JPS63486A - Method for improving wear resistance and seizure resistance for metallic member - Google Patents

Method for improving wear resistance and seizure resistance for metallic member

Info

Publication number
JPS63486A
JPS63486A JP14433286A JP14433286A JPS63486A JP S63486 A JPS63486 A JP S63486A JP 14433286 A JP14433286 A JP 14433286A JP 14433286 A JP14433286 A JP 14433286A JP S63486 A JPS63486 A JP S63486A
Authority
JP
Japan
Prior art keywords
powder
wear resistance
metal
resistance
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14433286A
Other languages
Japanese (ja)
Inventor
Yoshio Ashida
芦田 喜郎
Yuichi Seki
勇一 関
Shigenori Kusumoto
栄典 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14433286A priority Critical patent/JPS63486A/en
Publication of JPS63486A publication Critical patent/JPS63486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To give excellent wear resistance and seizure resistance by sticking powdery aggregate or powdery forming body composing or carbide of the specific kind and quantity and the specific metallic phase, to surface of metallic member and then integrating them by fusing. CONSTITUTION:The powdery aggregate or powdery forming body is composed of 20-80mol% total of one kind or more of carbides of V, Ti, Zr, Nb, Ta, Hf and the remaining part of one kind or more of metals or alloy of Fe, Ni, Co or one kind or more of alloy as main component of Fe, Ni, Co and inevitable compounds. After sticking this powdery aggregate or powdery forming body to the surface of metallic member, the powdery aggregate or powdery forming body is fused by heat source having high energy density, to integrate the powdery aggregate or powdery forming body with the surface of metallic member by fusing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属部材の耐S耗性及び耐焼付き性向上方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for improving the S wear resistance and seizure resistance of metal members.

(従来技術) 切削工具や塑性加工用工具、内燃機関のシリンダー、ピ
ストン、軸受等、摩圓面を有する金屈製品には耐摩耗性
と同時に耐焼付き性が要望されている。
(Prior Art) Metallic products having abrasive surfaces, such as cutting tools, plastic working tools, internal combustion engine cylinders, pistons, and bearings, are required to have not only wear resistance but also seizure resistance.

耐J!j耗性や耐焼付き性を向上させるには、金属表面
の硬度を向上させれば良い事は良く知られている。金属
表面の硬度を向上させる方法には焼入れによる方法、耐
摩耗性及び耐焼付き性を有する合金成分をコーティング
する方法等がある焼入れによる方法としては、高周波焼
入れ等の従来から行われている方法に加え、レーザや電
子ビーム等の高エネルギー密度となる熱源を用いた表面
焼入れ法(以下レーザ表面焼入れという)があり、これ
らの技術は特開昭54−112740、特開昭53−1
37362.特開昭55−2710に開示されている。
Endure J! It is well known that in order to improve wear resistance and seizure resistance, it is sufficient to improve the hardness of the metal surface. Methods for improving the hardness of metal surfaces include methods such as hardening and coating with alloy components that have wear resistance and seizure resistance.As for methods using hardening, conventional methods such as induction hardening In addition, there are surface hardening methods (hereinafter referred to as laser surface hardening) that use heat sources with high energy density such as lasers and electron beams, and these techniques are described in Japanese Patent Application Laid-open No. 54-112740 and No. 53-1.
37362. It is disclosed in Japanese Patent Application Laid-Open No. 55-2710.

そのほか鋳鉄製品の表面や高速度鋼製の切削工具の刃先
を高エネルギービームにより表面層のみを溶融後急冷凝
固させる事により(以下レーザグレージングという)耐
摩耗性を改善する方法も有り、これらの技術は特開昭5
7−85926及び特開昭59−83718に開示され
ている。
In addition, there is a method to improve the wear resistance of the surface of cast iron products and the cutting edge of high-speed steel cutting tools by melting only the surface layer using a high-energy beam and then rapidly solidifying it (hereinafter referred to as laser glazing). is Japanese Patent Application Publication No. 5
No. 7-85926 and Japanese Patent Application Laid-Open No. 59-83718.

一方1合金成分をコーティングする方法には。On the other hand, there is a method for coating one alloy component.

窒化処理、はう他処理、PVD処理、CVD処理等の表
面硬化処理、及びレーザ表面合金化や、レーザクラツデ
ィングによる方法がある。
Methods include surface hardening treatments such as nitriding treatment, coating treatment, PVD treatment, CVD treatment, laser surface alloying, and laser cladding.

このうち、レーザ表面合金化とはレーザ加熱により母材
金属に薄い溶融層を作り、この溶融層に合金元素を添加
して、瞬間的に合金成分を拡散させ、母材表面に合金層
を形成させる処理方法である0合金元素の添加方法とし
ては、予め必要な合金成分を含む添加材料を母材表面に
付若させておき、レーザ加熱により母材に溶かし込む方
法がある。
Among these, laser surface alloying involves creating a thin molten layer on the base metal by laser heating, adding alloying elements to this molten layer, and instantaneously diffusing the alloy components to form an alloy layer on the base metal surface. As a method of adding 0 alloying elements, which is a treatment method for adding alloying elements, there is a method in which an additive material containing the necessary alloying components is deposited on the surface of the base material in advance, and then melted into the base material by laser heating.

またレーザクラツディングによる方法はレーザ合金化と
よく似た処理であり、添加材料の量およびレーザ照射条
件をW節することにより母材の溶融量を少なくし、添加
材料の成分に近い組成をもつ表面層を形成する技術であ
る。
In addition, the method using laser cladding is a process very similar to laser alloying, and by setting the amount of additive material and laser irradiation conditions to W, the amount of melting of the base material is reduced, and the composition is close to that of the additive material. This is a technology to form a surface layer with

(従来技術の問題点) 焼入れによる方法の一種であるレーザ表面焼入れでは、
熱歪や焼入れに起因する変形が小さいという長所がある
ものの、耐摩耗性などに関しては従来から用いられてい
る高周波焼入れによる場合と殆ど変わりなく、特に切削
工具や金型のように、もともと焼入れで使用する製品に
対しては、再度表面焼入れを施しても改善効果が少ない
という欠点がある。またオーステナイト系ステンレス鋼
等の焼入れ不可能な材料には適用できないという問題点
もある。
(Problems with conventional technology) In laser surface hardening, which is a type of hardening method,
Although it has the advantage that deformation caused by thermal strain and quenching is small, in terms of wear resistance, it is almost the same as conventional induction hardening. The product used has the disadvantage that even if surface hardening is performed again, there is little improvement effect. Another problem is that it cannot be applied to materials that cannot be hardened, such as austenitic stainless steel.

一方、レザーグレージングの場合は鋳鉄や高速度鋼に対
しては表面焼入れによる方法より効果があるが、硬さと
してはHv900〜1100程度が限界である。また、
レザーグレージングは適用鋼種が大幅に制限され、炭素
鋼や低合金鋼などの通常の焼入れや溶体化処理で未固溶
の第2相粒子が殆ど残留しない材料では効果が小さいと
いう欠点がある。
On the other hand, in the case of laser glazing, it is more effective than the surface hardening method for cast iron and high-speed steel, but the hardness is limited to about Hv900 to 1100. Also,
The disadvantage of laser glazing is that the steel types to which it can be applied are severely limited, and it is less effective for materials such as carbon steel and low-alloy steel, in which almost no undissolved second phase particles remain after normal quenching or solution treatment.

また、窒化処理、はう化処理では耐摩耗性、耐焼付き性
の改善効果が十分ではないという問題点がある。また、
PVD処理、CVD処理等の表面硬化処理では、T i
 NやTiC等の硬質化合物が其地上に機械的に結合さ
れているだけである為、母材の品質劣化が生じ易く、更
に熱歪による変形も起こりやすい。
Further, there is a problem that the nitriding treatment and the fertilizing treatment do not have sufficient effects of improving wear resistance and seizure resistance. Also,
In surface hardening treatments such as PVD treatment and CVD treatment, Ti
Since a hard compound such as N or TiC is only mechanically bonded to the surface, the quality of the base material is likely to deteriorate, and furthermore, deformation due to thermal strain is likely to occur.

一方、レーザによる表面合金化及びクラツディングにお
いては、母材金属に耐摩耗性を付与する場合には、T 
i C、W C、M o C等の金属炭化物やA立20
3  、 T i 02等の金属酸化物が添加される。
On the other hand, in surface alloying and cladding using laser, T
Metal carbides such as i C, W C, M o C and A20
3, a metal oxide such as T i 02 is added.

然し、これらの硬質化合物は非常に融点が高い。However, these hard compounds have very high melting points.

又、 (1)硬質化合物は非常に溶融しにくいために、多量に
添加すると未溶融の化合物がそのまま合金化層に残留す
る。この未溶融の化合物は通常凝集した状態で存在する
ため、脱落しやすくボアや、亀裂等の欠陥発生要因とな
る。
Further, (1) since hard compounds are very difficult to melt, if a large amount is added, unmelted compounds will remain in the alloyed layer. Since this unmelted compound usually exists in an aggregated state, it easily falls off and becomes a cause of defects such as bores and cracks.

(2)硬質化合物は粘性が高い為、溶融したとしても母
材液相とは均一に混合せず1部分的にムラの有る組織と
なる。また気泡が完全に表面に抜ききれず、そのまま合
金相の中に欠陥として残留する。
(2) Since the hard compound has high viscosity, even if it is melted, it does not mix uniformly with the liquid phase of the base material, resulting in a partially uneven structure. Moreover, the bubbles cannot be completely removed from the surface and remain as defects in the alloy phase.

(3)添加材と母材との比重の差が大きく異る条件では
、例えば添加材としてAlI303 、 SiCを使用
し、母材としてFe、Ni等を使用した場合、(2)に
示したムラがより顕著になるという欠点がある。
(3) Under conditions where the difference in specific gravity between the additive material and the base material is large, for example, when using AlI303 or SiC as the additive material and Fe, Ni, etc. as the base material, the unevenness shown in (2) may occur. The disadvantage is that it becomes more pronounced.

(問題点を解決するための手段) 上記問題点は、V、Ti 、Zr、Nb、Ta。(Means for solving problems) The above problems include V, Ti, Zr, Nb, and Ta.

Hfの炭化物の一種又は二種以上を合計20〜80mo
l%含有し、残部がFe、Ni、Coの一種又は二種以
上の金属もしくは合金、又はFe 、Ni 、Coの一
種又は二種以上を主成分とする合金及び不可避的化合物
からなる粉末集合体又は粉末成型体を、耐摩耗性及び/
又は耐焼付き性を向上させようとする金属部材の表面に
付着した後、該粉末集合体又は該粉末成型体を高エネル
ギー密度を有する熱源により溶融し、該粉末集合体又は
該粉末成型体と該金属部材の表面とを溶融一体化するこ
とを特徴とする金属部材の耐摩耗性及び耐焼付き性向上
方法によって解決される。
A total of 20 to 80 mo of one or more carbides of Hf
1%, with the remainder being a metal or alloy of one or more of Fe, Ni, and Co, or an alloy and inevitable compound whose main component is one or more of Fe, Ni, and Co. Or the powder molded body has wear resistance and/or
Alternatively, after adhering to the surface of a metal member whose seizure resistance is to be improved, the powder aggregate or the powder molded body is melted with a heat source having high energy density, and the powder aggregate or the powder molded body and the powder molded body are melted. The problem is solved by a method for improving the wear resistance and seizure resistance of a metal member, which is characterized by melting and integrating the surface of the metal member.

すなわち、本発明では、硬質化合物として特定の種類及
び量の炭化物を用い、該炭化物と特定の金属相からなる
粉末集合体又は粉末成形体(以下添加材料という)を金
属部材表面に仮付けし、レーザまたは電子ビームを用い
て該炭化材料を基地と溶融一体化することによって、前
記レーザ合金化及びクラッヂング法の問題を発生させる
ことなく金属部材の耐摩耗性及び耐焼付き性の向上が可
能なことを見い出したものである。
That is, in the present invention, a specific type and amount of carbide is used as a hard compound, and a powder aggregate or powder compact (hereinafter referred to as additive material) consisting of the carbide and a specific metal phase is temporarily attached to the surface of a metal member, By melting and integrating the carbonized material with the base using a laser or an electron beam, it is possible to improve the wear resistance and seizure resistance of the metal member without causing the problems of the laser alloying and cladding methods. This is what we discovered.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における添加材料は(炭化物の粉末と、金属また
は合金の粉末とから成る)粉末集合体または粉末成形体
である。したがって、粉末集合体または粉末成形体は、
加熱されるとまず低融点の金属または合金相が溶融し、
個々の炭化物粒子が該金属または合金の液相によって覆
われた状態になるため、はぼ瞬間的に炭化物構成元素と
金属または合金成分からなる液相が形成される。従って
未溶融の炭化物が残りにくく、また、たとえ溶は残った
としても金属または合金相が炭化物粒子間に存在するた
め、これら炭化物は非常に脱落しにくくなる。また、得
られた液相の粘度が小さくなるため、母材液相と炭化物
とが均一に混合し、気泡などの欠陥が残ることも少ない
こととなる。
The additive material in the present invention is a powder aggregate or powder compact (consisting of carbide powder and metal or alloy powder). Therefore, the powder aggregate or powder compact is
When heated, the low melting point metal or alloy phase first melts;
Since each carbide particle is covered with the liquid phase of the metal or alloy, a liquid phase consisting of the carbide constituent elements and the metal or alloy component is almost instantaneously formed. Therefore, it is difficult for unmelted carbide to remain, and even if melt remains, the metal or alloy phase exists between the carbide particles, making it extremely difficult for these carbides to fall off. Moreover, since the viscosity of the obtained liquid phase is reduced, the base material liquid phase and the carbide are mixed uniformly, and defects such as bubbles are less likely to remain.

ココテ、炭化物をV、Ti、Zr、Nb、Ta、Hfの
炭化物と限定した理由を説明する。粉末集合体または、
粉末成形体を合金化またはクラツディング中には炭化物
成分と金属成分とが混ざりあった液相が形成される。炭
化物は液相が冷却されるとき、冷却速度が非常に速いた
めマトリクスの金属相中に一部固溶したまま冷却される
が、大半ば液相から再度微細に晶出する。このとき液相
から晶出する化合物はもともと添加材料中に存在してい
た化合物と同じであるとは限らず、例えばM o Cや
wcをFe、Ni、Coなどと一緒に溶融させると、液
相からは低硬度でかつ脆弱fJ炭化物であるM、C等が
晶出する。このような1ぬ弱相が晶出すると耐摩耗性な
どの改善効果は殆どなくなる。これに対し、V、Ti、
Zr、Nb、Ta、Hfは液相から晶出する化合物は脆
弱な性質を示さない非常に安定なNaC文型の炭化物と
なり、耐摩耗性、耐焼付き性の改善効果が大きくなるた
めである。
Now, the reason why the carbides are limited to carbides of V, Ti, Zr, Nb, Ta, and Hf will be explained. powder aggregate or
During alloying or cladding of a powder compact, a liquid phase containing a mixture of carbide and metal components is formed. When the liquid phase is cooled, the carbide is cooled while being partially dissolved in the metal phase of the matrix because the cooling rate is very fast, but most of the time it crystallizes finely again from the liquid phase. The compound that crystallizes from the liquid phase at this time is not necessarily the same as the compound that originally existed in the additive material; for example, when MoC or wc is melted together with Fe, Ni, Co, etc. M, C, etc., which are low hardness and brittle fJ carbides, crystallize from the phase. When such a weak phase crystallizes, the effect of improving wear resistance and the like is almost eliminated. On the other hand, V, Ti,
This is because the compounds of Zr, Nb, Ta, and Hf that crystallize from the liquid phase become very stable NaC-shaped carbides that do not exhibit brittle properties, which greatly improves wear resistance and seizure resistance.

V、Ti 、Zr、Nb、Ta、Hfの炭化物の一種又
は二種以上を合計20〜80mol%含宥させた理由は
粉末集合体または、粉末成形体中の炭化物の量が20m
o 1%未満では耐摩耗性、耐焼付き性の改善効果が十
分でなく、又80mol%を超えると合金化のとき、ま
たはクラツディング相中に欠陥が発生しやすくなり、耐
摩耗性の効果が十分でなくなるためである。
The reason for containing one or more carbides of V, Ti, Zr, Nb, Ta, and Hf in a total amount of 20 to 80 mol% is that the amount of carbides in the powder aggregate or powder compact is 20 m
o If it is less than 1%, the effect of improving wear resistance and seizure resistance will not be sufficient, and if it exceeds 80 mol%, defects will easily occur during alloying or in the cladding phase, and the effect of wear resistance will not be sufficient. This is because it will no longer be.

なお、炭化物はVC,TiC,NbC等のように一8類
の金属元素とCとから構成されるもでのよく、(V、T
i)C,(V、Nb)C等のように複数の金属元素から
構成されているのでもよい、さらには此等の混合物でも
よい、また、例えばFe、Ni等の他の元素を含んでい
ても、その結晶構造がNaC文型の炭化物であれば特に
問題はない。
In addition, carbides may be composed of metal elements of class 18 and C, such as VC, TiC, NbC, etc.
i) It may be composed of multiple metal elements such as C, (V, Nb)C, etc., or it may be a mixture of these elements, or it may contain other elements such as Fe, Ni, etc. However, there is no particular problem if the crystal structure is a carbide with an NaC pattern.

本発明においては、粉末集合体または、粉末成形体の金
属粉末をFe、Ni、Coの一種もしくは二種以上の金
属または、これらを主成分とする合金相とから構成する
。Fe、Ni 、Coの金属または合金他相は炭化物よ
りはるかに融点が低く、表面合金化またはクラツディン
グ時に炭化物に先立って溶融し、共晶反応により炭化物
を溶融させる働きがある。このとき、Fe、Ni、C。
In the present invention, the metal powder of the powder aggregate or powder compact is composed of one or more metals of Fe, Ni, and Co, or an alloy phase containing these as main components. Other phases such as metals or alloys such as Fe, Ni 2 and Co have much lower melting points than carbides, melt before the carbides during surface alloying or cladding, and function to melt the carbides through a eutectic reaction. At this time, Fe, Ni, and C.

またはこれらを主成分とする合金であれば、炭化物が溶
融した後、他の脆弱な化合物に変化することは無い。
Or, if it is an alloy containing these as main components, after the carbide is melted, it will not change into other brittle compounds.

なお、金属成分は使用環境に応じて使い分けることが望
ましく、比較的低温での耐摩耗性が要求される場合には
、固溶硬化と分散硬化以外に、金属相がマルテンサイト
変態によって強化され、常温硬度が高くなるFe基の合
金相を、また、高温での耐摩耗性が要求される場合には
Ni又はCo基の合金相を採用するのが望ましい、 N
i 、G。
Note that it is desirable to use different metal components depending on the usage environment, and when wear resistance at relatively low temperatures is required, in addition to solid solution hardening and dispersion hardening, the metal phase is strengthened by martensitic transformation. It is desirable to use a Fe-based alloy phase that increases hardness at room temperature, and a Ni- or Co-based alloy phase when wear resistance at high temperatures is required.
i,G.

基の合金相を用いた場合には、Fe基の合金相の場合よ
り耐熱性及び耐焼付き性にも優れる。
When a Fe-based alloy phase is used, the heat resistance and seizure resistance are also better than when a Fe-based alloy phase is used.

また1本発明に使用される添加材料は、炭化物粉末と金
属粉末を混合することによって製造するのが最も容易で
あるが、その際、金属粉末は純金属粉末を使用しなくて
も、Fe、Ni、Go金合金粉末を使用してもよい、た
とえば、純Feの粉末の代わりに炭素鋼、ステンレス鋼
、高速度鋼などの粉末を使用してもよい。
In addition, the additive material used in the present invention is most easily produced by mixing carbide powder and metal powder, but in this case, the metal powder can be Fe, Fe, Ni, Go gold alloy powder may be used; for example, carbon steel, stainless steel, high speed steel, etc. powder may be used instead of pure Fe powder.

なお、後述の実施態様で説明するように条件によっては
金属相の耐B耗性や耐焼付き性を向上させるために特定
の合金元素を金属相に添加するほうが、耐摩耗性や、耐
焼付き性の向上効果が大きい場合もある。
As explained in the embodiments below, depending on the conditions, adding a specific alloying element to the metal phase may improve the wear resistance and seizure resistance. In some cases, the improvement effect is large.

なお、以上の添加材料は、炭化物粒子と金属又は合金か
らなる粉末粒子とを混合して製造された混合粒子を含む
ものでもよい、粉末粒子が炭化物と金属又は合金成分と
から構成される単一の粒子を含むものでもよい、後者の
単一粒子を含む添加材料を作製するには、炭化物粉末表
面に金属又は合金成分をメッキ、蒸着、イオンスパッタ
リングなどで被覆する方法、あるいは、逆に金属、合金
粉末表面に炭化物を被覆する方法がある0表面合金化、
クラッデング蒔の炭化物の溶融しやすさ、合金化、タラ
ッデング部の品質などの点からは、後者の添加材料が優
れているが、その製造には特殊な装置が必要であり、添
加材料の単価が高くなるため使用目的に応じて使いわけ
ればよい。
Note that the above additive materials may include mixed particles manufactured by mixing carbide particles and powder particles made of a metal or alloy, or single powder particles made of a carbide and a metal or alloy component. In order to produce the latter additive material containing single particles, the carbide powder surface may be coated with a metal or alloy component by plating, vapor deposition, ion sputtering, etc.; 0-surface alloying, which involves coating the surface of alloy powder with carbide;
The latter additive material is superior in terms of the ease of melting of the carbide in the cladding, alloying, and quality of the cladding part, but special equipment is required to manufacture it, and the unit price of the additive material is high. Since they are expensive, they can be used depending on the purpose of use.

また、添加材料は粉末のまま有機バインダーまどを用い
て被加工面に仮付けし、表面合金化やクラッヂングを施
してもかまわないが、粉末状態ではレーザ又は電子ビー
ム照射時に飛散するため添加材料のぶどまりが悲く、ま
た表面合金化、タラッヂング後は仮付は時より収縮する
ため厚みの制御がむづかしい、この問題は粉末状添加材
料をいったん焼結にて成形し、その後成形材を適当な大
きさに切断したものをスポット溶接などで端部を被加工
面に仮付は後、レーザ又は電子ビームで基地と溶融一体
化すればよい。
In addition, the additive material may be temporarily attached to the processed surface using an organic binder in powder form, and surface alloying or cladding may be performed, but since the additive material is scattered during laser or electron beam irradiation in the powder state, It is difficult to control the thickness because the tacking tends to shrink after surface alloying and tardging. After cutting to size, the ends are temporarily attached to the surface to be processed by spot welding or the like, and then they are melted and integrated with the base using a laser or an electron beam.

本発明においては、高エネルギー密度を有するf!%源
により粉末集合体又は該粉末成型体を溶融する。
In the present invention, f! has a high energy density! % source to melt the powder aggregate or the powder compact.

熱源として高エネルギー密度を有する物を使用する理由
は次にある。すなわち、合金化、クラブディング相の耐
摩耗性、耐焼付き性を向上させるには、炭化物の一部を
マトリクス中に強制的に固溶させるとともに、大半を液
相から微細に晶出。
The reason for using a material with high energy density as a heat source is as follows. In other words, in order to improve the wear resistance and seizure resistance of the alloying, clubbing phase, some of the carbides are forcibly dissolved in the matrix, and most of them are finely crystallized from the liquid phase.

分散させる必要が有る。そのためには冷却速度を速くし
なければならなく、たとえば、8源には103w/cm
2以上のパワー密度が必要である。パワー密度が低い熱
源では、冷却速度が遅くなるため、品出炭化物の凝集粗
大化が起こるとともに、炭化物構成元素が金属相中に固
溶しなくなり、十分な金属部材の耐摩耗性及び耐焼付き
性が得られない、なお、このような、高エネルギー密度
を有する熱源としてはたとえば、レーザや電子ビーム等
がある。
It needs to be dispersed. To achieve this, the cooling rate must be increased, for example, 103w/cm for 8 sources.
A power density of 2 or more is required. When using a heat source with a low power density, the cooling rate is slow, which causes the aggregated and coarsened carbides, and the carbide constituent elements are no longer dissolved in the metal phase, resulting in sufficient wear resistance and seizure resistance of the metal parts. However, such heat sources with high energy density include, for example, lasers and electron beams.

[実施態様の説明] (第2ふ1求項) 本発明においては、金属相中にCrを、炭化物以外の全
組成の2〜30mo 1%の範囲で添加してもよい、こ
の場合耐焼付き性が特に要求される用途に対して有効で
ある。添加する範囲を2〜30%としたのは、2mol
%以下の添加では坩焼付き性効果が小さく、30mol
%を超えて添加すると、脆弱なM、  C,等の炭化物
を晶出しやすくなり、特に、金属相中でも脆弱なσ相を
形成しやすくなる為である。
[Description of Embodiments] (Second Item 1) In the present invention, Cr may be added to the metal phase in an amount of 2 to 30 mo 1% of the total composition other than carbides. It is effective for applications where special properties are required. The range of addition was 2 to 30%, which was 2 mol.
% or less, the crucible seizure effect is small, and 30 mol
This is because if it is added in excess of %, brittle carbides such as M, C, etc. are likely to crystallize, and in particular, brittle σ phase is likely to be formed even in the metal phase.

(第3請求項) また、金属相中にMoまたは/およびWを0.5〜20
mol%の範囲で添加してもよい。
(Third claim) In addition, 0.5 to 20% of Mo or/and W is contained in the metal phase.
It may be added in a range of mol%.

この場合、耐摩耗性が特に要求される用途に対して有効
である。Moまたは/およびWを添加するのは、金属相
を固溶硬化または析出硬化、する働きが有るためである
。添加量を0.5〜20mol%とした理由は、0.5
mol%以下では金属相を固溶硬化または析出硬化する
働きが小さく、20mo 1%を超えると脆弱なM、C
等の炭化物を晶出しやくくなるためである。
In this case, it is effective for applications where wear resistance is particularly required. The reason why Mo and/or W are added is that they have the function of solid solution hardening or precipitation hardening of the metal phase. The reason for setting the addition amount to 0.5 to 20 mol% is that 0.5
If it is less than mol%, the effect of solid solution hardening or precipitation hardening of the metal phase is small, and if it exceeds 20mol%, it becomes brittle.
This is because it becomes difficult to crystallize carbides such as.

(第4請求項) 又、Cr、Mo、Wc7)添加量の合計を40mol%
を超えない範囲としてもよい、この場合、脆弱な炭化物
の晶出を防止することができ、金属部材の耐摩耗性及び
耐焼付き性がより一層向上する。
(4th claim) Also, the total amount of Cr, Mo, Wc7) added is 40 mol%
In this case, crystallization of brittle carbides can be prevented, and the wear resistance and seizure resistance of the metal member can be further improved.

(第5請求項) いずれの炭化物でも合金化層、タラッディング層を著し
く硬化させるが、なかでもVC炭化物の効果が最も大き
い、特に#摩耗性、耐焼付性が要求される場合には、V
C炭化物を10 m o文%以上含む添加材料を用いる
のが好ましい、VC炭化物は、他のNaCA型炭化切炭
化物て比較的安定度が低い(固溶しやすい)為、VC炭
化物を含むものでは、液相からの急冷後の金属相中への
炭化物構成元素(V 、 C)の固溶量が多く、分散硬
化以外に固溶硬化も効果に大きく寄与する。
(Claim 5) Any carbide can significantly harden the alloyed layer and the tarading layer, but among them, the effect of VC carbide is the greatest. Especially when wear resistance and seizure resistance are required, V
It is preferable to use an additive material containing C carbide of 10 mO% or more. VC carbide has relatively low stability (easily dissolves in solid solution) compared to other NaCA type cut carbides, so it is not recommended to use an additive material containing VC carbide. , the amount of carbide constituent elements (V, C) in solid solution in the metal phase after quenching from the liquid phase is large, and solid solution hardening in addition to dispersion hardening greatly contributes to the effect.

[発明の実施例] (第1実施例) 第1表に示される種類及び量の硬質化合物及び金属粉末
をVミキサーで十分混合したのち、HIPにて約20φ
の粉末成形体を作製した。その後、粉末成形体を10m
mφX10mmX0.5mmに加工し、添加材料とした
。この添加材料を30 m m X 50 m m X
 5 m mの金属基盤表面にスポット溶接にて仮付は
後、その表面にレーザを照射することによって表面合金
化(りしツデイング)を行ない、その断面硬度及び大越
式摩耗試験による耐摩耗性、耐焼き付き性を(凝着摩耗
の激しさ)を評価した。HIP条件、基盤材料の種類、
レーザ照射条件、評価試験条件は下記の通りである。
[Embodiments of the Invention] (First Example) After thoroughly mixing the types and amounts of hard compounds and metal powders shown in Table 1 with a V-mixer, about 20φ was mixed with a HIP.
A powder compact was produced. After that, the powder molded body was
It was processed into a size of mφ x 10 mm x 0.5 mm and used as an additive material. This additive material is 30 mm x 50 mm x
After temporary attachment by spot welding to the surface of a 5 mm metal base, the surface was alloyed by irradiating the surface with a laser, and its cross-sectional hardness and wear resistance were determined by Okoshi's abrasion test. Seizure resistance (severity of adhesive wear) was evaluated. HIP conditions, type of base material,
The laser irradiation conditions and evaluation test conditions are as follows.

I  HIP条件: 1050℃X roooatm 
X 2時間2 基盤材料:515C(Hv175)3 
レーザ照射条件:出力3KW 速度0.5m/分 スポット径約2mm 4 評価試験 ■硬度分布:微小硬度計 荷重300g■大越式a!耗
試8 : 相f4t S U J 2  (HRCeO
)摩擦圧j9400 m 荷重6.3kgf 摩擦速度0.3〜4.9ta/秒 1)断面マクロ組織、ミクロ組織 炭化物としてVCを選定し、基盤材料315Cを用いて
表面合金化を行なった結果の断面マクロ組織とミクロ組
織を第2図に示す、第2図から合金化層にはクラック、
ボア等の欠陥は見られない、又、合金化層の厚みは、約
0.5〜0.6mmで、もとの添加材料中に存在してい
た炭化物と同じNaC見型のVC炭化物が微細に品出、
分散した組織となっている。
I HIP conditions: 1050℃X roooatm
X 2 hours 2 Base material: 515C (Hv175) 3
Laser irradiation conditions: Output 3KW Speed 0.5m/min Spot diameter approx. 2mm 4 Evaluation test ■Hardness distribution: Micro hardness meter Load 300g ■Okoshi type a! Wear test 8: Phase f4t S U J 2 (HRCeO
) Friction pressure: j9400 m Load: 6.3 kgf Friction speed: 0.3 to 4.9 ta/sec 1) Cross section Macro structure and micro structure VC is selected as the carbide, and the cross section is the result of surface alloying using base material 315C. The macrostructure and microstructure are shown in Figure 2. From Figure 2, there are cracks and cracks in the alloyed layer.
There are no defects such as bores, and the thickness of the alloyed layer is about 0.5 to 0.6 mm, and the VC carbide in the same NaC pattern as the carbide present in the original additive material is fine. Exhibited on,
It is a dispersed organization.

2)合金化層の硬度 合金化層の硬さを、基板材料として515Cを選定し第
1表に示すA−Dの添加材料を用いて表面合金化した材
料について測定した。断面の硬度分布を第1図に示す。
2) Hardness of Alloyed Layer The hardness of the alloyed layer was measured for a material whose surface was alloyed with 515C selected as the substrate material and additive materials A to D shown in Table 1. Figure 1 shows the hardness distribution in the cross section.

硬さは、合金化層の厚さが0.5mm程度を過ぎると急
激に低下し1表面層から0.6mm程度の所では基盤材
料の硬さに等しくなる。そこで合金層での硬さを比較す
ると、添加材料の炭化物の主成分はVCで、その量を2
0〜80mol%まで代えた条件では合金化層の硬さは
VCmol%が多いほど高くなる傾向にある。
The hardness decreases rapidly when the thickness of the alloyed layer exceeds about 0.5 mm, and becomes equal to the hardness of the base material at a distance of about 0.6 mm from one surface layer. Therefore, when comparing the hardness in the alloy layer, the main component of the carbide in the additive material is VC, and the amount is 2
Under conditions that vary from 0 to 80 mol%, the hardness of the alloyed layer tends to increase as the VC mol% increases.

また、実験した添加材料の合金化層の最大の硬さを比較
した結果を、第3図に示す、第3図から、合金化層の硬
さは約1100Hv以上あり、良好な硬さと成っている
。特にVCを含むH9I、Jの材料の硬さはVC以外の
成分が同一であるE、F、Gの材料より硬さが高く、V
Cを10mol%以上添加すると硬さは更に高くなる事
が分る。
In addition, the results of comparing the maximum hardness of the alloyed layer of the additive materials tested are shown in Figure 3.From Figure 3, the hardness of the alloyed layer is about 1100Hv or more, which is good hardness. There is. In particular, the hardness of H9I and J materials containing VC is higher than that of E, F, and G materials, which have the same components other than VC.
It can be seen that when 10 mol% or more of C is added, the hardness becomes even higher.

基盤材料に5KD61,5KH55,純チタンを用い、
添加材料にC,Hを用いて硬さを測定した結果を第4図
に示す、第4図から硬さは基盤材料によらない事が分る
Using 5KD61, 5KH55, and pure titanium as the base material,
The results of hardness measurements using C and H as additive materials are shown in FIG. 4. From FIG. 4, it can be seen that hardness does not depend on the base material.

3)摩耗試験結果 基盤材料に515C,KD61,5KH55゜純チタン
を用い、第1表に示した添加物を用いて摩耗実験を行っ
た結果を第5図〜第8図に示す。
3) Wear test results The results of a wear test using 515C, KD61, 5KH55° pure titanium as the base material and the additives shown in Table 1 are shown in FIGS. 5 to 8.

第5図は515Cの基盤材料に第1表の添加材料を用い
て実験した結果を示す、第6図は5KD61の基盤材料
に無処理の物と、PVD処理、および本発明による処理
を行った材料の耐摩耗実験結果を示す、第7図は5KH
55の基盤材料に無処理の物と、PVD処理、および本
発明による処理を行った材料の耐摩耗実験結果を示す、
第8図は純チタンの基盤材料に本発明による処理を行っ
た材料の1耐摩耗実験結果を示す、第5図〜第8図の摩
耗量は下の式に従って求めた。
Figure 5 shows the results of an experiment using the additive materials listed in Table 1 on the base material of 515C. Figure 6 shows the results of the experiment using the base material of 5KD61 with no treatment, PVD treatment, and treatment according to the present invention. Figure 7 shows the results of the wear resistance test for the material at 5KH.
55 shows the results of wear resistance experiments of untreated materials, PVD treatments, and materials treated according to the present invention.
FIG. 8 shows the results of a wear resistance experiment of a pure titanium base material treated according to the present invention. The wear amounts shown in FIGS. 5 to 8 were determined according to the formula below.

按摩Jt量= 試験荷重(Kgf) X摩擦距離(コ)基盤材料の種類
によらず、表面合金化層の耐摩耗性は無処理のもの及び
PVD処理をしたものより優れている。摩擦速度が速く
なると、無処理のものやPVD処理をしたものでは、7
E[7摩耗(一種の焼き付き)が起こるため、耐摩耗性
は低速の場合に比べて悪くなるが、合金化処理を施した
ものではその傾向が小さい、また、基盤材料が変わって
も合金化層の耐F!l耗性はあまり変化しない。
Amount of massaging Jt=Test load (Kgf) As the friction speed increases, untreated and PVD treated
E [7] Abrasion (a type of seizure) occurs, so the wear resistance is worse than at low speeds, but this tendency is small with alloyed products, and even if the base material changes, alloying will not occur. Layer F resistance! The wear resistance does not change much.

なお、315C及び純チタンに無処理材及びPVD処理
材においては、本試験条件では急速に摩耗及び焼き付き
が起こり、本試験を続行することが不可能であったe (第2実施例) 添加材料中の金属成分の影響を以下に示す、試験片は第
2表に示す添加材料を実施例1と同一条件で製造し、レ
ーザ合金化を施した。
In addition, in the untreated materials and PVD treated materials of 315C and pure titanium, wear and seizure occurred rapidly under the test conditions, making it impossible to continue the test (Second Example) Additive Materials The influence of the metal components therein is shown below. Test pieces were manufactured using the additive materials shown in Table 2 under the same conditions as in Example 1, and were laser alloyed.

1)硬度 合金化層の硬さの温度による影!を調べた結果を第9図
に示す、硬さは試験温度が高くなるに従い低下していく
傾向に有ることが分る。硬さの傾向は金属成分としてN
i又はGoを用いた場合。
1) Effect of temperature on hardness of hardness alloyed layer! The results of the investigation are shown in Figure 9, and it can be seen that the hardness tends to decrease as the test temperature increases. The tendency of hardness is N as a metal component.
When using i or Go.

Feの場合より常温硬さは低いが、高温ではむしろ高く
なり、Ni又はCoは高温での耐摩耗性に優れている】
1¥を表わしている。又、Moを含有するものは、Mo
無しの物に比べて、いずれの湿度域においても硬さは高
いことが分る。
The hardness at room temperature is lower than that of Fe, but it becomes higher at high temperatures, and Ni or Co has excellent wear resistance at high temperatures.]
It represents 1 yen. In addition, those containing Mo are Mo
It can be seen that the hardness is higher in all humidity ranges than the one without.

2) It!耗試験 摩耗実験結果を第10図に示す、実験温度は摩耗がほぼ
凝固摩耗にて進行する400℃で行なった。第10図か
ら金属成分としてNi、Coを用いた場合には、凝若庁
耗はFeの場合より少ないことが分る。とくにM o 
、 Wを含む物および。
2) It! Wear test The results of the wear experiment are shown in FIG. 10, and the experiment was conducted at a temperature of 400° C., at which wear progresses almost as solidification wear. From FIG. 10, it can be seen that when Ni or Co is used as the metal component, the wear due to coagulation is less than when Fe is used. Especially Mo
, and those containing W.

Crを含む物は耐凝着摩耗性に優れている市がわかる。It can be seen that materials containing Cr have excellent adhesive wear resistance.

(第3実施例) t51表に示される組成の添加材料を粉末成形をせず、
粉末状愚のままアクリル系バインダーと混合してスラリ
ー状にし、基盤表面に約1mm厚みに塗付した後、第1
実施例と同条件でレーザ合金化を行なった。その結果、
合金化層の厚みは、約0.25mmであり、もとの厚み
の1/4になったが、硬度、耐摩耗性に関しては、はぼ
同様の結果を得た。
(Third Example) The additive material having the composition shown in the t51 table was not powder-molded,
Mix the powdered material with an acrylic binder to form a slurry, apply it to the base surface to a thickness of about 1 mm, and then apply the first
Laser alloying was performed under the same conditions as in the example. the result,
The thickness of the alloyed layer was about 0.25 mm, which was 1/4 of the original thickness, but the same results were obtained in terms of hardness and wear resistance.

(第4実施例) 第2表に示されるに−Lの粉末成形した添加材料を用い
て、電子ビームにより合金化処理を行なったが、レーザ
の場合と同様の結果を得た。
(Fourth Example) Alloying treatment was performed using an electron beam using the -L powder-molded additive material shown in Table 2, but results similar to those obtained using a laser were obtained.

[発明の効果] 本発明によると、欠陥を発生させることなく表面層を硬
質化し、耐摩耗性、耐焼付性を向上させることが可能と
なり、切削工具、金型、内燃期間部品などのa!擦面を
有する金属部材に適用することにより大きな効果が得ら
れる。
[Effects of the Invention] According to the present invention, it is possible to harden the surface layer without causing defects, improve wear resistance and seizure resistance, and improve the a! A great effect can be obtained by applying it to a metal member having a rubbing surface.

また、本発明で用いる硬質化合物は全て非磁性であり、
添加材料中の金属相に非磁性のものを用いれば、非磁性
材料の表面をその特性を劣化させることなく硬質化し得
るなど、基盤金属の特性に応じた表面層の選択が可能で
ある。
Furthermore, all the hard compounds used in the present invention are non-magnetic,
If a non-magnetic metal phase is used in the additive material, the surface layer of the non-magnetic material can be hardened without deteriorating its properties, and the surface layer can be selected according to the properties of the base metal.

また、従来法では炭化物単独添加の為、レーザクラディ
ングは不可能であったが、本発明では添加材料そのもの
が容易に溶融する為、クラ7デイングも可能となる。従
って、母材金属成分の混入を著しく少なくできる為、た
とえば混入がおこると不都合な基盤材料であっても処理
が可能である。
Further, in the conventional method, laser cladding was impossible because only carbide was added, but in the present invention, since the added material itself is easily melted, cladding is also possible. Therefore, since the contamination of base metal components can be significantly reduced, it is possible to process even base materials that would be inconvenient if contamination occurs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は表面からの硬さの分布を求めたグラフ、第2図
は表面合金化層のマクロ組織及びミクロ組織写真、第3
図は硬さに及ぼす添加材料の影響を求めたグラフ、第4
図は硬さに及ぼす基盤材料の影!を求めたグラフ、第5
図は基盤材料を515Gとして摩j1量と、摩擦速度と
の関係を求めたグラフ、第6図は基盤材料を5KD61
として摩耗量と、摩擦速度との関係を求めたグラフ。 第7図は基盤材料を5KH55としてPi!耗量と。 摩擦速度との関係を求めたグラフ、第8図は基盤材料を
純チタンとして摩耗量と、摩擦速度との関係を求めたグ
ラフ、第9図は硬さと試験温度との関係を求めたグアノ
。第1θ図は基盤材料に515Gを用い、添加材料の種
類と比摩耗料との関係を求めたグラフ。 第1表 第2表 添加材ネ1の種類(2) 表面からの距離(m m ) 第ス:イ1 添加材料の種類 添加材料の種類 ×10−4            基盤材料SS 1
5 C摩擦速度(m/5ec) %10−’           基盤材M−S KD
 61摩擦速度(m/5ec) ×10”          MflHtNs S K
H55摩擦速度(m/5ec) 摩擦速度(m/sec) 第9図 R,T        500 600 700 80
0試験温度(”O) ×10 添加材料の種類
Figure 1 is a graph of the hardness distribution from the surface, Figure 2 is a photograph of the macrostructure and microstructure of the surface alloyed layer, and Figure 3 is a graph of the hardness distribution from the surface.
The figure is a graph showing the influence of additive materials on hardness.
The figure shows the influence of the base material on hardness! Graph for finding 5th
The figure is a graph of the relationship between the amount of friction j1 and the friction speed using a base material of 515G.
A graph showing the relationship between the amount of wear and the friction speed. Figure 7 shows Pi! using 5KH55 as the base material. amount of wear and tear. Figure 8 is a graph that shows the relationship between the wear amount and friction speed using pure titanium as the base material. Figure 9 is a graph that shows the relationship between hardness and test temperature for guano. Figure 1θ is a graph showing the relationship between the type of additive material and the specific wear charge using 515G as the base material. Table 1 Table 2 Type of additive material 1 (2) Distance from surface (mm) 1. Type of additive material Type of additive material x 10-4 Base material SS 1
5 C friction speed (m/5ec) %10-' Base material M-S KD
61 Friction speed (m/5ec) ×10” MflHtNs S K
H55 Friction speed (m/5ec) Friction speed (m/sec) Figure 9 R, T 500 600 700 80
0 Test temperature (”O) × 10 Type of additive material

Claims (5)

【特許請求の範囲】[Claims] (1)V、Ti、Zr、Nb、Ta、Hfの炭化物の一
種又は二種以上を合計20〜80mol%含有し、残部
がFe、Ni、Coの一種又は二種以上の金属もしくは
合金、又はFe、Ni、Coの一種又は二種以上を主成
分とする合金及び不可避的化合物からなる粉末集合体又
は粉末成型体を、耐摩耗性及び又は、耐焼付き性を向上
させようとする金属部材の表面に付着した後、該粉末集
合体又は該粉末成型体を高エネルギー密度を有する熱源
により溶融し、該粉末集合体又は該粉末成型体と該金属
部材の表面とを溶融一体化することを特徴とする金属部
材の耐摩耗性及び耐焼付き性向上方法。
(1) A metal or alloy containing one or more carbides of V, Ti, Zr, Nb, Ta, and Hf in a total of 20 to 80 mol%, with the remainder being Fe, Ni, and Co, or Powder aggregates or powder compacts made of alloys and unavoidable compounds mainly composed of one or more of Fe, Ni, and Co can be used for metal members whose wear resistance and/or seizure resistance is to be improved. After adhering to the surface, the powder aggregate or the powder molded body is melted by a heat source having high energy density to melt and integrate the powder aggregate or the powder molded body and the surface of the metal member. A method for improving wear resistance and seizure resistance of metal members.
(2)2〜30mol%のCrを含有する特許請求範囲
第1項記載の金属部材の耐摩耗性及び耐焼付き性向上方
法。
(2) A method for improving wear resistance and seizure resistance of a metal member according to claim 1, which contains 2 to 30 mol% of Cr.
(3)0.50〜20mol%のMo又は/及びWを含
有する特許請求範囲第1項又は第2項に記載の金属部材
の耐摩耗性及び耐焼付き性向上方法。
(3) A method for improving wear resistance and seizure resistance of a metal member according to claim 1 or 2, which contains 0.50 to 20 mol% of Mo and/or W.
(4)Cr、Mo、Wの合計量が40mol%を越えな
い範囲で含有する特許請求範囲第1項ないし第3項のい
ずれかに記載の金属部材の耐摩耗性及び耐焼付き性向上
方法。
(4) The method for improving wear resistance and seizure resistance of a metal member according to any one of claims 1 to 3, wherein the total amount of Cr, Mo, and W does not exceed 40 mol%.
(5)炭化物の一部としてV炭化物を10mol%以上
含有する粉末集合体又は粉末成型体を用いる特許請求範
囲第1項ないし第4項のいずれかに記載の金属部材の耐
摩耗性及び耐焼付き性向上方法。
(5) Wear resistance and seizure resistance of the metal member according to any one of claims 1 to 4, which uses a powder aggregate or powder compact containing 10 mol% or more of V carbide as a part of the carbide. How to improve sex.
JP14433286A 1986-06-19 1986-06-19 Method for improving wear resistance and seizure resistance for metallic member Pending JPS63486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14433286A JPS63486A (en) 1986-06-19 1986-06-19 Method for improving wear resistance and seizure resistance for metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14433286A JPS63486A (en) 1986-06-19 1986-06-19 Method for improving wear resistance and seizure resistance for metallic member

Publications (1)

Publication Number Publication Date
JPS63486A true JPS63486A (en) 1988-01-05

Family

ID=15359648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14433286A Pending JPS63486A (en) 1986-06-19 1986-06-19 Method for improving wear resistance and seizure resistance for metallic member

Country Status (1)

Country Link
JP (1) JPS63486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313585A (en) * 1989-06-12 1991-01-22 Koyo Seiko Co Ltd Method for surface-hardening metal and method for surface-hardening nonmagnetic bearing parts
WO2019208549A1 (en) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 Sliding member and manufacturing method thereof and power steering device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313585A (en) * 1989-06-12 1991-01-22 Koyo Seiko Co Ltd Method for surface-hardening metal and method for surface-hardening nonmagnetic bearing parts
WO2019208549A1 (en) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 Sliding member and manufacturing method thereof and power steering device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Lu et al. Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding
US4731253A (en) Wear resistant coating and process
Xie et al. Microstructure and wear resistance of WC/Co-based coating on copper by plasma cladding
Matthews et al. Tribological and mechanical properties of high power laser surface-treated metallic glasses
CN107530771B (en) Novel powder compositions and uses thereof
CN104838024A (en) Metal powder for thermal spray
US3725016A (en) Titanium carbide hard-facing steel-base composition
Jeyaprakash et al. Characterization and tribological evaluation of NiCrMoNb and NiCrBSiC laser cladding on near-α titanium alloy
Kumar et al. Evolution of microstructure and mechanical properties of Co-SiC tungsten inert gas cladded coating on 304 stainless steel
Narendranath et al. Studies on microstructure and mechanical characteristics of as cast AA6061/SiC/fly ash hybrid AMCs produced by stir casting
Xiao et al. Microstructure and mechanical properties of H13 steel/high-speed steel composites prepared by laser metal deposition
Lin et al. Elucidating the microstructure and wear behavior for multicomponent alloy clad layers by in situ synthesis
US5141571A (en) Hard surfacing alloy with precipitated bi-metallic tungsten chromium metal carbides and process
Lin et al. Microstructural evolution of hypoeutectic, near-eutectic, and hypereutectic high-carbon Cr-based hard-facing alloys
CA1250715A (en) Thermal pulverisation materials
US4473402A (en) Fine grained cobalt-chromium alloys containing carbides made by consolidation of amorphous powders
JPS63486A (en) Method for improving wear resistance and seizure resistance for metallic member
CN116213719A (en) Preparation method and application of metal powder for workpiece coating
Pham et al. Wear Properties of TiC‐Reinforced Co50 Composite Coatings from Room Temperature to High Temperature
JPH02224884A (en) Laser build-up method of carbide
Tomlinson et al. LASER SURFACE ALLOYING OF AI–12Si
JPS62278282A (en) Improvement of wear resistance and seizure resistance of metallic member
Ke et al. Effect of Vanadium on Microstructure and Mechanical Properties of M2 High‐Speed Steel Prepared by Laser Metal Direct Deposition Forming
US4400212A (en) Cobalt-chromium alloys which contain carbon and have been processed by rapid solidification process and method
JPH0564706B2 (en)