JPH08130321A - Solar cell - Google Patents
Solar cellInfo
- Publication number
- JPH08130321A JPH08130321A JP6268772A JP26877294A JPH08130321A JP H08130321 A JPH08130321 A JP H08130321A JP 6268772 A JP6268772 A JP 6268772A JP 26877294 A JP26877294 A JP 26877294A JP H08130321 A JPH08130321 A JP H08130321A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- solar cell
- light absorption
- semiconductor light
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/543—Solar cells from Group II-VI materials
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高い変換効率の得られ
る太陽電池に関する。さらに詳しくはバンドギャップの
広い構造のヘテロ接合型の太陽電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell having high conversion efficiency. More specifically, it relates to a heterojunction solar cell having a wide bandgap structure.
【0002】[0002]
【従来の技術】従来より、太陽電池の基本的な構造につ
いては、数多くの提案がなされている。通常のヘテロ接
合型の太陽電池は、図2(a)に示したようなバンドギ
ャップの広い半導体(窓層)4と、バンドギャップが約
1.5eV程度(あるいはそれ以下)の半導体(光吸収
層)3との異種・異伝導型接合を構成し、図2(b)の
ようなバンドプロファイルしてなる。たとえば、CdS
/CdTeやCdS/CuInSe2 などである。さら
に、高い変換効率を得るために傾斜組成層を太陽電池の
構造に導入する提案がなされている。その多くの場合
は、バンドギャップの大きい半導体(窓層)に導入され
ている。たとえば、a−SiC/a−SiやAlGaA
s/GaAsなどの構造がそうである。これらの構造
は、バンドギャップの大きい半導体(窓層)に傾斜組成
層を導入してより多くの光電流を獲得しようとする構造
である。2. Description of the Related Art Conventionally, many proposals have been made on the basic structure of solar cells. An ordinary heterojunction solar cell includes a semiconductor (window layer) 4 having a wide bandgap as shown in FIG. 2A and a semiconductor (optical absorption) having a bandgap of about 1.5 eV (or less). The layer 3 has a different type / different conductivity type junction and has a band profile as shown in FIG. For example, CdS
/ CdTe, CdS / CuInSe 2 , and the like. Further, it has been proposed to introduce a graded composition layer into the structure of a solar cell in order to obtain high conversion efficiency. In many cases, it is introduced into a semiconductor (window layer) having a large band gap. For example, a-SiC / a-Si or AlGaA
This is the case with structures such as s / GaAs. These structures are structures in which a graded composition layer is introduced into a semiconductor (window layer) having a large band gap to obtain more photocurrent.
【0003】[0003]
【発明が解決すべき課題】しかしながら上記従来のヘテ
ロ接合型の太陽電池でも光−電力の変換効率は12.2
〜13.1%程度であった。However, even in the above-mentioned conventional heterojunction type solar cell, the light-power conversion efficiency is 12.2.
It was about 13.1%.
【0004】本発明の目的は従来技術の有する問題点に
鑑みてなされたものであり、さらに性能のすぐれた太陽
電池を提供することである。The object of the present invention was made in view of the problems of the prior art, and it is an object of the present invention to provide a solar cell having excellent performance.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
本発明の太陽電池は、半導体光吸収層に対する電極と、
前記半導体光吸収層と接合部でもって接する該半導体光
吸収層のバンドギャップより広いバンドギャップ及び異
なる伝導型を有する半導体窓層と、該半導体窓層に対す
る透明電極とよりなる太陽電池であって、半導体光吸収
層と半導体窓層の間に該半導体窓層との接合部より離れ
るに従ってバンドギャップが小さくなり、かつ前記半導
体光吸収層に接する部分のバンドギャップが該半導体光
吸収層のバンドギャップに比べて同等もしくは大きい傾
斜組成層を有し、かつその膜厚が空乏層幅と同等の膜厚
とされてなることを特徴とする。In order to solve the above problems, the solar cell of the present invention comprises an electrode for a semiconductor light absorption layer,
A solar cell comprising a semiconductor window layer having a bandgap wider than the bandgap of the semiconductor light absorption layer and a different conductivity type, which is in contact with the semiconductor light absorption layer at a junction, and a transparent electrode for the semiconductor window layer, The band gap between the semiconductor light absorbing layer and the semiconductor window layer becomes smaller as the distance from the junction with the semiconductor window layer becomes smaller, and the band gap of the portion in contact with the semiconductor light absorbing layer becomes the band gap of the semiconductor light absorbing layer. It is characterized in that it has a gradient composition layer that is equal to or larger than that of the depletion layer and has a thickness equal to the width of the depletion layer.
【0006】また、前記構成の太陽電池であって、前記
半導体光吸収層がCdTe薄膜よりなり、前記傾斜組成
層がCdTe1ーXSeXよりなることが好ましい。また、
前記構成の太陽電池で、前記半導体窓層がCdS薄膜よ
りなり、前記半導体光吸収層がCdTe薄膜よりなり、
前記傾斜組成層がCdTe1ーXSeXよりなることが好ま
しい。In the solar cell having the above structure, it is preferable that the semiconductor light absorption layer is made of a CdTe thin film and the graded composition layer is made of CdTe 1-X Se X. Also,
In the solar cell having the above structure, the semiconductor window layer is made of a CdS thin film, and the semiconductor light absorption layer is made of a CdTe thin film.
The gradient composition layer is preferably made of CdTe 1-X Se X.
【0007】また、前記構成の太陽電池で、前記半導体
光吸収層がCuInSe2 薄膜よりなり、前記傾斜組成
層がCuIn1ーXGaXSe2よりなることが好ましい。
また、前記構成の太陽電池であって、前記半導体窓層が
CdS薄膜よりなり、前記半導体光吸収層がCuInS
e2 薄膜よりなり、前記傾斜組成層がCuIn 1ーXGaX
Se2よりなることが好ましい。In the solar cell having the above structure, the semiconductor
The light absorption layer is CuInSe2 It is composed of a thin film and has the above-mentioned gradient composition.
Layer is CuIn1-XGaXSe2It is preferable that
In the solar cell having the above structure, the semiconductor window layer is
CdS thin film, the semiconductor light absorption layer is CuInS
e2 A thin film, the gradient composition layer being CuIn 1-XGaX
Se2It is preferable that
【0008】また、前記構成の太陽電池であって、前記
半導体光吸収層がCuInSe2 薄膜よりなり、前記傾
斜組成層がCuIn(Se1ーXSX)2 よりなることが好
ましい。In the solar cell having the above structure, it is preferable that the semiconductor light absorption layer is made of a CuInSe 2 thin film and the gradient composition layer is made of CuIn (Se 1 -X S X ) 2 .
【0009】また、前記構成の太陽電池であって、前記
半導体窓層がCdS薄膜よりなり、前記半導体光吸収層
がCuInSe2 薄膜よりなり、前記傾斜組成層がCu
In(Se1ーXSX)2 よりなることが好ましい。In the solar cell having the above structure, the semiconductor window layer is made of a CdS thin film, the semiconductor light absorption layer is made of a CuInSe 2 thin film, and the gradient composition layer is made of Cu.
It is preferably composed of In (Se 1 -X S X ) 2 .
【0010】[0010]
【作用】本発明の太陽電池は、半導体光吸収層に対する
電極と、前記半導体光吸収層と接合部でもって接する該
半導体光吸収層のバンドギャップより広いバンドギャッ
プ及び異なる伝導型を有する半導体窓層と、該半導体窓
層に対する透明電極とよりなる太陽電池であって、半導
体光吸収層と半導体窓層の間に該半導体窓層との接合部
より離れるに従ってバンドギャップが小さくなり、かつ
前記半導体光吸収層に接する部分のバンドギャップが該
半導体光吸収層のバンドギャップに比べて同等もしくは
大きい傾斜組成層を有し、かつその膜厚が空乏層幅と同
等の膜厚よりなっている。このように構成することによ
り、ヘテロ接合部の再結合電流が減少し、高い解放電圧
を得ることができ、光−電力の変換効率を向上させるこ
とができる。The solar cell of the present invention comprises a semiconductor window layer having an electrode for the semiconductor light absorption layer, a band gap wider than the band gap of the semiconductor light absorption layer in contact with the semiconductor light absorption layer at a junction, and a different conductivity type. And a transparent electrode for the semiconductor window layer, wherein the band gap becomes smaller between the semiconductor light absorption layer and the semiconductor window layer as the distance from the junction with the semiconductor window layer increases, and The band gap of the portion in contact with the absorption layer has a graded composition layer which is equal to or larger than the band gap of the semiconductor light absorption layer, and the thickness thereof is equal to the width of the depletion layer. With this configuration, the recombination current of the heterojunction portion is reduced, a high release voltage can be obtained, and the light-power conversion efficiency can be improved.
【0011】また、太陽電池の前記構成で、前記半導体
光吸収層がCdTe薄膜よりなり、前記傾斜組成層がC
dTe1ーXSeXよりなる好ましい構成によれば、ヘテロ
接合部の再結合電流が減少し、従来のヘテロ接合に比べ
てより高い開放端電圧を出力でき、従来の太陽電池より
すぐれた変換効率を得ることができる。Further, in the above structure of the solar cell, the semiconductor light absorption layer is made of a CdTe thin film, and the gradient composition layer is made of CdTe.
According to the preferred structure of dTe 1 -X Se X, the recombination current of the heterojunction is reduced, a higher open-circuit voltage can be output as compared with the conventional heterojunction, and the conversion efficiency is superior to that of the conventional solar cell. Can be obtained.
【0012】また、太陽電池の前記構成で、前記半導体
窓層がCdS薄膜よりなり、前記半導体光吸収層がCd
Te薄膜よりなり、前記傾斜組成層がCdTe1ーX Se
X よりなるので、CdS薄膜を用いることでより高品質
の接合部を保持し、かつ再結合電流を減少させ、従来の
接合に比べてより高い開放端電圧を出力でき、従来の太
陽電池よりすぐれた変換効率を得ることができる。Further, in the above construction of the solar cell, the semiconductor window layer is made of a CdS thin film, and the semiconductor light absorption layer is made of CdS.
It is made of a Te thin film, and the gradient composition layer is CdTe 1-X Se.
Since it consists of X , by using a CdS thin film, it is possible to maintain a higher quality junction, reduce the recombination current, and output a higher open circuit voltage than the conventional junction, which is superior to conventional solar cells. It is possible to obtain high conversion efficiency.
【0013】また、前記構成の太陽電池において、前記
半導体光吸収層がCuInSe2 薄膜よりなり、前記傾
斜組成層がCuIn1ーXGaXSe2 よりなる好ましい形
態によれば、ヘテロ接合部の再結合電流が減少し、従来
のヘテロ接合に比べてより高い開放端電圧を出力でき、
従来の太陽電池よりすぐれた変換効率を得ることができ
る。In the solar cell having the above-mentioned structure, according to a preferred mode in which the semiconductor light absorption layer is made of CuInSe 2 thin film and the gradient composition layer is made of CuIn 1 -X Ga X Se 2 , The coupling current is reduced, and it is possible to output a higher open-ended voltage than the conventional heterojunction,
The conversion efficiency superior to that of the conventional solar cell can be obtained.
【0014】また、前記構成の太陽電池において、前記
半導体窓層がCdS薄膜よりなり、前記半導体光吸収層
がCuInSe2 薄膜よりなり、前記傾斜組成層がCu
In 1ーX GaXSe2よりなる好ましい形態によれば、C
dS薄膜を用いることでより高品質の接合部を保持し、
かつ再結合電流を減少させ、従来の接合に比べてより高
い開放端電圧を出力でき、従来の太陽電池よりすぐれた
変換効率を得ることができる。In the solar cell having the above structure,
The semiconductor window layer is made of a CdS thin film, and the semiconductor light absorption layer
Is CuInSe2 It is composed of a thin film, and the gradient composition layer is Cu.
In 1-X GaXSe2According to a preferred embodiment,
The use of dS thin film maintains a higher quality joint,
It also reduces the recombination current and is higher than conventional junctions.
It can output a high open-circuit voltage and is superior to conventional solar cells.
The conversion efficiency can be obtained.
【0015】また、前記構成の太陽電池であって、前記
半導体光吸収層がCuInSe2 薄膜よりなり、前記傾
斜組成層がCuIn(Se1ーXSX)2 よりなるので、ヘ
テロ接合部の再結合電流が減少し、従来のヘテロ接合に
比べてより高い開放端電圧を出力でき、従来の太陽電池
よりすぐれた変換効率を得ることができる。In the solar cell having the above structure, since the semiconductor light absorption layer is made of CuInSe 2 thin film and the graded composition layer is made of CuIn (Se 1 -X S X ) 2 , the heterojunction part The coupling current is reduced, a higher open circuit voltage can be output as compared with the conventional heterojunction, and the conversion efficiency superior to that of the conventional solar cell can be obtained.
【0016】また、前記構成の太陽電池であって、前記
半導体窓層がCdS薄膜よりなり、前記半導体光吸収層
がCuInSe2 薄膜よりなり、前記傾斜組成層がCu
In(Se1ーXSX)2 よりなるので、CdS薄膜を用い
ることでより高品質の接合部を保持し、かつ再結合電流
を減少させ、従来の接合に比べてより高い開放端電圧を
出力でき、従来の太陽電池よりすぐれた変換効率を得る
ことができる。In the solar cell having the above structure, the semiconductor window layer is made of a CdS thin film, the semiconductor light absorption layer is made of a CuInSe 2 thin film, and the gradient composition layer is made of Cu.
Since it is made of In (Se 1 −X S X ) 2 , by using a CdS thin film, a higher quality junction can be maintained and the recombination current can be reduced, resulting in a higher open-circuit voltage than the conventional junction. It is possible to output and obtain a conversion efficiency superior to that of the conventional solar cell.
【0017】すなわち、本発明の太陽電池は、上記のよ
うに傾斜組成層を導入しているので、量子効率の波長依
存性が影響されることなく、ヘテロ接合部の再結合電流
が減少し、従来のヘテロ接合に比べてより高い開放端電
圧を出力できる太陽電池が実現できると同時に光電流
は、従来構成のヘテロ接合型太陽電池と遜色はない。That is, in the solar cell of the present invention, since the graded composition layer is introduced as described above, the recombination current of the heterojunction is reduced without affecting the wavelength dependence of the quantum efficiency, A solar cell that can output a higher open-circuit voltage than that of a conventional heterojunction can be realized, and at the same time, the photocurrent is comparable to that of a heterojunction solar cell with a conventional configuration.
【0018】[0018]
【実施例】以下に本発明の太陽電池の実施例を図面を参
照しながら説明する。 (実施例1)図1は本発明の1実施例の概略を示す図で
ある。図1(a)には、本発明の太陽電池の構造の断面
図を示しており、(b)にはヘテロ接合部(傾斜組成層
を含む)のバンド図を示し、(b)中の破線は、従来構
造のヘテロ接合型太陽電池の場合(傾斜組成層のないも
の)における接合のバンド図である。バンドベンディン
グを生じている領域pは、空乏層を示している。Embodiments of the solar cell of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a diagram showing an outline of one embodiment of the present invention. 1A shows a cross-sectional view of the structure of the solar cell of the present invention, FIG. 1B shows a band diagram of a heterojunction portion (including a graded composition layer), and a broken line in FIG. 1B. FIG. 4 is a band diagram of a junction in the case of a heterojunction solar cell having a conventional structure (without a gradient composition layer). A region p in which band bending occurs indicates a depletion layer.
【0019】図1において1はガラス基板などの絶縁基
板であり、この基板1に下部電極2としてMo薄膜が膜
厚1μm程度に成膜され、この下部電極2の上に透明上
部電極としてITO薄膜5が膜厚0.5μm程度に成膜
されている。本発明の太陽電池の根幹をなす半導体窓層
4/傾斜組成層6/半導体光吸収層3の構造は、CdS
半導体窓層4(膜厚0.1μm)/CdTe1ーXSeX傾
斜組成層6/CdTe半導体光吸収層3(膜厚3μm)
によって構成されている。この構造において、CdS層
に接するCdTe1ーXSeX層のXの値は0.20であ
り、CdTe層に接するCdTe1ーXSeX層のXの値は
0.0である。また、CdTe1ーXSeX層の膜厚は、空
乏層幅pとほぼ同程度になるように、例えば0.2〜
1.0μmに最適設計する。In FIG. 1, reference numeral 1 is an insulating substrate such as a glass substrate, on which a Mo thin film having a film thickness of about 1 μm is formed as a lower electrode 2, and an ITO thin film as a transparent upper electrode is formed on the lower electrode 2. 5 is formed to have a film thickness of about 0.5 μm. The structure of the semiconductor window layer 4 / gradient composition layer 6 / semiconductor light absorption layer 3 that forms the basis of the solar cell of the present invention is CdS.
Semiconductor window layer 4 (film thickness 0.1 μm) / CdTe 1 −X Se X gradient composition layer 6 / CdTe semiconductor light absorption layer 3 (film thickness 3 μm)
It is composed by. In this structure, the CdTe 1-X Se X layer in contact with the CdS layer has an X value of 0.20, and the CdTe 1-X Se X layer in contact with the CdTe layer has an X value of 0.0. Further, the film thickness of the CdTe 1-X Se X layer is, for example, 0.2 to so that it is almost the same as the depletion layer width p.
Optimal design for 1.0 μm.
【0020】CdTe1ーXSeXの傾斜組成層6の膜厚
が、空乏層領域に比べ薄い場合は、短絡光電流が充分獲
得できなくなり、空乏層領域に比べ厚い場合は、開放端
電圧が低下する傾向がある。以上のように、CdTe
1ーXSeXの傾斜組成層6の膜厚を最適化した本発明の構
造の太陽電池を多元蒸着装置を用いて作製し、同様に多
元蒸着で作製した従来のCdTe1ーXSeX傾斜組成層の
ない太陽電池と性能を比較した。When the film thickness of the gradient composition layer 6 of CdTe 1 -X Se X is thinner than that of the depletion layer region, short-circuit photocurrent cannot be sufficiently obtained, and when it is thicker than that of the depletion layer region, the open-end voltage is increased. Tends to decline. As described above, CdTe
A conventional CdTe 1-X Se X gradient was prepared by using a multi-source deposition apparatus to fabricate a solar cell having the structure of the present invention in which the film thickness of the 1-X Se X graded composition layer 6 was optimized. The performance was compared with a solar cell without a composition layer.
【0021】ここで作製したCdTe1ーXSeX傾斜組成
層6はp型でそのホール濃度は、CdTe薄膜と同様に
約1×1015cm-3であったので、CdTe1ーXSeX傾
斜組成層の膜厚は、0.7μm程度にした。The CdTe 1-X Se X gradient composition layer 6 produced here was p-type and had a hole concentration of about 1 × 10 15 cm -3 as in the CdTe thin film, so that CdTe 1-X Se X was formed. The film thickness of the gradient composition layer was set to about 0.7 μm.
【0022】図3に本実施例による太陽電池の量子効率
の波長依存性をA’で示し、比較のため従来例の太陽電
池による量子効率の波長依存性をAで示した。両者の量
子効率には差異がなく、ほとんど同程度の短絡光電流が
期待できる。In FIG. 3, the wavelength dependence of the quantum efficiency of the solar cell according to this example is shown by A ', and the wavelength dependence of the quantum efficiency by the solar cell of the conventional example is shown by A for comparison. There is no difference in quantum efficiency between the two, and short-circuit photocurrents of almost the same level can be expected.
【0023】図4には、AM1.5、100mW/cm2のソ
ーラーシミュレーターのもとで測定した電流−電圧特性
を示している。従来構造の太陽電池の特性Aに比べ、本
発明の太陽電池の特性A’の方が高い開放端電圧が得ら
れた。この効果は、傾斜組成層を導入することによって
ヘテロ接合部の再結合電流が減少し、従来のヘテロ接合
に比べてより高い開放端電圧を出力できる太陽電池が実
現できたことを示している。得られた変換効率は、従来
例の太陽電池で12.2%(Jsc=22.5mA/cm2,Voc=0.750
V,FF=0.720)、本実施例の太陽電池で14.1%(Jsc=2
2.2mA/cm2,Voc=0.890V,FF=0.715)であった。FIG. 4 shows current-voltage characteristics measured under a solar simulator of AM 1.5 and 100 mW / cm 2 . As compared with the characteristic A of the solar cell having the conventional structure, the open-ended voltage of the characteristic A ′ of the solar cell of the present invention was higher. This effect shows that by introducing the graded composition layer, the recombination current of the heterojunction portion is reduced, and a solar cell capable of outputting a higher open-ended voltage than that of the conventional heterojunction can be realized. The obtained conversion efficiency was 12.2% (Jsc = 22.5mA / cm 2 , Voc = 0.750 for the conventional solar cell).
V, FF = 0.720), 14.1% (Jsc = 2) in the solar cell of this example.
It was 2.2 mA / cm 2 , Voc = 0.890 V, FF = 0.715).
【0024】(実施例2)前記実施例1の太陽電池の構
造と同様に、ガラス基板などの絶縁基板1に下部電極2
としてMo薄膜が膜厚1μm程度に成膜され、この下部
電極2の上に透明上部電極としてITO薄膜5が膜厚
0.5μm程度に成膜されている。この上に本発明の太
陽電池の根幹をなす半導体窓層4/傾斜組成層6/半導
体光吸収層3の層が形成されている。本実施例でも上記
実施例と同様に、半導体窓層4がCdSにより膜厚0.
1μmに形成されている。(Example 2) Similar to the structure of the solar cell of Example 1, the lower electrode 2 is formed on the insulating substrate 1 such as a glass substrate.
As a thin film of Mo, a film having a thickness of about 1 μm is formed, and on this lower electrode 2, an ITO thin film 5 having a film thickness of about 0.5 μm is formed as a transparent upper electrode. On top of this, the layers of semiconductor window layer 4 / gradient composition layer 6 / semiconductor light absorption layer 3 which form the basis of the solar cell of the present invention are formed. Also in this embodiment, the semiconductor window layer 4 is made of CdS and has a film thickness of 0.
It is formed to 1 μm.
【0025】ただし、本実施例では、傾斜組成層6をC
uIn1ーXGaXSe2 から形成し、半導体光吸収層3は
CuInSe2 から膜厚2μmに形成している点で上記
実施例1とは異なっている。また、本実施例のCdS半
導体窓層4に接するCuIn 1ーXGaXSe2傾斜組成層
6のXの値は0.15であり、CuInSe2層に接す
るCuIn1ーXGaXSe2層のXの値は0.0である。
また、CuIn1ーXGaXSe2 層の膜厚は、空乏層幅p
とほぼ同程度になるよう最適設計する必要がある。Cu
In1ーXGaXSe2 層の膜厚が、空乏層領域に比べ薄い
場合は、短絡光電流が充分獲得できなくなり、空乏層領
域に比べ厚い場合は、開放端電圧が低下する傾向があ
る。従って、この傾斜組成層6の膜厚は、例えば、0.
2〜1.0μmとする。However, in this embodiment, the graded composition layer 6 is made of C
uIn1-XGaXSe2 And the semiconductor light absorption layer 3 is formed from
CuInSe2 From the point that it is formed to a film thickness of 2 μm from
This is different from the first embodiment. In addition, the CdS half of this embodiment
CuIn in contact with the conductor window layer 4 1-XGaXSe2Gradient composition layer
The value of X of 6 is 0.15, and CuInSe2Touch the layers
CuIn1-XGaXSe2The value of X in the layer is 0.0.
In addition, CuIn1-XGaXSe2 The layer thickness is the depletion layer width p
It is necessary to optimize the design so that it is almost the same as. Cu
In1-XGaXSe2 The layer thickness is thinner than the depletion layer region
If the short circuit photocurrent cannot be obtained, the depletion region
If it is thicker than the area, the open-circuit voltage tends to decrease.
You. Therefore, the film thickness of the gradient composition layer 6 is, for example, 0.
2 to 1.0 μm.
【0026】以上のように、CuIn1ーXGaXSe2 傾
斜組成層の膜厚を最適化した本発明の構造の太陽電池を
多元蒸着装置を用いて作製し、同様に多元蒸着で作製し
た従来のCuIn1ーXGaXSe2 傾斜組成層のない太陽
電池と性能を比較した。ここで作製したCuIn1ーXG
aXSe2 傾斜組成層はp型でそのホール濃度は、Cu
InSe2薄膜と同様に約5×1015cm-3であったの
でCuIn1ーXGaXS2傾斜組成層の膜厚は、0.3μ
m程度にした。As described above, the solar cell having the structure of the present invention in which the film thickness of the CuIn 1 -X Ga X Se 2 gradient composition layer is optimized was produced by using a multi-source vapor deposition apparatus, and similarly produced by multi-source vapor deposition. The performance was compared with that of a conventional solar cell having no CuIn 1 -X Ga X Se 2 gradient composition layer. CuIn 1-X G produced here
The a x Se 2 gradient composition layer is p-type and its hole concentration is Cu.
Since it was about 5 × 10 15 cm −3 like the InSe 2 thin film, the film thickness of the CuIn 1 -X Ga X S 2 gradient composition layer was 0.3 μm.
It was about m.
【0027】本実施例の太陽電池と従来例とについて、
量子効率の波長依存性のを図3のB、B’(B:従来構
造、B’:本発明の構造)に示している。この両者には
差異がなく、ほとんど同程度の短絡光電流が得られてい
る。Regarding the solar cell of this embodiment and the conventional example,
The wavelength dependence of the quantum efficiency is shown in B and B '(B: conventional structure, B': structure of the present invention) in FIG. There is no difference between the two and almost the same short-circuit photocurrent is obtained.
【0028】図4には、AM1.5、100mW/cm2のソ
ーラーシミュレーターのもとで測定した電流−電圧特性
を示している。従来構造の太陽電池の特性Bに比べ、本
発明の太陽電池の特性B’の方が高い開放端電圧を示し
ていた。この効果は、傾斜組成層を導入することによっ
てヘテロ接合部の再結合電流が減少し、従来のヘテロ接
合に比べてより高い開放端電圧を出力できる太陽電池が
実現できたことを示している。得られた変換効率は、従
来構造の太陽電池で13.1%(Jsc=40.5mA/cm2,Voc=
0.455V,FF=0.710)、本実施例による太陽電池で 1
5.3%(Jsc=40.4mA/cm2,Voc=0.528V,FF=0.715)であ
った。FIG. 4 shows current-voltage characteristics measured under a solar simulator of AM 1.5 and 100 mW / cm 2 . The characteristic B ′ of the solar cell of the present invention showed a higher open circuit voltage than the characteristic B of the solar cell of the conventional structure. This effect shows that by introducing the graded composition layer, the recombination current of the heterojunction portion is reduced, and a solar cell capable of outputting a higher open-ended voltage than that of the conventional heterojunction can be realized. The conversion efficiency obtained was 13.1% (Jsc = 40.5mA / cm 2 , Voc =
0.455V, FF = 0.710), 1 in the solar cell according to the present embodiment.
It was 5.3% (Jsc = 40.4mA / cm 2 , Voc = 0.528V, FF = 0.715).
【0029】(実施例3)前記実施例1の太陽電池の構
造と同様に、ガラス基板などの絶縁基板1に下部電極2
としてMo薄膜が膜厚1μm程度に成膜され、この下部
電極2の上に透明上部電極としてITO薄膜5が膜厚
0.5μm程度に成膜されている。この上に、本発明の
太陽電池の根幹をなす半導体窓層4/傾斜組成層6/半
導体光吸収層3の層が形成されている。本実施例でも上
記実施例と同様に、半導体窓層4がCdSにより膜厚
0.1μmに形成されている。(Embodiment 3) Similar to the structure of the solar cell of Embodiment 1, the lower electrode 2 is formed on the insulating substrate 1 such as a glass substrate.
As a thin film of Mo, a film having a thickness of about 1 μm is formed, and on this lower electrode 2, an ITO thin film 5 having a film thickness of about 0.5 μm is formed as a transparent upper electrode. On top of this, the layers of semiconductor window layer 4 / gradient composition layer 6 / semiconductor light absorption layer 3 which form the basis of the solar cell of the present invention are formed. Also in this embodiment, the semiconductor window layer 4 is formed of CdS to have a film thickness of 0.1 μm, as in the above embodiment.
【0030】ただし、本実施例では、傾斜組成層6をC
uIn(Se1ーX SX )2 から形成し、半導体光吸収層
3はCuInSe2 から膜厚2μmに形成している点で
上記実施例1および実施例2とは異なっている。また、
本実施例のCdS層に接するCuIn(Se1ーX SX )
2 傾斜組成層6のXの値は0.20であり、CuInS
e2 半導体光吸収層3に接するCuIn(Se1ーXS
X )2のXの値は0.0である。また、CuIn(Se
1ーX SX)2の膜厚は、空乏層幅pとほぼ同程度になるよ
う最適設計する必要がある。CuIn(Se1ーX SX )
2 層の膜厚が、空乏層領域に比べ薄い場合は、短絡光電
流が充分獲得できなくなり、空乏層領域に比べ厚い場合
は、開放端電圧が低下する傾向がある。従って、この傾
斜組成層6の膜厚は、例えば、0.2〜1.0μmとす
る。However, in this embodiment, the graded composition layer 6 is C
This is different from Embodiments 1 and 2 in that it is formed of uIn (Se 1 -X S X ) 2 and the semiconductor light absorption layer 3 is formed of CuInSe 2 to a film thickness of 2 μm. Also,
CuIn (Se 1-X S X ) in contact with the CdS layer of this example
The X value of the two- gradient composition layer 6 is 0.20, and CuInS
e 2 CuIn (Se 1-X S) in contact with the semiconductor light absorption layer 3
The X value of X ) 2 is 0.0. In addition, CuIn (Se
It is necessary to optimally design the film thickness of 1−X S X ) 2 so as to be almost the same as the depletion layer width p. CuIn (Se 1-X S X )
When the film thickness of the two layers is smaller than that of the depletion layer region, sufficient short-circuit photocurrent cannot be obtained, and when it is thicker than that of the depletion layer region, the open circuit voltage tends to decrease. Therefore, the film thickness of the gradient composition layer 6 is, for example, 0.2 to 1.0 μm.
【0031】以上のように、CuIn(Se1ーXSX)2
の傾斜組成層6の膜厚を最適化した本発明の構造の太陽
電池を多元蒸着装置を用いて作製し、同様に多元蒸着で
作製した従来のCuIn(Se1ーXSX)2 傾斜組成層の
ない太陽電池と性能を比較した。ここで作製したCuI
n(Se1ーXSX)2 傾斜組成層6はp型でそのホール濃
度は、CuInSe2 薄膜と同様に約2×1015cm-3
であったので、CuIn1ーXGaXSe2 傾斜組成層6の
膜厚は0.3μm程度にした。As described above, CuIn (Se 1-X S X ) 2
The conventional CuIn (Se 1 -X S X ) 2 gradient composition prepared by using a multi-source deposition apparatus to fabricate a solar cell having the structure of the present invention in which the film thickness of the gradient composition layer 6 The performance was compared with a layerless solar cell. CuI made here
The n (Se 1 −X S X ) 2 gradient composition layer 6 is p-type and has a hole concentration of about 2 × 10 15 cm −3 as in the CuInSe 2 thin film.
Therefore, the film thickness of the CuIn 1 -X Ga X Se 2 gradient composition layer 6 was set to about 0.3 μm.
【0032】本実施例の太陽電池と従来例とについて、
量子効率の波長依存性のを図3のC、C’(C:従来構
造、C’:本実施例の構造)に示している。この両者に
は差異がなく、ほとんど同程度の短絡光電流が得られて
いる。Regarding the solar cell of this embodiment and the conventional example,
The wavelength dependence of the quantum efficiency is shown in C and C '(C: conventional structure, C': structure of this embodiment) in FIG. There is no difference between the two and almost the same short-circuit photocurrent is obtained.
【0033】図4には、AM1.5、100mW/cm2のソ
ーラーシミュレーターのもとで測定した電流−電圧特性
を示している。従来構造の太陽電池の特性Cに比べ、本
実施例の太陽電池の特性C’の方が高い開放端電圧を示
していた。この効果は、傾斜組成層を導入することによ
ってヘテロ接合部の再結合電流が減少し、従来のヘテロ
接合に比べてより高い開放端電圧を出力できる太陽電池
が実現できたことを示している。得られた変換効率は、
従来構造の太陽電池で13.1%(Jsc=40.5mA/cm2,Voc
=0.455V,FF=0.710)、本実施例による太陽電池で15.
1%(Jsc=40.2mA/cm2,Voc=0.555V,FF=0.675)であっ
た。FIG. 4 shows current-voltage characteristics measured under a solar simulator of AM 1.5 and 100 mW / cm 2 . As compared with the characteristic C of the solar cell having the conventional structure, the characteristic C ′ of the solar cell of the present example showed a higher open circuit voltage. This effect shows that by introducing the graded composition layer, the recombination current of the heterojunction portion is reduced, and a solar cell capable of outputting a higher open-ended voltage than that of the conventional heterojunction can be realized. The obtained conversion efficiency is
13.1% (Jsc = 40.5mA / cm 2 , Voc
= 0.455V, FF = 0.710), with the solar cell according to the present embodiment 15.
It was 1% (Jsc = 40.2mA / cm 2 , Voc = 0.555V, FF = 0.675).
【0034】[0034]
【発明の効果】上述のように、本発明の太陽電池によれ
ば半導体光吸収層と半導体窓層の間に該半導体窓層との
接合部より離れるに従ってバンドギャップが小さくな
り、かつ前記半導体光吸収層に接する部分のバンドギャ
ップが該半導体光吸収層のバンドギャップに比べて同等
もしくは大きい傾斜組成層を有し、かつその膜厚が空乏
層幅と同等の膜厚よりなっているので、ヘテロ接合部の
再結合電流が減少し、高い解放電圧を得ることができ、
エネルギー変換効率を高くすることができる。As described above, according to the solar cell of the present invention, the band gap between the semiconductor light absorption layer and the semiconductor window layer becomes smaller as the distance from the junction with the semiconductor window layer increases, and the semiconductor light Since the bandgap of the portion in contact with the absorption layer has a graded composition layer which is equal to or larger than the bandgap of the semiconductor light absorption layer, and the film thickness thereof is equal to the depletion layer width, The recombination current of the junction is reduced and a high release voltage can be obtained,
Energy conversion efficiency can be increased.
【図1】本発明の太陽電池の構造を示す断面図である。FIG. 1 is a sectional view showing a structure of a solar cell of the present invention.
【図2】従来の太陽電池の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of a conventional solar cell.
【図3】従来及び本発明の太陽電池の量子効率の波長依
存性を示す図である。FIG. 3 is a diagram showing wavelength dependence of quantum efficiency of conventional and inventive solar cells.
【図4】従来及び本発明の太陽電池の太陽電池特性(電
流−電圧特性)を示す図である。FIG. 4 is a diagram showing solar cell characteristics (current-voltage characteristics) of conventional and inventive solar cells.
1 絶縁基板 2 下部電極 3 半導体光吸収層 4 半導体窓層 5 透明導電層 6 傾斜組成層 1 Insulating Substrate 2 Lower Electrode 3 Semiconductor Light Absorbing Layer 4 Semiconductor Window Layer 5 Transparent Conductive Layer 6 Gradient Composition Layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 隆博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takahiro Wada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (7)
導体光吸収層と接合部でもって接する該半導体光吸収層
のバンドギャップより広いバンドギャップ及び異なる伝
導型を有する半導体窓層と、該半導体窓層に対する透明
電極とよりなる太陽電池であって、半導体光吸収層と半
導体窓層の間に該半導体窓層との接合部より離れるに従
ってバンドギャップが小さくなり、かつ前記半導体光吸
収層に接する部分のバンドギャップが該半導体光吸収層
のバンドギャップに比べて同等もしくは大きい傾斜組成
層を有し、かつその膜厚が空乏層幅と同等の膜厚よりな
ることを特徴とする太陽電池。1. An electrode for a semiconductor light absorption layer, a semiconductor window layer having a band gap wider than the band gap of the semiconductor light absorption layer contacting the semiconductor light absorption layer at a junction and having a different conductivity type, and the semiconductor window. A solar cell comprising a transparent electrode for the layer, wherein the band gap between the semiconductor light absorption layer and the semiconductor window layer becomes smaller as the distance from the junction with the semiconductor window layer increases, and the portion in contact with the semiconductor light absorption layer. The solar cell is characterized in that it has a graded composition layer having a bandgap equal to or larger than the bandgap of the semiconductor light absorption layer, and has a film thickness equivalent to the depletion layer width.
なり、前記傾斜組成層がCdTe1ーXSeXよりなる請求
項1に記載の太陽電池。2. The solar cell according to claim 1, wherein the semiconductor light absorption layer is made of a CdTe thin film, and the graded composition layer is made of CdTe 1 −X Se X.
前記半導体光吸収層がCdTe薄膜よりなり、前記傾斜
組成層がCdTe1ーXSeXよりなる請求項1に記載の太
陽電池。3. The semiconductor window layer comprises a CdS thin film,
The solar cell according to claim 1, wherein the semiconductor light absorption layer is made of a CdTe thin film, and the graded composition layer is made of CdTe 1-X Se X.
膜よりなり、前記傾斜組成層がCuIn1ーXGaXSe2
よりなる請求項1に記載の太陽電池。4. The semiconductor light absorption layer is made of a CuInSe 2 thin film, and the gradient composition layer is made of CuIn 1 —X Ga X Se 2
The solar cell according to claim 1, which comprises:
前記半導体光吸収層がCuInSe2 薄膜よりなり、前
記傾斜組成層がCuIn1ーXGaXSe2 よりなる請求項
1に記載の太陽電池。5. The semiconductor window layer is made of a CdS thin film,
The solar cell according to claim 1, wherein the semiconductor light absorption layer is made of a CuInSe 2 thin film, and the graded composition layer is made of CuIn 1 -X Ga X Se 2 .
膜よりなり、前記傾斜組成層がCuIn(Se1ーXSX)
2 よりなる請求項1に記載の太陽電池。6. The semiconductor light absorption layer is made of a CuInSe 2 thin film, and the gradient composition layer is made of CuIn (Se 1 −X S X ).
The solar cell according to claim 1, which is composed of 2 .
前記半導体光吸収層がCuInSe2 薄膜よりなり、前
記傾斜組成層がCuIn(Se1ーXSX)2 よりなる請求
項1に記載の太陽電池。7. The semiconductor window layer comprises a CdS thin film,
The solar cell according to claim 1, wherein the semiconductor light absorption layer is made of a CuInSe 2 thin film, and the gradient composition layer is made of CuIn (Se 1 -X S X ) 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26877294A JP3646940B2 (en) | 1994-11-01 | 1994-11-01 | Solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26877294A JP3646940B2 (en) | 1994-11-01 | 1994-11-01 | Solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08130321A true JPH08130321A (en) | 1996-05-21 |
JP3646940B2 JP3646940B2 (en) | 2005-05-11 |
Family
ID=17463092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26877294A Expired - Lifetime JP3646940B2 (en) | 1994-11-01 | 1994-11-01 | Solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3646940B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003282908A (en) * | 2002-03-25 | 2003-10-03 | Honda Motor Co Ltd | Method and device for manufacturing light absorbing layer |
JP2011521463A (en) * | 2008-05-19 | 2011-07-21 | サン−ゴバン グラス フランス エス アー | Solar cell layer system |
WO2012002381A1 (en) * | 2010-06-30 | 2012-01-05 | 京セラ株式会社 | Photoelectric conversion device |
JP2012099807A (en) * | 2010-11-03 | 2012-05-24 | Alta Devices Inc | Optoelectronic device having heterojunction |
JP2012235022A (en) * | 2011-05-06 | 2012-11-29 | Toshiba Corp | Photoelectric conversion element and solar cell |
US9502594B2 (en) | 2012-01-19 | 2016-11-22 | Alta Devices, Inc. | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching |
US9691921B2 (en) | 2009-10-14 | 2017-06-27 | Alta Devices, Inc. | Textured metallic back reflector |
US9768329B1 (en) | 2009-10-23 | 2017-09-19 | Alta Devices, Inc. | Multi-junction optoelectronic device |
US10326033B2 (en) | 2008-10-23 | 2019-06-18 | Alta Devices, Inc. | Photovoltaic device |
US10615304B2 (en) | 2010-10-13 | 2020-04-07 | Alta Devices, Inc. | Optoelectronic device with dielectric layer and method of manufacture |
JP2020098927A (en) * | 2016-05-31 | 2020-06-25 | ファースト・ソーラー・インコーポレーテッド | Silver-doped photovoltaic devices and production methods thereof |
US11038080B2 (en) | 2012-01-19 | 2021-06-15 | Utica Leaseco, Llc | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching |
US11271133B2 (en) | 2009-10-23 | 2022-03-08 | Utica Leaseco, Llc | Multi-junction optoelectronic device with group IV semiconductor as a bottom junction |
US11271128B2 (en) | 2009-10-23 | 2022-03-08 | Utica Leaseco, Llc | Multi-junction optoelectronic device |
WO2022074852A1 (en) * | 2020-10-09 | 2022-04-14 | 株式会社 東芝 | Solar cell, multi-junction solar cell, solar cell module, and solar power generation system |
-
1994
- 1994-11-01 JP JP26877294A patent/JP3646940B2/en not_active Expired - Lifetime
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003282908A (en) * | 2002-03-25 | 2003-10-03 | Honda Motor Co Ltd | Method and device for manufacturing light absorbing layer |
JP2011521463A (en) * | 2008-05-19 | 2011-07-21 | サン−ゴバン グラス フランス エス アー | Solar cell layer system |
US10505058B2 (en) | 2008-10-23 | 2019-12-10 | Alta Devices, Inc. | Photovoltaic device |
US10326033B2 (en) | 2008-10-23 | 2019-06-18 | Alta Devices, Inc. | Photovoltaic device |
US9136418B2 (en) | 2008-10-23 | 2015-09-15 | Alta Devices, Inc. | Optoelectronic devices including heterojunction and intermediate layer |
US9178099B2 (en) | 2008-10-23 | 2015-11-03 | Alta Devices, Inc. | Methods for forming optoelectronic devices including heterojunction |
US9691921B2 (en) | 2009-10-14 | 2017-06-27 | Alta Devices, Inc. | Textured metallic back reflector |
US11271128B2 (en) | 2009-10-23 | 2022-03-08 | Utica Leaseco, Llc | Multi-junction optoelectronic device |
US11271133B2 (en) | 2009-10-23 | 2022-03-08 | Utica Leaseco, Llc | Multi-junction optoelectronic device with group IV semiconductor as a bottom junction |
US9768329B1 (en) | 2009-10-23 | 2017-09-19 | Alta Devices, Inc. | Multi-junction optoelectronic device |
JP5328982B2 (en) * | 2010-06-30 | 2013-10-30 | 京セラ株式会社 | Photoelectric conversion device |
US8653616B2 (en) | 2010-06-30 | 2014-02-18 | Kyocera Corporation | Photoelectric conversion device |
WO2012002381A1 (en) * | 2010-06-30 | 2012-01-05 | 京セラ株式会社 | Photoelectric conversion device |
JPWO2012002381A1 (en) * | 2010-06-30 | 2013-08-29 | 京セラ株式会社 | Photoelectric conversion device |
US10615304B2 (en) | 2010-10-13 | 2020-04-07 | Alta Devices, Inc. | Optoelectronic device with dielectric layer and method of manufacture |
JP2012099807A (en) * | 2010-11-03 | 2012-05-24 | Alta Devices Inc | Optoelectronic device having heterojunction |
JP2012235022A (en) * | 2011-05-06 | 2012-11-29 | Toshiba Corp | Photoelectric conversion element and solar cell |
US11038080B2 (en) | 2012-01-19 | 2021-06-15 | Utica Leaseco, Llc | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching |
US9502594B2 (en) | 2012-01-19 | 2016-11-22 | Alta Devices, Inc. | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching |
US10008628B2 (en) | 2012-01-19 | 2018-06-26 | Alta Devices, Inc. | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching |
US11942566B2 (en) | 2012-01-19 | 2024-03-26 | Utica Leaseco, Llc | Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching |
JP2020098927A (en) * | 2016-05-31 | 2020-06-25 | ファースト・ソーラー・インコーポレーテッド | Silver-doped photovoltaic devices and production methods thereof |
US11450778B2 (en) | 2016-05-31 | 2022-09-20 | First Solar, Inc. | Ag-doped photovoltaic devices and method of making |
WO2022074852A1 (en) * | 2020-10-09 | 2022-04-14 | 株式会社 東芝 | Solar cell, multi-junction solar cell, solar cell module, and solar power generation system |
JPWO2022074852A1 (en) * | 2020-10-09 | 2022-04-14 | ||
CN115380392A (en) * | 2020-10-09 | 2022-11-22 | 株式会社东芝 | Solar cell, multijunction solar cell, solar cell module, and solar power generation system |
US12021161B2 (en) | 2020-10-09 | 2024-06-25 | Kabushiki Kaisha Toshiba | Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system |
Also Published As
Publication number | Publication date |
---|---|
JP3646940B2 (en) | 2005-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2814351B2 (en) | Photoelectric device | |
US4728370A (en) | Amorphous photovoltaic elements | |
US4547622A (en) | Solar cells and photodetectors | |
US20020043279A1 (en) | Diode structure, especially for thin-filn solar cells | |
JPH05114747A (en) | Improved monolithic tandem-type solar cell | |
JPH08130321A (en) | Solar cell | |
Gupta et al. | Simulation studies of CZT (S, Se) single and tandem junction solar cells towards possibilities for higher efficiencies up to 22% | |
US4612559A (en) | Solar cell of amorphous silicon | |
EP0241226A2 (en) | Semiconductor device and method of making it | |
JP3646953B2 (en) | Solar cell | |
US4857115A (en) | Photovoltaic device | |
JP3444700B2 (en) | Solar cell | |
JPS6111475B2 (en) | ||
JP3130993B2 (en) | Solar cell | |
JPH06232436A (en) | Solar cell and manufacture thereof | |
JP2936269B2 (en) | Amorphous solar cell | |
JPH09181343A (en) | Photoelectric conversion device | |
JP2005317563A (en) | Sollar battery | |
US20240065008A1 (en) | Solar battery | |
JP2673021B2 (en) | Solar cell | |
RU2099818C1 (en) | Light energy to electric energy converter | |
JPS62165374A (en) | Amorphous photovoltaic element | |
JPH07231108A (en) | Solar cell | |
KR920009897B1 (en) | Amorphous silicon solar cell | |
JPH05218477A (en) | Solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050204 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080218 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090218 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100218 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100218 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110218 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120218 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130218 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130218 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |