JPS60245185A - Semiconductor photoelectric converter - Google Patents

Semiconductor photoelectric converter

Info

Publication number
JPS60245185A
JPS60245185A JP59100799A JP10079984A JPS60245185A JP S60245185 A JPS60245185 A JP S60245185A JP 59100799 A JP59100799 A JP 59100799A JP 10079984 A JP10079984 A JP 10079984A JP S60245185 A JPS60245185 A JP S60245185A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
junction
electrode
forbidden band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59100799A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
浩幸 鈴木
Junichi Umeda
梅田 淳一
Akira Goto
明 後藤
Kenichiro Nakao
健一郎 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP59100799A priority Critical patent/JPS60245185A/en
Publication of JPS60245185A publication Critical patent/JPS60245185A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the conversion efficiency in a photoelectric converter having hetero junction by gradually reducing Ega value of thicknesswise direction of a semiconductor (a) toward a junction while setting Ega>Egb when the forbidden band width of the semiconductor (a) of junction side is Ega and the forbidden band width of a semiconductor (b) of opposite side is Egb, and setting them to the same at the junction. CONSTITUTION:A transparent electrode 13 is coated on a glass substrate 12, one electrode 18 is mounted on the surface of the end, and a P type layer 14 is accumulated on the electrode 13 except the electrode 18. At this time, the ratio of flow rates of methane gas and monosilane gas in the accmulating step is linearly varied from 99 to 0.25, and x value of amorphous Si1-xCx:H is continuously varied from 0.9 to 0.2. Then, an i-type layer 15 and an N type layer 16 are laminated on the layer 14, and other electrode 19 is mounted on the layer 16. Thus, the forbidden band widths at the junction of the layers 14, 15 becomes substantially the same, recombination of electron and hole is suppressed to increase the generating energy amount produced externally.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体光電変換装置に係り、特に開放電圧およ
び光電変換効率の向上に閃するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a semiconductor photoelectric conversion device, and is particularly directed to improving open circuit voltage and photoelectric conversion efficiency.

〔背景技術〕[Background technology]

従来のアモルファス半導体光電変換装置(以下光電変換
器と表わす)はp形半導体層(以後p層と表わす)、i
形半導体層(以後i層と表わす)、およびn形半導体層
(以後n層と表わす)の順に接合さセ“ると共に、9層
には入射光の透過性を良くするためにi層よりも禁制帯
幅が広いa−8i1−’xCx :’H(0<x< 1
 )が使用され、とくにx=0.3に相当するa −S
 1o7c o3: Hが標準として使用されている。
A conventional amorphous semiconductor photoelectric conversion device (hereinafter referred to as a photoelectric converter) has a p-type semiconductor layer (hereinafter referred to as p layer), i
A type semiconductor layer (hereinafter referred to as an i-layer) and an n-type semiconductor layer (hereinafter referred to as an n-layer) are bonded in this order. Wide forbidden band width a-8i1-'xCx :'H (0<x<1
) is used, in particular a −S corresponding to x=0.3
1o7co3:H is used as standard.

このような光電変換器のp胸i i層の厚み方向の□エ
ネルギーバンドは第3図のようであり、pS l接合界
面にエネルギーバンドの不連続な部分11が存在するこ
とが原因となって、入射光によってp層で発生した光電
子は接合面に到達して、i層で発生した不連続部分11
に到達した正孔と再結合してしまい、キャリヤーとして
は働かない欠点がある。す々わち第3図の1は伝導帯、
2は禁制帯、3はフェルミ準位、4は価電子帯、5は電
子、6はp層、7は1層、8は正孔であり、この構成に
おりるp層材料a−8iz−xCx: H(0<x< 
1 )の仕事関数をφp1禁制帯幅をEJpとし、1層
材料a−8i:Hの仕事関数φiおよび禁制帯幅EIi
として比較すると下記!11. (21のような関係(
rCあると共に、p層とiφp〉φi(1) Egp> E、l/ i f21 層の格子定数が異なるために、p層、i層接合部の価電
子帯および伝導帯で11に示すようなエネルギーハンド
の不連続面が発生すると共に9に示すよう々界面率・位
が発生フるのでるり、さらにp層に発生した光電子は電
界がかからないために接合面へ流れてし葦い、正孔と再
結合する動きをするのである。
The □ energy band in the thickness direction of the p-thickness layer of such a photoelectric converter is as shown in Figure 3, and is caused by the presence of a discontinuous portion 11 of the energy band at the pS l junction interface. , photoelectrons generated in the p layer by the incident light reach the junction surface, and the discontinuous portion 11 generated in the i layer
It has the disadvantage that it recombines with the holes that reach it and does not function as a carrier. So 1 in Figure 3 is the conduction band,
2 is a forbidden band, 3 is a Fermi level, 4 is a valence band, 5 is an electron, 6 is a p layer, 7 is a layer, 8 is a hole, and the p layer material a-8iz- that falls into this configuration xCx: H(0<x<
1) the work function is φp1 and the forbidden band width is EJp, and the work function φi and forbidden band width EIi of the one-layer material a-8i:H
Below is a comparison! 11. (Relationships like 21 (
In addition to rC, the lattice constants of the p layer and the iφp〉φi(1) Egp>E, l/ i f21 layer are different, so the valence band and conduction band of the p-layer and i-layer junction have differences as shown in 11. As the discontinuous surface of the energy hand is generated, the interface ratio and potential are increased as shown in 9, and the photoelectrons generated in the p layer flow to the junction surface because no electric field is applied, and holes are generated. It moves to reconnect with the

〔本発明の目的〕[Object of the present invention]

本発明は前述した従来の光電変換器の欠点を改良づ′る
ことに係り、その目的とするCところは、開放電圧が高
く、光電変換効率の大きな光電変換器を提供することに
ある。
The present invention relates to improving the above-mentioned drawbacks of the conventional photoelectric converter, and its objective C is to provide a photoelectric converter with a high open-circuit voltage and high photoelectric conversion efficiency.

〔発明の概要〕[Summary of the invention]

本発明は光電変換装置の半導体のうちp層の禁制帯幅E
、91)をp層の厚み方向に徐々に小さくして、i層と
の接合面でi層の禁制帯幅EJ’iの値にできるたけ近
ずけることによって、第2図に示すようにp層とi層の
接合面におけるエネルギーノ1ンドを価電子帯および伝
導帯のいずれにおいても連続にすると共に、p層内で光
励起した電子に電界がかかるようにして目的を達成した
ものである。すなわち禁制帯幅Egpをp層の厚み方向
に徐々に小さくするために、半導体p層材料のa −8
i1−xCx:H(0<X<1)のX値をp層の厚み方
向i層向に小さくLi層との接合面ではi層の禁制帯幅
EJiとEgpをPi ?!同じにするようにXを調整
してp層を蒸着堆積したものである。
In the present invention, the forbidden band width E of the p layer of the semiconductor of the photoelectric conversion device is
. This goal was achieved by making the energy node at the junction between the p-layer and i-layer continuous in both the valence band and the conduction band, and by applying an electric field to the photoexcited electrons in the p-layer. . That is, in order to gradually reduce the forbidden band width Egp in the thickness direction of the p-layer, a -8 of the semiconductor p-layer material is
The X value of i1-xCx:H (0<X<1) is made smaller in the thickness direction of the p layer in the direction of the i layer, and the forbidden band widths EJi and Egp of the i layer are changed to Pi? ! A p-layer is deposited by vapor deposition while adjusting X so as to be the same.

〔実施例〕〔Example〕

以下本発明の実施例を第1図に従って説朗する。 Embodiments of the present invention will be explained below with reference to FIG.

カラス基板12の上にイシジウムとスズの酸化物を蒸着
源にして電子ヒーム蒸着法によシ膜厚700Xの透明電
極膜13を形成し、その上にモノシランとジポランとメ
タンの混合カスを使いプラズマCVD法で膜厚100X
の9層14を形成するが、この9層堆積過程においてメ
タンガスの流量(QCH4(SCCM))をモノシラン
の流量Q SiH4<5ccytyとの比(QcH4/
Q81H4)で99から0.25まで直線的に変化させ
ることによって、a−8il−xCx : HのXの値
’z0.9から0.2まで連続的に変った物質を積層す
る。つぎにモノシランカスを使い、プラズマCVD蒸着
法によって膜厚5000Xの17115ip層の上に形
成する。さらにモノシランとホスフィシの混合ガスを使
って、プラズマCVD蒸着法によって300X厚のn層
16をi層上に形成する0つぎにn層の上に電子ビーム
蒸着法によって1μm厚のアルミニウム膜17を形成し
た。最後に透明電極13とアルミニウム電極17に銀ペ
ース日8.19で餉aをつなぎ半導体光電変換装置全完
成した。
A transparent electrode film 13 with a thickness of 700X is formed on a glass substrate 12 by electron beam evaporation using isidium and tin oxide as a deposition source. Film thickness 100X by CVD method
In this nine-layer deposition process, the ratio of the methane gas flow rate (QCH4 (SCCM)) to the monosilane flow rate QSiH4<5ccyty (QcH4/
By linearly varying Q81H4) from 99 to 0.25, materials in which the value of X'z of a-8il-xCx:H was continuously varied from 0.9 to 0.2 are stacked. Next, using monosilane gas, it is formed on the 17115 ip layer with a film thickness of 5000× by plasma CVD deposition method. Furthermore, using a mixed gas of monosilane and phosphide, a 300X thick n-layer 16 is formed on the i-layer by plasma CVD deposition. Next, a 1 μm-thick aluminum film 17 is formed on the n-layer by electron beam evaporation. did. Finally, the transparent electrode 13 and the aluminum electrode 17 were connected with a silver paste on August 8, 19, to complete the semiconductor photoelectric conversion device.

〔発明の効果〕〔Effect of the invention〕

実施例で示した第1図の光電変換装置のp層とi層の接
合面は第2図のようなエネルギーハシドを形成する。本
実施例によれはp層とi層の接合面における禁制帯幅は
/1丁同じであるので、光電変換によって生じた電子と
正孔には電界がかかり、再結合が抑制されてキャリアと
して働くために、外部へ取り出せる発電エネルギー量は
従来例よりも大きくなる効果を得た。したがって光電変
換効率も同上する〇 本実施例と従来の如き禁制帯幅が、厚さ方向に不変のp
層を使用したものの特性を比較して表1に示す。
The junction surface between the p layer and the i layer of the photoelectric conversion device shown in FIG. 1 shown in the example forms an energy hasid as shown in FIG. 2. In this example, since the forbidden band width at the junction between the p-layer and the i-layer is the same as /1, an electric field is applied to the electrons and holes generated by photoelectric conversion, suppressing recombination and converting them into carriers. The effect is that the amount of generated energy that can be taken out to the outside for work is greater than that of the conventional example. Therefore, the photoelectric conversion efficiency is also the same as above. The forbidden band width of this embodiment and the conventional method is
Table 1 shows a comparison of the characteristics of those using the layers.

表1 本実施例においては、開放電圧、短絡電流、光電変換効
率のいずれにおいても従来例よりも高く優れており、本
発明の効果が実証されている。
Table 1 In this example, the open circuit voltage, short circuit current, and photoelectric conversion efficiency are all higher and superior to the conventional example, proving the effects of the present invention.

々お、本発明のpmにおりるa −S 1l−zCx 
P2I質のX値は、p層の厚みの1層方向へはじめにX
二0.9.i層との接合側最終値がx=0.2であれは
、途中の変化の仕方が厚みに刻して直線的あるいは非直
線的のいずれでも本発明の効果が得られる0々おXの値
がはじめに0.9以上終りが0.2以上の範囲であって
もよい。
In the pm of the present invention, a-S 1l-zCx
The X value of P2I quality is
20.9. If the final value of the bonding side with the i layer is x = 0.2, the effect of the present invention can be obtained even if the way of change in the middle is linear or non-linear depending on the thickness. The value may range from 0.9 or more at the beginning to 0.2 or more at the end.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施した光電変換装置の一実施例断面
図である。 第2図は本発明を実施した場合における半導体光電変換
装置の、p層とi層の接合面の厚み方向におけるエネル
ギーバンドのパターンである。 第3図は従来の半導体光電変換装置の、p層とi層の接
合向のj厚み方向におけるエネルギーバンドのパターン
である。 12・・・カラス基板、13・・・透明電極、6.14
・・・p形半導体層、7.15・・・i形半導体層、1
6・・・n形半導体層、17・・・アルミニウム電極出
願人 日立マクセル株式会社 代表者 永 井 厚 滅 −
FIG. 1 is a sectional view of an embodiment of a photoelectric conversion device embodying the present invention. FIG. 2 shows an energy band pattern in the thickness direction of the junction surface between the p-layer and the i-layer in a semiconductor photoelectric conversion device in which the present invention is implemented. FIG. 3 shows an energy band pattern in the j-thickness direction in the junction direction of the p-layer and i-layer of a conventional semiconductor photoelectric conversion device. 12... Glass substrate, 13... Transparent electrode, 6.14
...p-type semiconductor layer, 7.15...i-type semiconductor layer, 1
6... N-type semiconductor layer, 17... Aluminum electrode Applicant Hitachi Maxell Co., Ltd. Representative Atsume Nagai -

Claims (3)

【特許請求の範囲】[Claims] (1)へテロ接合を廟する半導体光電変換装置において
、該接合の片側の半導体aの禁制帯幅をEga、反対側
の半導体すの禁制恰幅をEgbとして、E、!7a >
 E、!li’bとなる半導体aの厚み方向のEgaO
値が接合面に向って徐々に小さくなるようにし、接合面
ではほぼEJ’a二E、9bであるように構成されたこ
とを特徴とする半導体光電変換装置。
(1) In a semiconductor photoelectric conversion device using a heterojunction, where Ega is the forbidden band width of the semiconductor a on one side of the junction, and Egb is the forbidden band width of the semiconductor a on the other side, E,! 7a>
E,! EgaO in the thickness direction of semiconductor a which becomes li'b
1. A semiconductor photoelectric conversion device characterized in that the value gradually decreases toward the junction surface, and is approximately EJ'a2E,9b at the junction surface.
(2)半導体が非晶質物質であシ、半導体aがa −8
iλ−X CX:H(0<x< 1 )で構成されるp
形半導体で、半導体すが不純物を含まないi形半導体で
アル、半導体a−8il−xCx :H(0<x〈1)
層の厚み方向の接合面方向にXの値が徐々に小さくなっ
ていることを特徴とする特許請求の範囲第1項記載の半
導体光電変換装置。
(2) The semiconductor is an amorphous substance, and the semiconductor a is a −8
p composed of iλ−X CX:H (0<x<1)
It is an i-type semiconductor that does not contain impurities, and it is an i-type semiconductor that does not contain impurities.
2. The semiconductor photoelectric conversion device according to claim 1, wherein the value of X gradually decreases in the direction of the bonding surface in the thickness direction of the layer.
(3)半導体aの厚み方向のX値が、接合面方向に0.
9から0.2まで徐々に小さくなっていることを特徴と
する特許請求の範囲第2項記載の半導体光電変換装置。
(3) The X value in the thickness direction of semiconductor a is 0.
3. The semiconductor photoelectric conversion device according to claim 2, wherein the semiconductor photoelectric conversion device is gradually reduced in size from 9 to 0.2.
JP59100799A 1984-05-18 1984-05-18 Semiconductor photoelectric converter Pending JPS60245185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59100799A JPS60245185A (en) 1984-05-18 1984-05-18 Semiconductor photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100799A JPS60245185A (en) 1984-05-18 1984-05-18 Semiconductor photoelectric converter

Publications (1)

Publication Number Publication Date
JPS60245185A true JPS60245185A (en) 1985-12-04

Family

ID=14283446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100799A Pending JPS60245185A (en) 1984-05-18 1984-05-18 Semiconductor photoelectric converter

Country Status (1)

Country Link
JP (1) JPS60245185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348858A (en) * 1986-08-19 1988-03-01 Fuji Electric Co Ltd Optical sensor array
JPH0260174A (en) * 1988-08-04 1990-02-28 Natl Sci Council Republic Of China Amorphous sic/si three-color detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348858A (en) * 1986-08-19 1988-03-01 Fuji Electric Co Ltd Optical sensor array
JPH0260174A (en) * 1988-08-04 1990-02-28 Natl Sci Council Republic Of China Amorphous sic/si three-color detector

Similar Documents

Publication Publication Date Title
US5032884A (en) Semiconductor pin device with interlayer or dopant gradient
US5349204A (en) Photoelectric conversion device
GB2135512A (en) Semiconductor photoelectric conversion device light-transparent substrate therefor and their manufacturing methods
US4599482A (en) Semiconductor photoelectric conversion device and method of making the same
US4140610A (en) Method of producing a PN junction type solar battery
JP3646940B2 (en) Solar cell
JPS60245185A (en) Semiconductor photoelectric converter
US6028264A (en) Semiconductor having low concentration of carbon
GB2135510A (en) Photoelectric conversion devices
JPH0613639A (en) Photovoltaic device
JPH11266029A (en) Solar cell, manufacture and connection thereof
USRE37441E1 (en) Photoelectric conversion device
US6346716B1 (en) Semiconductor material having particular oxygen concentration and semiconductor device comprising the same
JP2632740B2 (en) Amorphous semiconductor solar cell
US6664566B1 (en) Photoelectric conversion device and method of making the same
JPH03222376A (en) Diamond semiconductor light emitting element
JPS60242682A (en) Semiconductor photoelectric conversion device
JP2666841B2 (en) Manufacturing method of avalanche type semiconductor light receiving element
JPS61222215A (en) Superlattice device
USRE38727E1 (en) Photoelectric conversion device and method of making the same
US5961741A (en) Metal semiconductor optical device
JPH04192569A (en) Solar battery
JPH06283737A (en) Semiconductor element
JPS6193675A (en) Manufacture of photovoltaic device
JPH05218477A (en) Solar cell