JPS60109273A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPS60109273A
JPS60109273A JP58217312A JP21731283A JPS60109273A JP S60109273 A JPS60109273 A JP S60109273A JP 58217312 A JP58217312 A JP 58217312A JP 21731283 A JP21731283 A JP 21731283A JP S60109273 A JPS60109273 A JP S60109273A
Authority
JP
Japan
Prior art keywords
film
amorphous silicon
photoelectric conversion
type amorphous
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58217312A
Other languages
Japanese (ja)
Inventor
Mikio Sakamoto
幹雄 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58217312A priority Critical patent/JPS60109273A/en
Publication of JPS60109273A publication Critical patent/JPS60109273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent the deterioration of the resolution by a method wherein a one-dimensional photosensor element is formed into a P/I/N sandwich structure by using amorphous Si carbide films, the thicknesses of which films are then made specific. CONSTITUTION:An ITO is formed on a transparent glass substrate 1 and made as a clear common electrode. After an N type amorphous Si carbide film 3 about 0.5mum-1mum thick is formed thereon, an I type amorphous Si carbide film 4 is formed and made as a photosensitive layer, and a P type amorphous Si carbide film 5 and a discrete electrode 6 of aluminum or the like are successively formed thereon. In the case of the incidence of white fluorescent light from the glass substrate side, the wavelength regions of lights reaching the film 4 are cut more in the surface layer in lights having shorter wavelengths, having the same effect as in the case of interposing color filters. Therefore, the S/N ratio can be set large, and the resolution can be improved by controlling the thickness of the filter layer.

Description

【発明の詳細な説明】 本発明は、分光放射束の大きい光源例えば白色叶い光電
を使用した場−合にも、色フィルターを用」 いずに緑色光源を使用した時と等価な光電変換を行ない
しかも分布屈折率ファイバーレンズアレイによる色収差
のために分解能が劣化することを防止できる光電変換装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Even when using a light source with a large spectral radiant flux, for example, a white photovoltaic light source, the present invention can achieve photoelectric conversion equivalent to that when using a green light source without using a color filter. The present invention relates to a photoelectric conversion device that is capable of performing a distributed refractive index fiber lens array and also preventing deterioration in resolution due to chromatic aberration caused by a distributed index fiber lens array.

最近、ファクシミリ装置の光電変換装置として原稿と同
じ読み取り幅を有し、原稿とほぼ密着させて用いること
ができ原稿と光センサ素子間の距離が数のと小さくでき
る密着形光センサと呼ばれる技術が注目されてきている
。この密着形イメージセンサの駆動法において、B@ 
As−Te 、アモルファスシリコンなどの非晶質半導
体の薄膜で形成されたフォトダイオードを用いたいわゆ
る蓄積型と呼ばれるものがある。中でもアモルファスシ
リコンを用いたものは、大面積な膜形成が容易であり、
耐熱性、信頼性に富み、また無公害材料であるなどの特
長を持っている。蓄積型の光センサ素子構造として、ブ
ロッキング電極を有するP/1/nサンドイッチ構造の
アモルファスシリコン膜を用いたものがある。第1図1
c P / i / n型すンドイッチ構造の光センサ
素子の断面構造を示す。
Recently, a technology called a close-contact optical sensor has been developed as a photoelectric conversion device for facsimile machines, which has the same reading width as the original, and can be used in close contact with the original, making the distance between the original and the optical sensor element much smaller. It is attracting attention. In this contact type image sensor driving method, B@
There is a so-called storage type that uses a photodiode formed of a thin film of an amorphous semiconductor such as As-Te or amorphous silicon. Among them, those using amorphous silicon are easy to form over large areas.
It has features such as being heat resistant, highly reliable, and a non-polluting material. As an accumulation type photosensor element structure, there is one using an amorphous silicon film having a P/1/n sandwich structure having a blocking electrode. Figure 1 1
c shows a cross-sectional structure of a photosensor element with a P/i/n-type switch structure.

この時、キャリアのブロッキング電極層としてのP型あ
るいはN型アモルファスシリコン膜の厚さは、0.05
μm程度あるいはそれ以下の値で充分であるため、通常
前述した値に選ばれている。例えば、ガラス基板1上に
形成されたITO(インジウムチンオキサイド)からな
る透明電極2および例えば005μm程度のn型7モル
7アスシリコン膜3を通過した光により感光部であるl
型アモルファスシリコン膜4で発生した電子は、例えば
、0.05μm程度のP型アモルファスシリコン膜5で
、また正孔はN型アモルファスシリコン膜3でそれぞれ
ブロッキングされることKなる。
At this time, the thickness of the P-type or N-type amorphous silicon film as the carrier blocking electrode layer is 0.05
Since a value on the order of μm or less is sufficient, the above-mentioned value is usually selected. For example, light passing through a transparent electrode 2 made of ITO (indium tin oxide) formed on a glass substrate 1 and an n-type 7 mol 7 as silicon film 3 of, for example, about 0.005 μm is used as a photosensitive portion.
Electrons generated in the amorphous silicon film 4 are blocked by the P-type amorphous silicon film 5 of about 0.05 μm, and holes are blocked by the N-type amorphous silicon film 3, for example.

ところで密着形イメージセンサの一例として、第2図に
丞す様に原稿10をけい光電やLEDなどの光源20で
照らし、その反射光を分布屈折率ロッドレンズアレイ3
0(以下レンズアレイと称する)で光センサ素子アレイ
40上に等倍結像し読み取る方法がある。通常、光源2
0としてLID)や白色けい光電に色フィルターを設け
た単色光の光源20を用い、レンズアレイ300色収差
による僧の分解能の劣化を防止している。しかし、LE
D光沖では分光放射束が小さいため、蓄積へりによる高
速時の読み取りでは光量不足となり信号対雑音比が劣化
する欠点があった。
By the way, as an example of a contact type image sensor, as shown in FIG.
0 (hereinafter referred to as a lens array), there is a method of forming a same-magnification image on the photosensor element array 40 and reading it. Usually light source 2
A monochromatic light source 20 with a color filter provided on a white fluorescent light source (LID) or a white fluorescent light source is used to prevent deterioration of the optical resolution due to chromatic aberration of the lens array 300. However, L.E.
Since the spectral radiant flux of D-light offshore is small, reading at high speeds using the storage edge has the drawback of insufficient light intensity and deterioration of the signal-to-noise ratio.

また、光源として、白色けい光電を用いた場合、次の様
な分解能の劣化の問題があった。例えば、第3図に示す
様に1等倍結像した波長領域では、黒いストライプの像
200が斜線部であったとすると、この時光センサ素子
100上の全領域に光が入射し、・光信号出力は例えば
1となり、反対に光重ンサ素子101上の全領域には光
は入射せず光信号出力は、例えば0となる。
Further, when a white fluorescent photoelectric light source is used as a light source, there is a problem of deterioration of resolution as described below. For example, if the black stripe image 200 is the shaded area in the wavelength range that is imaged at 1× as shown in FIG. The output is, for example, 1, and on the contrary, no light enters the entire area on the optical multiplexer element 101, and the optical signal output is, for example, 0.

ところが、等倍結像した波長領域外では、色収差のため
等倍像でなくなり、例えば短波長領域では、黒いストラ
イプの像200が、同図1点MINで囲まれ、拡大され
た像300となり例えば長波長領域では、同図2点鎖線
で囲まれ、縮少された像400となる。従って光センサ
素子が、上記波長領域に分光感度を有する場合、短波長
領域では、光センザ素子100の光信号出力が例えば0
.9程度に低下し、反対に長波長領域では、光センサ素
子101の黒し2ル信号出力が例えば0.15程度[1
[、L、結局どちらKしても分解能が劣化してしまう。
However, outside the wavelength region where the image is formed at the same magnification, the image is no longer the same size due to chromatic aberration. For example, in the short wavelength region, the black stripe image 200 becomes an enlarged image 300 surrounded by a single point MIN in the figure, for example. In the long wavelength region, the image is a reduced image 400 surrounded by a two-dot chain line in the figure. Therefore, when the photosensor element has spectral sensitivity in the above wavelength range, the optical signal output of the photosensor element 100 is, for example, 0 in the short wavelength range.
.. On the contrary, in the long wavelength region, the black signal output of the optical sensor element 101 decreases to about 0.15 [1
[,L, In the end, resolution deteriorates no matter which K is used.

例えばi型アモルファスシリコン膜は、第4図に示1様
な分光感度を有するため、上述した分解能の劣化は著し
く、例えば、半値幅数lOnmのJ1色光に比べ1/2
程度となってしまう。
For example, since the i-type amorphous silicon film has a spectral sensitivity as shown in FIG.
It becomes a degree.

さらK、アモルファスシリコン膜を使用した場合に、そ
の吸収端が700nm〜800nmと赤色光から近赤外
光にあるためどうしても赤色光による像を光ηL変換偉
ることKなる。通常ファクシミリ装置Fjで読み取る原
稿は白地に黒色であるが、印鑑の朱肉等による赤色も読
み取る必要がある。しかし、前述したアモルファスシリ
コン膜での赤色光による像の光電変換では、赤色の文字
やラインを読み取る事ができない。
Furthermore, when an amorphous silicon film is used, its absorption edge is from 700 nm to 800 nm, which is in the range from red light to near-infrared light, so that an image caused by red light cannot be converted into light ηL. Normally, the document read by the facsimile machine Fj is black on a white background, but it is also necessary to read the red color caused by the ink of a seal or the like. However, in the photoelectric conversion of an image using red light using the amorphous silicon film described above, red characters and lines cannot be read.

本発明の目的は、分光放射束の大きい白色けい光電の光
源を使用しながら、しかも色フィルター等を新たに設け
ることなく、通常の緑色光源な用いたのと等価な分解能
劣化の少ない光電変換装置を提供することにある。
The object of the present invention is to provide a photoelectric conversion device that uses a white fluorescent photoelectric light source with a large spectral radiant flux, does not require any additional color filters, and has less deterioration in resolution equivalent to that using a normal green light source. Our goal is to provide the following.

本発明によれば、原稿を照射する光源と前記原稿面の反
射光を結像するための分布屈折率ロッドレンズ7レイと
この分布屈折率ロッドレンズ7レイにより結像した像の
明暗に応じて光電変換する一次元光センサ素子とから少
なくとも構成される光電変換装置において、前記−次元
光センサ素子が、アモルファスシリコンカーバイド膜を
用いてP / i / nサンドイッチ構造に形成され
てなり、かつ前記分布屈折率ロッドレンズ7レイはよる
結像面となる側の前記pyi!もしくはn型アモルファ
スシリコンカー″バイト膜が、膜厚0.5μm−1μm
であることを特徴とする光電変換装置が得られる。
According to the present invention, a light source for illuminating a document and a distributed refractive index rod lens 7 ray for forming an image of the light reflected from the surface of the document, and the lightness of the image formed by the distributed refractive index rod lens 7 ray are provided. In a photoelectric conversion device comprising at least a one-dimensional photosensor element that performs photoelectric conversion, the one-dimensional photosensor element is formed in a P/i/n sandwich structure using an amorphous silicon carbide film, and the distribution The refractive index rod lens 7 ray is attached to the pyi! on the side that becomes the imaging surface. Or an n-type amorphous silicon carbide film with a film thickness of 0.5 μm to 1 μm.
A photoelectric conversion device is obtained.

以下図面と共に本発明の具体的な実施例について詳細に
説明する。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

・ まず透明t(ガラス基板上に例えばITOをスパッ
タ等で形成して透明共通電極とし、この上しξ例えばP
H3/SiH4+CH4:0.2%、C/S i= l
 O−15チ程度の雰囲気中でのグロー放電法により、
約0.5μrn 〜1μm厚のn型のアモルファスシリ
コンカーバイド膜を形成する。この徒、不純物をドーピ
ングしないn型のアモルファスシリコンカーバイド膜を
約2μm形成し感光層とする。
- First, a transparent common electrode is formed by sputtering, for example, ITO on a glass substrate, and then ξ, for example, P
H3/SiH4+CH4: 0.2%, C/Si=l
By glow discharge method in an atmosphere of about O-15,
An n-type amorphous silicon carbide film having a thickness of about 0.5 μrn to 1 μm is formed. Then, an n-type amorphous silicon carbide film not doped with impurities is formed to a thickness of about 2 μm to form a photosensitive layer.

この上に同様K例えばB H/5in4+CH4=6 0.2%、C/目=10〜15%程度のP型のアモルフ
ァスシリコンカーバイド膜と例えばアルミニウムあるい
は金等の個別電極を順次形成する。このP型のアモルフ
ァスシリコンカーバイド膜は、特Kn型の様に厚くなく
ともよ(0,05μ密程度で電子に対するブロッキング
コンタクトとなればよい。
On this, a P-type amorphous silicon carbide film of K, for example, BH/5in4+CH4=60.2% and C/thickness=10 to 15%, and individual electrodes of aluminum or gold, for example, are sequentially formed thereon. This P-type amorphous silicon carbide film does not have to be as thick as the Kn-type film (it only needs to have a density of about 0.05 μm and serve as a blocking contact for electrons).

この構成の光センサ素子忙、前記ガラス基板側から白色
叶い光fi[よる光が入射した場合、n型の7モル7ア
スシリコンカーバイド膜を透過して、感光層であるn型
のアモルファスシリコンカーバイド膜に到達する光の波
長領域は第5図に示す様に短波長の光程、表面層でカッ
トされるため色フィルターを入れたのと同じ効果を持ち
、同図に示す様にn型のアモルファスシリコンカーバイ
ド膜の厚さが0.5μm以上の場合には、吸収端付近に
勾配を持つフィルターとして働く。特に同図の例では5
50nm付近に吸収端がある。さらに膜厚を厚゛くして
いくと勾配が急峻となる。この特性とn型7モル7アス
シリコンカー/2イド膜の分光感度特性によりていわゆ
る感光波長領域は)くンドノくスフイルターを通したの
と同じ効果となる。
In the optical sensor element of this configuration, when white light is incident from the glass substrate side, it passes through the n-type 7M 7A silicon carbide film and generates light from the n-type amorphous silicon carbide that is the photosensitive layer. As shown in Figure 5, the wavelength range of the light that reaches the film is shorter as it is cut by the surface layer, so it has the same effect as a color filter. When the thickness of the amorphous silicon carbide film is 0.5 μm or more, it acts as a filter with a gradient near the absorption edge. Especially in the example in the same figure, 5
There is an absorption edge near 50 nm. As the film thickness is further increased, the slope becomes steeper. Due to this characteristic and the spectral sensitivity characteristics of the n-type 7 mole 7 as silicon carbide film, the so-called sensitive wavelength region has the same effect as passing through a filter.

従りて、前述した様にフィルターリングされた波長領域
の像に関しては、iMlのアモルファスシリコンカーバ
イド膜で光電変換されないため分解能の劣化を抑制する
ことができる。
Therefore, as described above, images in the filtered wavelength range are not photoelectrically converted by the amorphous silicon carbide film of iMl, so deterioration in resolution can be suppressed.

また、第5図にみられる様に、フィルター層として働く
n型のアモルファスシリマンカー/(イド膜が厚くなれ
ば勾配が急峻となるため、分解能は向上するが、分光感
度が低下し、光信号出力が小さくなる。
In addition, as shown in Figure 5, the thicker the n-type amorphous silimanker film, which acts as a filter layer, the steeper the slope, which improves the resolution, but reduces the spectral sensitivity and increases the optical signal. Output becomes smaller.

従ってフィルター層の膜iを制御することにより、イサ
号対雑音比を大きくとりたい時には、分解能を若干仏性
にしても膜厚を薄くすること、あるいは分解能を向上さ
せたい時には、これを逆にするなど種々の用途に簡便に
応じることも可能である。
Therefore, by controlling the film i of the filter layer, if you want to increase the signal-to-noise ratio, you can make the film thinner even if the resolution is slightly better, or if you want to improve the resolution, you can do the opposite. It is also possible to easily meet various uses such as.

前述した4’liK本莢施例の場合、n型のアモルファ
スシリコンカーバイド膜の吸収端を、550nm付近の
緑色光圧なる様にシリコンとカーバイドの比を選んでい
る。このため、原稿面上の赤色の文字やライン等も読み
取ることができ、通常のファクシミリ装置の光電変換装
置として充分対応できる。なお特に緑色光に限定される
ことなく、上述したシリコンとカーバイドの比を適切に
選ぶことにより約4000^〜7000Xまで、はば可
視光全域に渡り特定の波長の光を選択することも可能と
なる。
In the case of the above-mentioned 4'liK main pod embodiment, the ratio of silicon to carbide is selected so that the absorption edge of the n-type amorphous silicon carbide film has a green light pressure around 550 nm. Therefore, it is possible to read red characters, lines, etc. on the surface of a document, and it can be fully used as a photoelectric conversion device for a normal facsimile machine. Note that it is not limited to green light in particular, but by appropriately selecting the ratio of silicon and carbide mentioned above, it is also possible to select light of a specific wavelength over the entire visible light range from about 4000 to 7000X. Become.

上述した例では、n R’!7モル7アスカーバイド膜
が、フィルターの役割を兼ねた構造であるが、これに限
らずPMとn型が逆になりた構造でも同じ効果が得られ
ることはもちろんである。
In the above example, n R'! Although the structure is such that the 7 mol 7 ascarbide film also serves as a filter, the structure is not limited to this, and the same effect can of course be obtained with a structure in which PM and n-type are reversed.

以上説明した様に、本発明によれば分光放射束の大きい
白色のけい光電を使用した事により、信号対雑音比を大
きくでき、また光センサ素子とし’CP / + / 
nサンドイッチ構造の7モル7アスシリコンカーバイド
膜を用いたことにより、アモルファスシリコン膜に比べ
赤色の文字やラインの読み取りも可能となり、さらに光
の入射側になるn型もしくはP型のアモルファスシリコ
ンカーバイド膜の厚さを0.54m〜1μmとし、フィ
ルター層としての働きを持たせたことにより1分解能の
劣化を小さくでき、しかもブロッキング層がフィルター
層を兼ねているので余計なプロセスの必要もないという
優れた効果が得られる。
As explained above, according to the present invention, by using white fluorescent light with a large spectral radiant flux, the signal-to-noise ratio can be increased, and the optical sensor element can be used as 'CP / + /
By using a 7 mol 7 as silicon carbide film with an n-sandwich structure, it is possible to read red letters and lines compared to an amorphous silicon film, and an n-type or p-type amorphous silicon carbide film is used on the light incident side. The blocking layer has a thickness of 0.54 m to 1 μm and functions as a filter layer, which reduces deterioration in resolution per resolution.Moreover, since the blocking layer also serves as a filter layer, there is no need for extra processes. You can get the same effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、P / i / n型サンドイッチ構造のア
モルファスシリコンカーバイドセンサ素子の断面図の一
例を示すもので、1はガラス基板、2は透明電極、3.
4.5はそれぞれnW、iW、P型のアモルファスシリ
コンカーバイド膜、6は個別電極である。 第2図は、光電変換装置の一構成例を示すもので、10
は原稿、20はけい光電、30は分布屈折率−ラドレン
ズフレイ、40は光センサ素子1シイである。 第3丙は、色収差による分解能劣化を説明するための図
であり、100は光センサ素子、200は等倍結像波長
での黒いストライプの像、300゜400は、等倍結像
波長外での点いストライプの像である。 第4図は、1型アモルファスシリコン膜の分光感度特性
とn型もしくはP型のアモルファスシリコン膜のフィル
ター効果を示す。 第5図は、本発明の一実施例であるl型アモルファスシ
リコンカーバイド膜の分光感度特性とn型もしくはP型
のアモルファスシリコンカーバイド膜のフィルター効果
を示す。 第 1 [8 第2図 0 第3図 第4図 第5図 イi=lθ〜tSz ;!OQ 4θθ 6θθ −θθθ
FIG. 1 shows an example of a cross-sectional view of an amorphous silicon carbide sensor element having a P/i/n type sandwich structure, in which 1 is a glass substrate, 2 is a transparent electrode, and 3.
4.5 are nW, iW, and P-type amorphous silicon carbide films, and 6 is an individual electrode. FIG. 2 shows an example of the configuration of a photoelectric conversion device.
2 is a document, 20 is a fluorescent photoelectric device, 30 is a distributed refractive index Radlens Frei, and 40 is a photosensor element 1. 3rd C is a diagram for explaining resolution deterioration due to chromatic aberration, where 100 is an optical sensor element, 200 is an image of a black stripe at the same-magnification imaging wavelength, and 300°400 is an image outside the same-magnification imaging wavelength. It is a statue with dotted stripes. FIG. 4 shows the spectral sensitivity characteristics of a type 1 amorphous silicon film and the filter effect of an n-type or p-type amorphous silicon film. FIG. 5 shows the spectral sensitivity characteristics of an l-type amorphous silicon carbide film and the filter effect of an n-type or p-type amorphous silicon carbide film, which is an embodiment of the present invention. 1st [8 Fig. 2 0 Fig. 3 Fig. 4 Fig. 5 i=lθ~tSz ;! OQ 4θθ 6θθ −θθθ

Claims (1)

【特許請求の範囲】[Claims] 原稿を照明する光源と前記原稿面の反射光を結像するた
めの分布屈折率ロッドレンズアレイと該分布屈折率ロッ
ドレンズアレイにより結像した像の明暗に応じて光電変
換する一次元光センサ素子とから少な(とも構成される
光電変換装置忙おいて、前記−次元光セ/す素子が、ア
モルファスシリコンカーバイド膜を用いて、P / i
 / nサンドイッチ構造に形成されてなり、かつ前記
分布屈折率ロッドレンズアレイによる結像面となる側の
前記Pmもしくはniアモルファスシリコンカーバイド
膜が、膜厚0.5μm〜1μmであることを特徴とする
光電変換装置。
A light source for illuminating a document, a distributed index rod lens array for forming an image of light reflected from the surface of the document, and a one-dimensional photosensor element that performs photoelectric conversion according to the brightness of the image formed by the distributed index rod lens array. In a photoelectric conversion device composed of a small number of
/ n sandwich structure, and the Pm or ni amorphous silicon carbide film on the side that becomes the imaging surface of the distributed index rod lens array has a film thickness of 0.5 μm to 1 μm. Photoelectric conversion device.
JP58217312A 1983-11-18 1983-11-18 Photoelectric conversion device Pending JPS60109273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58217312A JPS60109273A (en) 1983-11-18 1983-11-18 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58217312A JPS60109273A (en) 1983-11-18 1983-11-18 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPS60109273A true JPS60109273A (en) 1985-06-14

Family

ID=16702181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58217312A Pending JPS60109273A (en) 1983-11-18 1983-11-18 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS60109273A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348858A (en) * 1986-08-19 1988-03-01 Fuji Electric Co Ltd Optical sensor array
JPS63313961A (en) * 1987-02-26 1988-12-22 Kanegafuchi Chem Ind Co Ltd Image information input device
FR2630260A1 (en) * 1988-04-19 1989-10-20 Thomson Csf AMORPHOUS SILICON PHOTODETECTOR WITH ENHANCED QUANTUM PERFORMANCE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348858A (en) * 1986-08-19 1988-03-01 Fuji Electric Co Ltd Optical sensor array
JPS63313961A (en) * 1987-02-26 1988-12-22 Kanegafuchi Chem Ind Co Ltd Image information input device
FR2630260A1 (en) * 1988-04-19 1989-10-20 Thomson Csf AMORPHOUS SILICON PHOTODETECTOR WITH ENHANCED QUANTUM PERFORMANCE

Similar Documents

Publication Publication Date Title
CN101894849B (en) Two-dimensional solid-state imaging device
US7605354B2 (en) Color sensor, production method thereof, sensor, and electronics device
JPS60161664A (en) Tightly adhered two-dimensional image readout device
JPH06204445A (en) Optical sensor and image information processing device having the same
CN109564928A (en) Solid-state image pickup element, solid-state image pickup element pupil bearing calibration, photographic device and information processing unit
JP3680512B2 (en) Solid-state image sensor
US5237185A (en) Image pickup apparatus with different gate thicknesses
JP2000164839A (en) Solid camera device
JPH08148665A (en) Solid image pickup element
JP3033242B2 (en) Solid-state imaging device
JPS60109273A (en) Photoelectric conversion device
JPH0990048A (en) Radiation detector
JPS6173033A (en) Color exposure device
JP2007134664A (en) Solid state imaging device and its manufacturing method
JPH0653451A (en) Solid state image sensor
JPH04259256A (en) Solid state image sensor
JP3138502B2 (en) Solid-state imaging device
JPH09275202A (en) Photodetector
JPS61154283A (en) Solid image pick-up element
JP3018782B2 (en) Solid-state imaging device
JP2005033110A (en) Solid image image sensor, and manufacturing method thereof
JPH11214664A (en) Solid state image sensing element and manufacture thereof
JPS6046068A (en) Photoelectric converter
JPH0653457A (en) Solid state color image sensor
JP4333615B2 (en) Solid-state image sensor