer, PI! ! (phosphine) gas is added. p layer or n
In order to change the resistivity of 1li, the concentration of these doping gases, BzHi or PHs, can be changed. Figure 3 shows MTF (Modulation Transfer Funcsilane), a parameter representing the resolution of the image sensor, and its axis in the gas when pJ1 is generated.
This shows the relationship with concentration. Note that the gas concentration of C12 is 5%. As the boronic concentration increases, the resistivity of the second layer 31 decreases, and as mentioned above, leakage current increases and resolution decreases. By the way, MTF means that if the signal current when photoelectrically converting the stripe pattern shown in Fig. 4 fat becomes as shown in Fig. 4, then the signal tf
It is obtained from the maximum value of L, 1.1111, and the minimum value f elm using the following equation. (I□, +1.5, 1) Generally, image sensors for facsimile have MTF>50
% is requested. Therefore, from FIG. 3, the BAH concentration must be 0.1% or less. By the way, the resistivity of the p-layer when the BIH concentration is 0.1% is approximately lXl0'Ω, and when it is 1% it is approximately lXl0'Ω.
・It is prepared. From the above experimental facts, p-! In the a-5t photosensor array with the -n structure, the resistivity of the pN or n layer adjacent to the individual electrodes must be 10 5 Ω·1 or more. Furthermore, for the above-mentioned reason, leakage between individual electrodes depends only on the resistivity of the p-layer or n-layer, and does not depend on the composition or type of dopant. Alternatively, in order to obtain the desired high abrasive resistance in the n-layer formed from SiH* and PH3, it is necessary to further lower the concentration of B, H, or PH than in the above example. However, by doing so, a good bond cannot be obtained and is unstable. Therefore, it is desirable that the layer adjacent to the individual ITS be made of amorphous silicon carbide (a-5iC) by adding a hydrocarbon gas such as methane or acetylene to the reaction gas. FIG. 5 shows another structure according to the invention. The same figure (a) shows a plane perspective view, and (b) shows a cross-sectional view of the c-c' plane in (Ill).Individual electrodes 21, 22, . is formed, and an insulating film 5 is formed thereon so as to cover the lead wire portions of the individual electrodes.A-Stn layer and a common snow scraper 4 are formed thereon.This insulating film 5 is made of polyimide or the like. This is done by forming an inorganic thin film of resin, silicon nitride, silicon oxide, etc., and then patterning it using photolithography.The structure of a-3i1i3 is the same as the previous example, with <p-1-n3 layers, and individual Dope l on the electrode side (
In this case, the resistivity of the second layer 31) is controlled to 10 SΩ·1 or more. A feature of this embodiment is that an insulating film is inserted between the individual electrodes and the a-3tN, thereby making it possible to significantly reduce the leakage current flowing between the individual electrodes and the common 1i electrode through the n-layer. Therefore, dark current can be reduced and the S/N ratio can be improved.

【発明の効果】【Effect of the invention】

本発明に依れば、p−1−n構造の半導体薄膜を用いた
光センサアレイにおいて、個別電極側のp層又はnMの
抵抗率を105Ω・1以上としだために、隣接個別電極
間のリークを低減させ、密着型イメージセンサの解像度
を向上させることが出来た。特に、抵抗率を高める層を
a−5ICとすることにより、良好な接合を形成でき、
特性の低下を招くことがない。
According to the present invention, in an optical sensor array using a semiconductor thin film with a p-1-n structure, in order to increase the resistivity of the p layer or nM on the individual electrode side to 105Ω·1 or more, it is possible to We were able to reduce leakage and improve the resolution of the contact type image sensor. In particular, by using a-5IC as the layer that increases resistivity, a good bond can be formed,
No deterioration of characteristics occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施の対象となる光センサアレイの一
例の光電変換部を示し、fatは平面図、(bl。 telはそれぞれ(alのA−A’面、B−8’面断面
図、第2図は光センサアレイを備えた密着型イメージセ
ンサの実装概略側面図、第3図はイメージセンサのMT
Fとphi生成時のBJ、濃度の関係線図、第4図はM
TFの定義の説明図、第5図は光電変換部の第1図と異
なる構造を示し、(alは平面図、(b)はfatのc
−c’面断面図である。 1ニガラス板、21.22.23.24.25:個別電
極、3 : a−5i層、31: pF!、32: n
層、33:nJi、] 第1図 第2図 第3図
FIG. 1 shows a photoelectric conversion unit of an example of a photosensor array to which the present invention is implemented, where fat is a plan view, (bl), and tel (al) are cross-sections on the A-A' and B-8' planes, respectively. Figure 2 is a schematic side view of the implementation of a contact type image sensor equipped with a photosensor array, and Figure 3 is an MT of the image sensor.
Relationship diagram between F and BJ and concentration during phi generation, Figure 4 is M
Figure 5, which is an explanatory diagram of the definition of TF, shows the structure of the photoelectric conversion unit that is different from Figure 1, (al is a plan view, (b) is c of fat
-c' plane sectional view. 1 glass plate, 21.22.23.24.25: individual electrode, 3: a-5i layer, 31: pF! , 32: n
Layer, 33: nJi, ] Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)p、i、n3層の半導体薄膜で構成され、一側に共
通電極を有する光電変換層の他側にそれぞれ独立の個別
電極を設けてなる光電変換要素を一線上に配列したもの
において、個別電極に隣接する半導体薄膜の一導電形の
層の抵抗率が10^5Ω・cm以上であることを特徴と
する光センサアレイ。 2)特許請求の範囲第1項記載のアレイにおいて、個別
電極に隣接し、10^5Ω・cm以上の抵抗率を有する
半導体薄膜の一導電形の層が非晶質シリコンカーバイド
を主成分とすることを特徴とする光センサアレイ。
[Scope of Claims] 1) A photoelectric conversion element consisting of three semiconductor thin films of p, i, and n layers and having a common electrode on one side and independent individual electrodes on the other side of the photoelectric conversion element. 1. An optical sensor array characterized in that a layer of one conductivity type of a semiconductor thin film adjacent to an individual electrode has a resistivity of 10^5 Ω·cm or more. 2) In the array according to claim 1, the layer of one conductivity type of the semiconductor thin film, which is adjacent to the individual electrode and has a resistivity of 10^5 Ω·cm or more, is mainly composed of amorphous silicon carbide. An optical sensor array characterized by:
JP61193164A 1986-08-19 1986-08-19 Optical sensor array Expired - Lifetime JP2707540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193164A JP2707540B2 (en) 1986-08-19 1986-08-19 Optical sensor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193164A JP2707540B2 (en) 1986-08-19 1986-08-19 Optical sensor array

Publications (2)

Publication Number Publication Date
JPS6348858A true JPS6348858A (en) 1988-03-01
JP2707540B2 JP2707540B2 (en) 1998-01-28

Family

ID=16303354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193164A Expired - Lifetime JP2707540B2 (en) 1986-08-19 1986-08-19 Optical sensor array

Country Status (1)

Country Link
JP (1) JP2707540B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717952A (en) * 1980-07-09 1982-01-29 Oki Electric Ind Co Ltd Electrophotographic receptor
JPS59202663A (en) * 1983-05-04 1984-11-16 Toshiba Corp Photoelectric converting member
JPS6059364A (en) * 1983-09-12 1985-04-05 Toshiba Corp Amorphous semiconductor device
JPS60109273A (en) * 1983-11-18 1985-06-14 Nec Corp Photoelectric conversion device
JPS60245185A (en) * 1984-05-18 1985-12-04 Hitachi Maxell Ltd Semiconductor photoelectric converter
JPS60247965A (en) * 1984-05-23 1985-12-07 Seiko Epson Corp Solid-state image pickup element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717952A (en) * 1980-07-09 1982-01-29 Oki Electric Ind Co Ltd Electrophotographic receptor
JPS59202663A (en) * 1983-05-04 1984-11-16 Toshiba Corp Photoelectric converting member
JPS6059364A (en) * 1983-09-12 1985-04-05 Toshiba Corp Amorphous semiconductor device
JPS60109273A (en) * 1983-11-18 1985-06-14 Nec Corp Photoelectric conversion device
JPS60245185A (en) * 1984-05-18 1985-12-04 Hitachi Maxell Ltd Semiconductor photoelectric converter
JPS60247965A (en) * 1984-05-23 1985-12-07 Seiko Epson Corp Solid-state image pickup element

Also Published As

Publication number Publication date
JP2707540B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US4827117A (en) Amorphous silicon photo sensor with blocking diode
EP1113499A2 (en) High fill factor image array having a continuous amorphous silicon sensor layer and a doped poly-silicon back contact
US6281561B1 (en) Multicolor-color sensor
US8334164B2 (en) Image sensor and fabrication method thereof
JPH0740711B2 (en) Optical sensor driving method and image input device
JPS6348858A (en) Optical sensor array
CN100578800C (en) Image sensor and manufacturing method thereof
US4943839A (en) Contact type image sensor
JP3135309B2 (en) Photoelectric conversion device and information processing device
JPS6233480A (en) Photosensor array
JPS61189065A (en) Image sensor
GB1597740A (en) Colour image sensing device
Mimura et al. A two-dimensional image sensor with aSi: H pin diodes
JPS60192361A (en) Color image senser
JPS60147158A (en) Image sensor of adherent type
US5083171A (en) Image sensor
JPH09232620A (en) Photoelectric conversion device
JP2692144B2 (en) Line sensor
JPS63136578A (en) Photodetector and one-dimensional image sensor using said photodetector
JPH022302B2 (en)
JPS6331164A (en) Photoelectric conversion element array
JPH022303B2 (en)
JPH06314779A (en) Image sensor
JPS6152580B2 (en)
GB2080025A (en) Semiconductor Photosensor Device