JPS62278282A - Improvement of wear resistance and seizure resistance of metallic member - Google Patents
Improvement of wear resistance and seizure resistance of metallic memberInfo
- Publication number
- JPS62278282A JPS62278282A JP12180586A JP12180586A JPS62278282A JP S62278282 A JPS62278282 A JP S62278282A JP 12180586 A JP12180586 A JP 12180586A JP 12180586 A JP12180586 A JP 12180586A JP S62278282 A JPS62278282 A JP S62278282A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- wear resistance
- metal
- resistance
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006872 improvement Effects 0.000 title description 3
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 56
- 239000000843 powder Substances 0.000 claims abstract description 50
- 150000001875 compounds Chemical class 0.000 claims abstract description 46
- 150000004767 nitrides Chemical class 0.000 claims abstract description 21
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 18
- 239000000956 alloy Substances 0.000 claims abstract description 18
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 16
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 11
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 22
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 63
- 239000000203 mixture Substances 0.000 abstract description 7
- 150000002739 metals Chemical class 0.000 abstract description 3
- 229910052715 tantalum Inorganic materials 0.000 abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract 1
- 239000000654 additive Substances 0.000 description 35
- 230000000996 additive effect Effects 0.000 description 34
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 238000005275 alloying Methods 0.000 description 18
- 239000012071 phase Substances 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- 239000010410 layer Substances 0.000 description 13
- 239000007791 liquid phase Substances 0.000 description 13
- 238000011282 treatment Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- 229910000905 alloy phase Inorganic materials 0.000 description 9
- 238000005253 cladding Methods 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 239000010953 base metal Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000004881 precipitation hardening Methods 0.000 description 4
- 229910000997 High-speed steel Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000004372 laser cladding Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 208000037998 chronic venous disease Diseases 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000004093 laser heating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- -1 VC1 nitride Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000573 anti-seizure effect Effects 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
(産業上の利用分野)
木)AすIは金属部材の耐摩耗性及び耐焼付き性向上□
方法に関する。[Detailed description of the invention] 3. Detailed description of the invention (industrial application field) Wood) AI improves the wear resistance and seizure resistance of metal members □
Regarding the method.
(従来技術)
切削工具や塑性加工用工具、内燃機関のシリンダー、ピ
ストン、軸受等、摩耗面を有する金属製品には耐摩耗性
と同時に耐焼付き性が要望されている。(Prior Art) Metal products that have wear surfaces, such as cutting tools, plastic working tools, internal combustion engine cylinders, pistons, and bearings, are required to have not only wear resistance but also seizure resistance.
耐摩耗性や耐焼付き性を向上させるには、金属表面の硬
度を向上させれば良い119は良く知られている。金属
表面の硬度を向上させる方法には焼入れによる方法、耐
摩耗性及び耐焼付き性の有る合金成分をコーティングす
る方法等がある焼入れによる方法としては、高周波焼入
れ等の従来から行われている方法に加え、レーザや電子
ビーム等の高エネルギー密度となる熱源を用いた表面焼
入れ法(以下レーザ表面焼入れという)があり、これら
の技術は特開昭54−112740、特開昭53−13
7362、特開昭55−2710に開示されている。It is well known that in order to improve wear resistance and seizure resistance, it is sufficient to improve the hardness of the metal surface. Methods for improving the hardness of metal surfaces include methods such as hardening, coating with alloy components that have wear resistance and seizure resistance, etc. Methods using hardening include conventional methods such as induction hardening. In addition, there is a surface hardening method (hereinafter referred to as laser surface hardening) that uses a heat source with high energy density such as a laser or an electron beam.
No. 7362, disclosed in Japanese Patent Application Laid-Open No. 55-2710.
そのほかpP鉄製品の表面や高速度鋼製の切削工具の刃
先を高エネルギービームにより表面層のみを溶融接急冷
凝固させる事により(以下レーザグレージングという)
耐摩耗性を改善する方法も有り、これらの技術は特開昭
57−85926及び特開昭59−83718に開示さ
れている。In addition, by melting and rapidly solidifying only the surface layer of the surface of pp iron products and the cutting edge of high-speed steel cutting tools using a high-energy beam (hereinafter referred to as laser glazing).
There are also methods for improving wear resistance, and these techniques are disclosed in JP-A-57-85926 and JP-A-59-83718.
一方、合金成分をコーティングする方法には、窒化処理
、はう化処理、PVD処理、CVD処理等の表面硬化処
理、及びレーザ表面合金化や、レーザクラツディングに
よる方法がある。On the other hand, methods for coating alloy components include surface hardening treatments such as nitriding treatment, fertilizing treatment, PVD treatment, and CVD treatment, and methods using laser surface alloying and laser cladding.
このうち、レーザ表面合金化とはレーザ加熱により母材
金属に薄い溶融層を作り、この溶融層に合金元素を添加
して、瞬間的に合金成分を拡散させ、母材表面に合金層
を形成させる処理方法である0合金元素の添加方法とし
ては、予め必要な合金成分を含む添加材料を母材表面に
付着させておき、レーザ加熱により母材に溶かし込む方
法がある。Among these, laser surface alloying involves creating a thin molten layer on the base metal by laser heating, adding alloying elements to this molten layer, and instantaneously diffusing the alloy components to form an alloy layer on the base metal surface. As a method of adding 0 alloying elements, which is a treatment method for adding alloying elements, there is a method in which an additive material containing the necessary alloying components is attached to the surface of the base material in advance, and then melted into the base material by laser heating.
またレーザクラツディングによる方法はレーザ合金化と
よく似た処理であり、添加材料の量およびレーザ照射条
件を調節することにより母材の溶融量を少なくし、添加
材料の成分に近いMi成をもつ表面層を形成する技術で
ある。In addition, the method using laser cladding is a process very similar to laser alloying, and by adjusting the amount of additive material and laser irradiation conditions, the amount of melting of the base material is reduced, and the Mi composition is close to that of the additive material. This is a technology to form a surface layer with
(従来技術の問題点)
焼入れによる方法の一種であるレーザ表面焼入れでは、
熱歪や焼入れに起因する変形が小さいという長所がある
ものの、耐摩耗性などに関しては従来から用いられてい
る高周波焼入れによる場合と殆ど変わりなく、特に切削
工具や金型のように、もともと焼入れで使用する製品に
対しては、再度表面焼入れを施しても改善効果が少ない
という欠点がある。またオーステナイト系ステンレス鋼
等の焼入れ不可俺な材料には適用できないという問題点
もある。(Problems with conventional technology) In laser surface hardening, which is a type of hardening method,
Although it has the advantage that deformation caused by thermal strain and quenching is small, in terms of wear resistance, it is almost the same as conventional induction hardening. The product used has the disadvantage that even if surface hardening is performed again, there is little improvement effect. Another problem is that it cannot be applied to materials that cannot be hardened, such as austenitic stainless steel.
一方、レーザーグレージングの場合は鋳鉄や高速度鋼に
対しては表面焼入れによる方法より効果があるが、硬さ
としてはHv900〜1100程度が限界である。また
、レーザーグレージングは適用鋼種が大幅に制限され、
炭素鋼や低合金鋼などの通常の焼入れや溶体化処理で未
固溶の第2相粒子が殆ど残留しない材料では効果が小さ
いという欠点がある。On the other hand, laser glazing is more effective than surface hardening for cast iron and high-speed steel, but the hardness is limited to about Hv900 to 1100. Additionally, the types of steel that can be applied to laser glazing are significantly limited.
The disadvantage is that the effect is small for materials such as carbon steel and low alloy steel in which almost no undissolved second phase particles remain after normal quenching or solution treatment.
また、窒化処理、はう化処理では耐摩耗性、耐焼付き性
の改善効果が十分ではないという問題点がある。また、
PVD処理、CVD処理等の表面硬化処理では、TiN
やT i C等の硬質化合物が其地上に機械的に結合さ
れているだけである為、母材の品質劣化が生じ易く、更
に熱歪による変形も起こりやすい。Further, there is a problem that the nitriding treatment and the fertilizing treatment do not have sufficient effects of improving wear resistance and seizure resistance. Also,
In surface hardening treatments such as PVD treatment and CVD treatment, TiN
Since a hard compound such as or T i C is only mechanically bonded to the surface, the quality of the base material is likely to deteriorate, and furthermore, deformation due to thermal strain is likely to occur.
一方、レーザによる表面合金化及びクラツディングにお
いては、母材金属に耐摩耗性を付与する場合には、Ti
c、WC,MoC等の金rA炭化物やA文203 、T
iO2等の金属酸化物が添加される。然し、これらの硬
質化合物は非常に融点が高い。On the other hand, in surface alloying and cladding by laser, Ti is used to impart wear resistance to the base metal.
c, WC, MoC, etc., gold rA carbide and A pattern 203, T
Metal oxides such as iO2 are added. However, these hard compounds have very high melting points.
又、
(1)硬質化合物は非常に溶融しにくいために、多量に
添加すると未溶融の化合物がそのまま合金化層に残留す
る。この未溶融の化合物は通常凝集した状y8で存在す
るため、脱落しやすくボアや、亀裂等の欠陥発生要因と
なる。Further, (1) since hard compounds are very difficult to melt, if a large amount is added, unmelted compounds will remain in the alloyed layer. Since this unmelted compound usually exists in an aggregated state y8, it easily falls off and becomes a cause of defects such as bores and cracks.
(2)硬質化合物は粘性が高い為、溶融したとしても母
材液相とは均一に混合せず、部分的にムラの有る組織と
なる。また気泡が完全に表面に抜きれず、そのまま合金
相の中に欠陥として残留する。(2) Since hard compounds have high viscosity, even if they are melted, they do not mix uniformly with the liquid phase of the base material, resulting in a partially uneven structure. Moreover, the bubbles are not completely removed from the surface and remain as defects in the alloy phase.
(3)添加材と母材との比重の差が大きく異る条件では
、例えば添加材としてAl2O3、SiCを使用し、母
材としてFe 、Ni等を使用した場合、(2)に示し
たムラがより顕著になるという欠点がある。(3) Under conditions where the difference in specific gravity between the additive material and the base material is large, for example, when using Al2O3 or SiC as the additive material and Fe, Ni, etc. as the base material, the unevenness shown in (2) may occur. The disadvantage is that it becomes more pronounced.
C問題点を解決するための手段)
上記問題点は、V、Ti、Zr、Nbの窒化物の一種又
は二種以上を合計2〜20 m o 1%。Means for Solving Problem C) The above problem is that one or more nitrides of V, Ti, Zr, and Nb are contained in a total amount of 2 to 20 m o 1%.
V、Tf 、Zr、Nb、Ta、Hfc7)炭化物の一
種又は二種以上を炭化物と窒化物の合計で20〜80m
o 1%となる範囲で含有し、残部がFe、Ni、Go
の一種又は二種以上の、金属もしくは合金、又はFe、
Ni、Coの一種又は二種以上を主成分とする合金及び
不可避的化合物からなる粉末集合体又は粉末成型体を、
耐摩耗性及び/又は耐焼付き性を向上させようとする金
属部材の表面に付着した後、該粉末集合体又は該粉末成
型体を高エネルギー密度を有する熱源により溶融し、該
粉末集合体又は該粉末成型体と該金属部材の表面とを溶
融一体化することを#徴とする金属部材の耐豫耗性及び
耐焼付き性向上方法によって解決される。V, Tf, Zr, Nb, Ta, Hfc7) One or more carbides in a total of 20 to 80 m of carbides and nitrides.
o Contains within a range of 1%, with the remainder being Fe, Ni, Go
one or more metals or alloys, or Fe,
A powder aggregate or powder molded body consisting of an alloy and inevitable compounds mainly composed of one or more of Ni and Co,
After adhering to the surface of a metal member whose wear resistance and/or seizure resistance is to be improved, the powder aggregate or powder compact is melted by a heat source with high energy density, and the powder aggregate or The problem is solved by a method for improving the wear resistance and seizure resistance of a metal member, which includes melting and integrating the powder molded body and the surface of the metal member.
すなわち、本発明では、硬質化合物として特定の種類及
び量の窒化物及び炭化物を用い、該炭化物と特定の金属
相からなる粉末集合体又は粉末成形体(以下添加材料と
いう)を金属部材表面に仮付けし、レーザまたは電子ビ
ームを用いて該添加材料を基地と溶融一体化することに
よって、前記レーザ合金化及びクラッヂング法の問題を
発生させることなく金属部材の耐摩耗性及び耐焼付き性
の向上が可ス彪なことを見い出したものである。That is, in the present invention, specific types and amounts of nitrides and carbides are used as hard compounds, and a powder aggregate or powder compact (hereinafter referred to as additive material) consisting of the carbides and a specific metal phase is temporarily applied to the surface of the metal member. By melting and integrating the additive material with the matrix using a laser or an electron beam, the wear resistance and seizure resistance of the metal member can be improved without causing the problems of the laser alloying and cladding methods. This is what I found out.
以下に本発明の詳細な説明する。The present invention will be explained in detail below.
本発明における添加材料は、窒化物及び炭化物の粉末と
金属または合金の粉末とから成る粉末集合体または粉末
成形体である。したがって、粉末集合体または粉末成形
体は、加熱されるとまず低融点の金属または合金相が溶
融し、個々の王室化合物(窒化物及び炭化物)粒子が該
金属または合金の液相によって覆われた状態になるため
、はぼ瞬間的に硬質化合物構成元素と金属または合金成
分からなる液相が形成される。従って未溶融の硬質化合
物が残りにくく、また、たとえ溶は残ったとしても金属
または合金相が硬質化合物粒子間に存在するため、これ
ら硬質化合物は非常に脱落しにくくなる。また、得られ
だ液相の粘度が小さくなるため、母材液相と硬質化合物
とが均一に混合し、気泡などの欠陥が残ることも少ない
こととなる。The additive material in the present invention is a powder aggregate or powder compact made of nitride and carbide powders and metal or alloy powders. Thus, when a powder aggregate or powder compact is heated, the low-melting metal or alloy phase first melts, and the individual royal compound (nitride and carbide) particles are covered by the liquid phase of the metal or alloy. As a result, a liquid phase consisting of the hard compound constituent elements and metal or alloy components is formed almost instantaneously. Therefore, unmelted hard compounds are unlikely to remain, and even if melt remains, metal or alloy phases exist between the hard compound particles, making it extremely difficult for these hard compounds to fall off. Furthermore, since the viscosity of the obtained liquid phase is reduced, the base material liquid phase and the hard compound are mixed uniformly, and defects such as bubbles are less likely to remain.
ココテ、硬質化合物は、V 、 T i 、 Z r
、 N bの窒化物の一種又は二種以上及びV 、 T
i 。Cocote, hard compounds are V, T i, Z r
, one or more nitrides of N b and V , T
i.
Zr、Nb、Ta、Hfの炭化物の一種又は二種以上で
ある。かかる硬質化合物を用いる理由を説明する。粉末
集合体または粉末成形体を合金化またはクラツディング
中には硬質化合物成分と金属成分とが混ざりあった液相
が形成される。硬質化合物は液相が冷却されるとき、冷
却速度が非常に速いためマトリクスの金属相中に一部固
溶したまま冷却されるが、大半ば液相から再度微細に晶
出する。このとき液相j)ら晶出する化合物はもともと
添加材料中に存在していた化合物と同じであるとは限ら
ず1例えばM o CやWCをFe、Ni。It is one or more carbides of Zr, Nb, Ta, and Hf. The reason for using such a hard compound will be explained. During alloying or cladding of powder aggregates or powder compacts, a liquid phase is formed in which hard compound components and metal components are mixed. When the liquid phase is cooled, the hard compound is cooled while being partially dissolved in the metal phase of the matrix because the cooling rate is very fast, but most of the hard compound crystallizes finely from the liquid phase again. At this time, the compound crystallized from the liquid phase j) is not necessarily the same as the compound originally existing in the additive material; for example, MoC, WC, Fe, Ni, etc.
Goなどと一緒に溶融させると、液相からは低硬度でか
つ脆弱な炭化物であるM6 C等が晶出する。このよう
な脆弱相が晶出すると耐摩耗性などの改善効果は殆どな
くなる。これに対し、V。When it is melted together with Go, etc., M6C, which is a carbide with low hardness and brittleness, crystallizes from the liquid phase. When such a brittle phase crystallizes, the effect of improving wear resistance and the like is almost eliminated. On the other hand, V.
T i 、 Z r 、 N b 、 T a 、 H
fは液相から晶出する化合物は脆弱な性質を示さない非
常に安定なNaC又型の炭化物となり、耐B耗性、耐焼
付き性の改善効果が大きくなる。T i , Z r , N b , T a , H
The compound f that crystallizes from the liquid phase becomes a very stable NaC type carbide that does not exhibit brittle properties, and the effect of improving B wear resistance and seizure resistance is large.
硬質化合物を、合計で20〜80mol%含有させた理
由は粉末集合体または、粉末成形体中の硬質化合物の量
が20mol%未満では耐摩耗性、耐焼付き性の改善効
果が十分でなく、又80mol%を超えると合金化のと
き、またはクラツディング相中に欠陥が発生しやすくな
るためである。The reason why the hard compound is contained in a total amount of 20 to 80 mol% is that if the amount of the hard compound in the powder aggregate or powder compact is less than 20 mol%, the effect of improving wear resistance and seizure resistance is insufficient. This is because if it exceeds 80 mol%, defects are likely to occur during alloying or in the cladding phase.
なお、硬質化合物は一種類の金属元素とC,Nとから構
成されるものでもよく、たとえば、’VC,Tic、N
bC,VN、TiN等のように一種類の金属元素とC,
Nとから構成されるものテヨく、(V、Ti)C,(V
、Nb)C。Note that the hard compound may be composed of one type of metal element and C, N, for example, 'VC, Tic, N
b One type of metal element and C, such as C, VN, TiN, etc.
It is composed of N, (V, Ti)C, (V
,Nb)C.
(V、Ti)N、(V、Nb)N等のように複数の金属
元素から構成されているのでもよい、ざらには此等の混
合物でもよい、また、例えばFe。It may be composed of a plurality of metal elements such as (V, Ti)N, (V, Nb)N, etc., or it may be a mixture of these elements, or, for example, Fe.
Ni等の他の元素を含んでいても、その結晶構造がNa
C交型の炭化物であれば特に問題はない。Even if it contains other elements such as Ni, its crystal structure is Na
There is no particular problem as long as it is a C-cross type carbide.
また、窒化物は炭化物より耐摩耗性、耐焼付き性の改善
効果が大きく、合計2〜20 m o 1%の範囲で含
まれる。その量が2mo 1%未満では十分な効果が得
られず、また、20mo 1%を超えるとボアなどの欠
陥が発生しやすくなる。Further, nitrides have a greater effect of improving wear resistance and seizure resistance than carbides, and are included in a total amount of 2 to 20 m o 1%. If the amount is less than 2mo 1%, sufficient effects cannot be obtained, and if it exceeds 20mo 1%, defects such as bores are likely to occur.
本発明においては、粉末集合体または、粉末成形体の金
属粉末をFe、Ni、Coの一種もしくは二種以上の金
属または、これらを主成分とする合金相とから構成する
a F e 、 N i 、 Coの金属または合金他
相は硬質化合物よりはるかに融点が低く、表面合金化ま
たはクラツディング時に硬質化合物に先立って溶融し、
共晶反応により硬質化合物を溶融させる働きがある。こ
のとき、Fe。In the present invention, the metal powder of the powder aggregate or powder compact is composed of one or more metals of Fe, Ni, and Co, or an alloy phase containing these as main components. , the Co metal or alloy phase has a much lower melting point than the hard compound and melts before the hard compound during surface alloying or cladding;
It has the function of melting hard compounds through a eutectic reaction. At this time, Fe.
Ni、Coまたはこれらを主成分とする合金であれば、
硬質化合物が溶融した後、他の脆弱な化合物に変化する
ことは無い。If it is Ni, Co or an alloy containing these as main components,
After the hard compound melts, it does not change into other brittle compounds.
なお、金属成分は使用環境に応じて使い分けることが望
ましく、比較的低温での耐摩耗性が要求される場合には
、固溶硬化と分散硬化以外に、金属相がマルテンサイト
変態によって強化され、常温硬度が高くなるFe基の合
金相を、また、高温での耐摩耗性が要求される場合には
Ni又はC。Note that it is desirable to use different metal components depending on the usage environment, and when wear resistance at relatively low temperatures is required, in addition to solid solution hardening and dispersion hardening, the metal phase is strengthened by martensitic transformation. Fe-based alloy phase that increases hardness at room temperature, and Ni or C when wear resistance at high temperatures is required.
基の合金相を採用するのが望ましい、 Ni 、C。It is desirable to adopt a base alloy phase of Ni, C.
基の合金相を用いた場合には、Fe基の合金相の場合よ
り耐熱性及び耐焼付き性にも優れる。When a Fe-based alloy phase is used, the heat resistance and seizure resistance are also better than when a Fe-based alloy phase is used.
また、本発明に使用される添加材料は、硬質化合物粉末
と金属粉末を混合することによって製造するのが最も容
易であるが、その際、金属粉末は純金属粉末を使用しな
くても、Fe、Ni、C。Furthermore, the additive material used in the present invention is most easily produced by mixing a hard compound powder and a metal powder, but in this case, the metal powder may be Fe, even if pure metal powder is not used. , Ni, C.
合金の粉末を使用してもよい、たとえば、純Feの粉末
の代わりに炭素鋼、ステンレス鋼、高速度鋼などの粉末
を使用してもよい。Powders of alloys may be used, for example powders of carbon steel, stainless steel, high speed steel, etc. may be used instead of pure Fe powders.
なお、後述の実施態様で説明するように条件によっては
金属相の耐摩耗性や耐焼付き性を向上させるために特定
の合金元素を金属相に添加するほうが、1iIi#摩耗
性や、耐焼付き性の向上効果が大きい場合もある。As explained in the embodiments below, depending on the conditions, it may be better to add a specific alloying element to the metal phase in order to improve the wear resistance and seizure resistance of the metal phase. In some cases, the improvement effect is large.
なお、以上の添加材料は、硬質化合物粒子と金属又は合
金からなる粉末粒子とを混合して製造された混合粒子を
含むものでもよい、粉末粒子が硬質化合物と金属又は合
金成分とから構成される単一の粒子を含むものでもよい
、後者の単一粒子を含む添加材料を作製するには、硬質
化合物粉末表面に金属又は合金成分をメー、キ、蒸着、
イオンスパッタリングなどで被覆する方法、あるいは、
逆に金属、合金粉末表面に硬質化合物を被覆する方法が
ある0表面合金化、クラッデング時の硬質化合物の溶融
しやすさ、合金化、クラツディグ部の品質などの点から
は、後者の添加材料が優れているが、その製造には特殊
な袋口が必要であり、添加材料の単価が高くなるため使
用目的に応じて使いわければよい。Note that the above additive materials may include mixed particles manufactured by mixing hard compound particles and powder particles made of a metal or alloy, or the powder particles are composed of a hard compound and a metal or alloy component. To prepare the latter additive material containing a single particle, which may contain a single particle, a metal or alloy component is coated, evaporated, or
A coating method such as ion sputtering, or
On the other hand, from the viewpoints of surface alloying, ease of melting of hard compounds during cladding, alloying, quality of the cladding part, etc., the latter additive material is preferable. Although it is excellent, it requires a special bag opening to manufacture, and the unit cost of additive materials is high, so it can be used depending on the purpose of use.
また、添加材料は粉末のまま有機バインダーまどを用い
て被加工面に仮付けし1表面合金化やクラプディングを
施してもかまわないが、粉末状態ではレーザ又は電子ビ
ーム照射時に飛散するため添加材料のぶどまりが悪く、
また表面合金化、クラプディング後は仮付は時より収縮
するため厚みの制御がむづかしい。この問題は粉末状添
加材料をいったん焼結にて成形し、その後成形材を適当
な大きさに切断したものをスギ−2ト溶接などで端部を
被加工面に仮付は後、レーザ又は電子ビームで基地と溶
融一体化すればよい。Additionally, the additive material may be temporarily attached to the processed surface using an organic binder in powder form and subjected to one-surface alloying or clapboarding. The material doesn't stick well,
Furthermore, after surface alloying and clattering, the tacking shrinks over time, making it difficult to control the thickness. This problem is solved by first molding the powdered additive material by sintering, then cutting the molded material into appropriate sizes, temporarily attaching the ends to the workpiece surface using cedar welding, etc., and then laser or It can be melted and integrated with the base using an electron beam.
木発す1においては、高エネルギー密度を有する熱源に
より粉末集合体又は該粉末成型体を溶融する。In the wood production method 1, the powder aggregate or the powder molded body is melted by a heat source having high energy density.
熱源として高エネルギー密度を有する物を使用する理由
は次にある。すなわち、合金化、クラツディング相の耐
摩J[性、耐焼付き性を向上させるには、炭化物の一部
をマトリクス中に強制的に固溶させるとともに、大半を
液相から微細に晶出、分散させる必要が有る。そのため
には冷却速度を速くしなければならなく(少なくとも凝
固温度においてlOO℃/ s e c以上が必要と推
測される)、たとえば、熱源には103w/cm2以上
のパワー密度が必要である。パワー密度が低い熱源では
、冷却速度が遅くなるため、品出硬質化合物の凝集粗大
化が起こるとともに、硬質化合物構成元素が金属相中に
固溶しなくなり、十分な金属部材のl1iF1摩耗性及
び耐焼付き性が得られない、なお、このような、高エネ
ルギー密度を有する熱源とし・ではたとえば、レーザや
電子ビーム等がある。The reason for using a material with high energy density as a heat source is as follows. In other words, in order to improve the wear resistance and seizure resistance of the alloying and cladding phase, part of the carbide is forcibly dissolved in the matrix, and most of it is finely crystallized and dispersed from the liquid phase. There is a need. For this purpose, the cooling rate must be increased (at least at the solidification temperature, it is estimated that 100° C./sec or higher is required), and for example, the heat source must have a power density of 10 3 w/cm 2 or higher. When using a heat source with a low power density, the cooling rate is slow, which causes the hard compound to aggregate and coarsen, and the constituent elements of the hard compound are no longer solidly dissolved in the metal phase. Examples of such heat sources with high energy density, such as lasers and electron beams, may be used.
[実施態様の説明]
(第2請求項)
本発明においては、金属相中にCrを、硬質化合物以外
の全組成の2〜30mol%の範囲で添加してもよい、
この場合耐焼付き性が特に要求される用途に対して有効
である。添加する範囲を2〜30%としたのは、2mo
1%以下の添加では耐焼付き性効果が小さく、3刀m
ol%を超えて添加すると、脆弱なM7C3等の化合物
を晶出しやすくなり、特に、金属相中でも脆弱なσ相を
形成しやすくなる為である。[Description of embodiments] (Second claim) In the present invention, Cr may be added to the metal phase in an amount of 2 to 30 mol% of the total composition other than the hard compound.
In this case, it is effective for applications where seizure resistance is particularly required. The range of addition was 2 to 30% because 2 mo
If it is added less than 1%, the anti-seizure effect is small, and the
This is because if it is added in excess of ol%, brittle compounds such as M7C3 are likely to crystallize, and in particular, brittle σ phase is likely to be formed even in the metal phase.
(第3請求項)
また、金属相中にMOまたは/およびWを0.5〜20
m O1%の範囲で添加してもよい。(Third claim) Also, MO or/and W is contained in the metal phase in an amount of 0.5 to 20%.
It may be added in a range of 1% mO.
この場合、耐摩耗性が特に要求される用途に対して有効
である。Moまたは/およびWを添加するのは、金属相
を固溶硬化または析出硬化する働きが有るためである。In this case, it is effective for applications where wear resistance is particularly required. The reason for adding Mo and/or W is that they have the function of solid solution hardening or precipitation hardening of the metal phase.
添加量を0.5〜20mol%とした理由は、0.5m
ol%以下では金属相を固溶硬化または析出硬化する働
きが小さく、20mol%を超えると脆弱なM6 C等
の化合物を晶出しやすくなるためである。The reason for setting the addition amount to 0.5 to 20 mol% is that 0.5 m
This is because if it is less than ol%, the effect of solid solution hardening or precipitation hardening of the metal phase is small, and if it exceeds 20 mol%, brittle compounds such as M6C tend to crystallize.
(第4請求項)
又、Cr、Mo、Wの添加m(1)合計を40mol%
を超えない範囲としてもよい、この場合、#i弱な化合
物の晶出を防止することができ・金属部材のITy#摩
耗性及び耐焼付き性がより一層向上する。(4th claim) Also, the total addition m(1) of Cr, Mo, and W is 40 mol%
In this case, it is possible to prevent #i weak compounds from crystallizing, and ITy# wear resistance and seizure resistance of the metal member are further improved.
(第5請求項)
いずれの硬質化合物でも合金化層、クラツディング層を
著しく硬化させるが、なかでもVC炭化物の効果が最も
大きい、PFに耐摩耗性、耐焼付性が要求される場合に
は、VC炭化物を10 m o 1%以上含む添加材料
を用いるのが好ましい、VC炭化物は、他のNaC1型
炭化物に比べて比較的安定度が低い(固溶しやすい)為
、VC炭化物を含むものでは、液相からの急冷後の金属
相中への炭化物構成元素(V 、 C)の固溶量が多く
、分散硬化以外に固溶硬化も効果に大きく寄与する。(Claim 5) Any hard compound can significantly harden the alloyed layer and cladding layer, but among them, VC carbide has the greatest effect.When wear resistance and seizure resistance are required for PF, It is preferable to use an additive material containing 10 m o 1% or more of VC carbide.Since VC carbide has relatively low stability (easily forms a solid solution) compared to other NaC1 type carbides, it is not recommended to use an additive material containing VC carbide. , the amount of carbide constituent elements (V, C) in solid solution in the metal phase after quenching from the liquid phase is large, and solid solution hardening in addition to dispersion hardening greatly contributes to the effect.
[発明の実施例]
(第1実施例)
第1表に示される種類及び量の硬質化合物及び金属粉末
を■ミキサーで十分混合したのち、HIPにて約20φ
の粉末成形体を作製した。その後、粉末成形体を10m
mφX10mmX0.5mmに加工し、添加材料とした
。この添加材料を30mmX50mmX5mmの金属基
盤表面にスポット溶接にて仮付は後、その表面にレーザ
を照射することによって表面合金化(タラツデイング)
を行ない、その断面硬度及び大越式庁耗試験による耐摩
耗性、耐焼き付き性を(凝着摩耗の激しさ)を評価した
。HIP条件、基盤材料の種類、レーザ照射条件、評価
試験条件は下記の通りである。[Embodiments of the Invention] (First Example) Hard compounds and metal powders of the type and amount shown in Table 1 were thoroughly mixed in a ■ mixer, and then heated to approximately 20φ by HIP.
A powder compact was produced. After that, the powder molded body was
It was processed into a size of mφ x 10 mm x 0.5 mm and used as an additive material. This additive material is temporarily attached to the surface of a metal base of 30 mm x 50 mm x 5 mm by spot welding, and then the surface is alloyed by irradiating the surface with a laser.
The cross-sectional hardness and the wear resistance and seizure resistance (severity of adhesive wear) were evaluated using the Okoshi type wear test. The HIP conditions, type of base material, laser irradiation conditions, and evaluation test conditions are as follows.
I HIP条件: 1050℃X IQOOatm
X 2時間2 基盤材料: 515C(Hv175)3
レーザ照射条件:出力3KW
速度0.5m/分
スポット径約2mm
4 評価試験
■硬度分布=2a小硬度計 荷重300g■犬越式庁耗
試験:相手材S U J 2 (HRC60)摩擦距
離400m
荷重6.3kgf
摩擦速度4.9m/秒
耐摩耗性は慴動条件が同一の場合には材料の硬さに比例
することがわかっている。そこで合金化層の硬さを測定
し、添加物の耐摩耗性に関する彩響を推定した。I HIP conditions: 1050℃X IQOOatm
X 2 hours 2 Base material: 515C (Hv175) 3
Laser irradiation conditions: Output 3KW Speed 0.5m/min Spot diameter approx. 2mm 4 Evaluation test ■ Hardness distribution = 2a small hardness tester Load 300g ■ Inukoshi type wear test: Compatible material S U J 2 (HRC60) Friction distance 400m Load 6.3 kgf Friction speed 4.9 m/sec It is known that wear resistance is proportional to the hardness of the material when the sliding conditions are the same. Therefore, we measured the hardness of the alloyed layer and estimated the effect of the additive on the wear resistance.
第1図に合金化層の硬さと添加窒化物量との関係を示す
。合金化層にはクラックやボア等の欠陥は認められず、
健全な組成となっている。合金化層の硬さは基盤金属材
料の硬さより高く、1100Hv以上であった。FIG. 1 shows the relationship between the hardness of the alloyed layer and the amount of added nitride. No defects such as cracks or bores were observed in the alloyed layer.
It has a healthy composition. The hardness of the alloyed layer was higher than that of the base metal material, and was 1100 Hv or more.
VC十窒化物=20mo 1%とVC十窒化物−60m
ol%とを比較するとVC+窒化物=60mol%の方
が硬さは高<、VC十窒化物の量が大きい方が合金化層
の耐摩耗性が良い、vc+Q化物=&)mol%の条件
では、硬さは添加窒化物の量が多くなるに従い高くなり
、窒化物の量が5mol%では約1430Hvであるが
、窒化物の量が15mol%では約1500Hvとなり
、窒化物の影!が高いことを示す。VC denitride = 20mo 1% and VC dedenitride -60m
When compared with ol%, VC + nitride = 60 mol% has higher hardness, the larger the amount of VC denitride, the better the wear resistance of the alloyed layer, the conditions of VC + Q oxide = &) mol% So, the hardness increases as the amount of added nitride increases, and when the amount of nitride is 5 mol%, it is about 1430 Hv, but when the amount of nitride is 15 mol%, it is about 1500 Hv, which is the shadow of nitride! indicates that the value is high.
第2図に添加材料と比摩耗量との関係を示す。Figure 2 shows the relationship between additive materials and specific wear amount.
比摩耗量は下に示す式により求めた。The specific wear amount was determined using the formula shown below.
被摩耗量=
試験荷重(Kgf) X摩擦距離(蓮)合金化処理を行
なっていない材料は、本試験条件では、急速に焼付きが
生じ、試験が不可源であった。それに対し、本発明例で
あるC−Lに示す添加材料は比摩耗量は約0.8以下で
非常に小さいことがわかる。比摩耗量は合金化材料の硬
さにほぼ比例し、硬さが最も高いFの添加材料では比摩
耗量は0.25程度であった。また、比摩耗量は添加材
料中の硬質化合物量が同じであれば窒化物の量の多いも
のの方が小さく、耐摩耗性が良いことが示される。Amount of wear = Test load (Kgf) On the other hand, it can be seen that the additive materials shown in C-L, which are examples of the present invention, have a very small specific wear amount of about 0.8 or less. The specific wear amount is almost proportional to the hardness of the alloyed material, and the specific wear amount was about 0.25 for the F-added material, which has the highest hardness. Further, if the amount of hard compound in the additive material is the same, the specific wear amount is smaller for the material with a larger amount of nitride, indicating that the material has better wear resistance.
(実施例2)
第2表に示すように、炭化物としてVC1窒化物として
T i Nの添加物を用い、金属材料にNi、Co、C
r、Fe、Mo、W等を用いて実施例1と同一条件で試
験片を製造し、試験片の硬さと比摩耗量を測定した。(Example 2) As shown in Table 2, an additive of TiN was used as the VC1 nitride as the carbide, and Ni, Co, and C were added to the metal material.
A test piece was manufactured using R, Fe, Mo, W, etc. under the same conditions as in Example 1, and the hardness and specific wear amount of the test piece were measured.
第3図に試験片の硬さを測定した結果を示す。Figure 3 shows the results of measuring the hardness of the test pieces.
硬さは常温と500〜800℃の条件で測定した0合金
化層にはクランクやボア等の欠陥は認められず、健全な
m成となっている0合金化層の硬さは基盤金属材料の硬
さより高く、常温では1200Hv以上の硬さであった
。金属成分としてNi又はCoを用いた場合はFeを用
いた場合より常温硬さは低いが、高温では逆に高くなり
、高温での耐摩耗性に優れていることを示している。ま
たMoを含有するものはいずれの温度条件においても、
硬さは高く、耐摩耗性に優れていることが示される。The hardness of the 0-alloyed layer was measured at room temperature and 500 to 800°C, and no defects such as cranks or bores were observed in the 0-alloyed layer, which had a healthy composition. The hardness was higher than that of 1,200 Hv at room temperature. When Ni or Co is used as the metal component, the hardness at room temperature is lower than when Fe is used, but it becomes higher at high temperatures, indicating that the hardness is excellent at high temperatures. Moreover, those containing Mo under any temperature conditions,
It shows high hardness and excellent wear resistance.
第4図に添加材料をVC50mol%、 T i N1
0mδ1%とし、基盤材料を各種変えて比摩耗量を求め
た結果を示す、測定温度は常温である。In Figure 4, the additive materials are VC50mol%, T i N1
0mδ1%, and the results of determining the specific wear amount using various base materials are shown, and the measurement temperature is room temperature.
基盤材料がFe、Ni、Coでは耐摩耗性には大きな相
違はないが、Cr、Mo、W等の添加物が入ると耐摩耗
性は向上し、特にM o 、 W 、 F eからなる
基盤材料を用いた場合には比摩耗量は0.2程度となり
、耐摩耗性に優れていることが示される。There is no big difference in wear resistance when the base material is Fe, Ni, or Co, but when additives such as Cr, Mo, or W are added, the wear resistance improves, especially when the base material is made of Mo, W, or Fe. When this material is used, the specific wear amount is about 0.2, indicating that it has excellent wear resistance.
[発明の効果]
本発明によると、欠陥を発生させることなく表面層を硬
質化し、耐摩耗性、耐焼付性を向上させることが可能と
なり、切削工具、金型、内燃期間部品などの摩擦面を有
する金属部材に適用することにより大きな効果が得られ
る。[Effects of the Invention] According to the present invention, it is possible to harden the surface layer without causing defects, improve wear resistance and seizure resistance, and improve friction surfaces of cutting tools, molds, internal combustion parts, etc. A great effect can be obtained by applying it to a metal member having.
また、本発明で用いる硬質化合物は全て非磁性であり、
添加材料中の金属相に非磁性のものを用いれば、非磁性
材料の表面をその特性を劣化させることなく硬質化し得
るなど、基盤金属の特性に応じた表面層の選択が可能で
ある。Furthermore, all the hard compounds used in the present invention are non-magnetic,
If a non-magnetic metal phase is used in the additive material, the surface layer of the non-magnetic material can be hardened without deteriorating its properties, and the surface layer can be selected according to the properties of the base metal.
また、従来法では炭化物単独添加の為、レーザクラディ
ングは不可能であったが、本発明では添加材料そのもの
が容易に溶融する為、グラフディングも可、能となる。Further, in the conventional method, laser cladding was not possible due to the addition of carbide alone, but in the present invention, since the additive material itself is easily melted, graphing is also possible.
従って、母材金属成分の混入を著しく少なくできる為、
たとえば混入がおこると不都合な基盤材料であっても処
理が可能である。Therefore, since the contamination of base metal components can be significantly reduced,
For example, it is possible to process even base materials that are inconvenient if contaminated.
第1図は硬さに及ぼす窒化物の量を示すグラフである。
第2図は基盤材料をFeとした場合の比摩耗量と添加材
料との関係を示すグラフである。
第3UAは添加材料をV C、T i Nとし、基田村
料を各種変えた場合の硬さと試験温度との関係を示すグ
ラフである。第4図は添加材料をVC。
T i Nとし、基盤材料を各種変えた場合の比摩耗量
と添加材料との関係を示したグラフである。
第1表
第2表
第1図
ビアカース硬度
(荷重300g) O印の符号は添加材料の種
類を表す。
窒化物量(mol%)
添加材料の種類
RT 500600 700 800試験
温度(℃)FIG. 1 is a graph showing the effect of nitride on hardness. FIG. 2 is a graph showing the relationship between specific wear amount and additive material when Fe is used as the base material. The third UA is a graph showing the relationship between hardness and test temperature when the additive materials are V C and T i N and the Mototamura materials are varied. Figure 4 shows the additive material as VC. It is a graph showing the relationship between the specific wear amount and the additive material when T i N is used and the base material is variously changed. Table 1 Table 2 Figure 1 Beer Curse Hardness (Load: 300 g) The O symbol indicates the type of additive material. Amount of nitride (mol%) Type of additive material RT 500600 700 800 Test temperature (℃)
Claims (5)
上を合計2〜20mol%、V,Ti,Zr,Nb,T
a,Hfの炭化物の一種又は二種以上を炭化物と窒化物
の合計で20〜80mol%となる範囲で含有し、残部
がFe,Ni,Coの一種又は二種以上の金属もしくは
合金、又はFe,Ni,Coの一種又は二種以上を主成
分とする合金及び不可避的化合物からなる粉末集合体又
は粉末成型体を、耐摩耗性及び/又は耐焼付き性を向上
させようとする金属部材の表面に付着した後、該粉末集
合体又は該粉末成型体を高エネルギー密度を有する熱源
により溶融し、該粉末集合体又は該粉末成型体と該金属
部材の表面とを溶融一体化することを特徴とする金属部
材の耐摩耗性及び耐焼付き性向上方法。(1) A total of 2 to 20 mol% of one or more nitrides of V, Ti, Zr, Nb, V, Ti, Zr, Nb, T
Contains one or more carbides of a, Hf in a range of 20 to 80 mol% in total of carbides and nitrides, and the remainder is a metal or alloy of one or more of Fe, Ni, Co, or Fe. , Ni, Co, Ni, Co, etc. The surface of a metal member whose wear resistance and/or seizure resistance is to be improved is a powder aggregate or a powder molded body made of an alloy and an unavoidable compound mainly composed of one or more of Ni and Co. After adhering to the metal member, the powder aggregate or the powder molded body is melted by a heat source having a high energy density, and the powder aggregate or the powder molded body is melted and integrated with the surface of the metal member. A method for improving wear resistance and seizure resistance of metal members.
第1項記載の金属部材の耐摩耗性及び耐焼付き性向上方
法。(2) A method for improving wear resistance and seizure resistance of a metal member according to claim 1, which contains 2 to 30 mol% of Cr.
する特許請求範囲第1項又は第2項に記載の金属部材の
耐摩耗性及び耐焼付き性向上方法。(3) A method for improving wear resistance and seizure resistance of a metal member according to claim 1 or 2, which contains 0.50 to 20 mol% of Mo or W.
い範囲で含有する特許請求範囲第1項ないし第3項のい
ずれかに記載の金属部材の耐摩耗性及び耐焼付き性向上
方法。(4) The method for improving wear resistance and seizure resistance of a metal member according to any one of claims 1 to 3, wherein the total amount of Cr, Mo, and W does not exceed 40 mol%.
含有する粉末集合体又は粉末成型体を用いる特許請求範
囲第1項ないし第4項のいずれかに記載の金属部材の耐
摩耗性及び耐焼付き性向上方法。(5) Wear resistance and seizure resistance of the metal member according to any one of claims 1 to 4, which uses a powder aggregate or powder compact containing 10 mol% or more of V carbide as a part of the carbide. How to improve sex.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12180586A JPS62278282A (en) | 1986-05-27 | 1986-05-27 | Improvement of wear resistance and seizure resistance of metallic member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12180586A JPS62278282A (en) | 1986-05-27 | 1986-05-27 | Improvement of wear resistance and seizure resistance of metallic member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62278282A true JPS62278282A (en) | 1987-12-03 |
Family
ID=14820362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12180586A Pending JPS62278282A (en) | 1986-05-27 | 1986-05-27 | Improvement of wear resistance and seizure resistance of metallic member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62278282A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017508918A (en) * | 2014-03-03 | 2017-03-30 | フェデラル−モーグル コーポレイション | One-part piston, characterized in that additive processing produces a combustion bowl periphery and cooling gallery |
-
1986
- 1986-05-27 JP JP12180586A patent/JPS62278282A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017508918A (en) * | 2014-03-03 | 2017-03-30 | フェデラル−モーグル コーポレイション | One-part piston, characterized in that additive processing produces a combustion bowl periphery and cooling gallery |
US10443536B2 (en) | 2014-03-03 | 2019-10-15 | Tenneco Inc. | One-piece piston featuring addictive machining produced combustion bowl rim and cooling gallery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4731253A (en) | Wear resistant coating and process | |
Chao et al. | Microstructure and wear resistance of TaC reinforced Ni-based coating by laser cladding | |
DE69017975T2 (en) | Dispersion-reinforced copper-based alloy for armouring. | |
US3725016A (en) | Titanium carbide hard-facing steel-base composition | |
NL2009730C2 (en) | Enhanced hardfacing alloy and a method for the deposition of such an alloy. | |
EA004363B1 (en) | Iron-base alloy containing chromium-tungsten carbide and a method of producing it | |
Narendranath et al. | Studies on microstructure and mechanical characteristics of as cast AA6061/SiC/fly ash hybrid AMCs produced by stir casting | |
Chiang et al. | Microstructural characterization and microscopy analysis of laser cladding Stellite12 and tungsten carbide | |
JPH0525655A (en) | Method for hardening surface of aluminum base metal and surface hardened aluminum base member | |
JP2012518082A (en) | Wear resistant alloy | |
Xiao et al. | Microstructure and mechanical properties of H13 steel/high-speed steel composites prepared by laser metal deposition | |
US5387294A (en) | Hard surfacing alloy with precipitated metal carbides and process | |
JPH02277740A (en) | Wear-resistant and corrosion-resistant nickel-based alloy | |
Abreu-Castillo et al. | In situ processing aluminide coatings with and without tungsten carbide | |
Lin et al. | Microstructural evolution of hypoeutectic, near-eutectic, and hypereutectic high-carbon Cr-based hard-facing alloys | |
US4810464A (en) | Iron-base hard surfacing alloy system | |
JPS62278282A (en) | Improvement of wear resistance and seizure resistance of metallic member | |
JPS63312901A (en) | Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder | |
JPS63486A (en) | Method for improving wear resistance and seizure resistance for metallic member | |
US3406028A (en) | Hard-facing matrix composition and method of preparing same | |
Tomlinson et al. | LASER SURFACE ALLOYING OF AI–12Si | |
JP2002105588A (en) | Iron based high rigidity material and its production method | |
Filonenko et al. | Influence of Overheating and Cooling Rate on the Structures and Properties of Alloys of the Fe–B System | |
Zhang et al. | Influence of MoS 2 on the Microstructure and Properties of Laser Clad NiCrBSi Coatings. | |
CN1029015C (en) | New vanadium-and chromium-alloying method on the surface of metals |