JPH0313585A - Method for surface-hardening metal and method for surface-hardening nonmagnetic bearing parts - Google Patents

Method for surface-hardening metal and method for surface-hardening nonmagnetic bearing parts

Info

Publication number
JPH0313585A
JPH0313585A JP14892689A JP14892689A JPH0313585A JP H0313585 A JPH0313585 A JP H0313585A JP 14892689 A JP14892689 A JP 14892689A JP 14892689 A JP14892689 A JP 14892689A JP H0313585 A JPH0313585 A JP H0313585A
Authority
JP
Japan
Prior art keywords
metal
powder
hardening
substrate
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14892689A
Other languages
Japanese (ja)
Inventor
Masao Goto
将夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP14892689A priority Critical patent/JPH0313585A/en
Publication of JPH0313585A publication Critical patent/JPH0313585A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently form a sufficiently thick alloy carbide layer on the surface of a metal to harden the surface at a low cost by arranging a mixture of metal powder and carbon powder on the surface of a metallic substrate and irradiating the mixture with a high-density energy beam. CONSTITUTION:A mixture of the powder 2 of a metal such as chromium and carbon powder 3 is arranged on the surface of a metallic substrate 1 of mild steel, etc. The mixture is irradiated with a laser beam, an electron beam, etc., as the high-density energy beam. Consequently, the metal powder 2 and carbon powder 3 are melted, and the surface of the substrate 1 is also melted. An alloy carbide layer 4 is formed on the surface of the substrate 1 in this way, and the carbon atom of the powder 3 is diffused and infiltrated into the substrate 1. The surface of the substrate 1 is hardened with the sufficiently thick alloy carbide layer 4. Nonmagnetic metal powder and carbon powder are arranged on the surface of a nonmagnetic bearing part, and irradiated with a high density energy beam by this method to improve the surface hardness and rolling characteristic or the part.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、金属表面の硬化方法および非磁性軸受部品の
表面硬化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for hardening a metal surface and a method for hardening the surface of a non-magnetic bearing component.

〈従来の技術〉 従来からの金属表面の硬化方法として種々考えられてお
り、以下に、三つの例を挙げる6■ 金属表面に適宜な
金属粉末を配置して電子ビームまたはレーザビームを照
射し、その後、この金属基材を浸炭処理する方法。
<Prior art> Various conventional methods of curing metal surfaces have been considered, and three examples are listed below. Thereafter, this metal base material is carburized.

■ ■と同様、金属表面に適宜な金属粉末を配置して電
子ビームまたはレーザビームを照射し、その後、この金
属表面にカーボン粉末を配置して、再度、電子ビームま
たはレーザビームを照射する方法。
(2) Similar to (2), a method in which appropriate metal powder is placed on a metal surface and irradiated with an electron beam or laser beam, and then carbon powder is placed on this metal surface and the electron beam or laser beam is irradiated again.

■ 金属表面にチタンカーバイトなどの炭化物を配置し
、電子ビームまたはレーザビームを照射する方法。
■ A method in which a carbide such as titanium carbide is placed on a metal surface and irradiated with an electron beam or laser beam.

上記■、■の方法では、まず、金属表面で金属基材と金
属粉末とが合金化され、この合金化部分に炭素原子が拡
散される結果、金属表面に合金炭化層が形成されること
になる。また、■の方法では金属表面にセラミックス膜
がコーティングされることになる。
In methods (■) and (■) above, first, the metal base material and the metal powder are alloyed on the metal surface, and as a result of the diffusion of carbon atoms into this alloyed part, an alloy carbide layer is formed on the metal surface. Become. Furthermore, in the method (2), the metal surface is coated with a ceramic film.

〈発明が解決しようとする課題〉 しかしながら、上記従来の硬化方法では、次のような不
都合がある。
<Problems to be Solved by the Invention> However, the conventional curing method described above has the following disadvantages.

まず、■、■の方法では、いずれも、二つの独立した工
程が必要で処理能率が悪い。しかも、金属表面を合金化
してから、この合金層に対して炭素原子を拡散させるた
め、合金層へ炭素原子が拡散しにくくて、厚い合金層を
形成できるものの、合金炭化層を余り厚くすることがで
きず、表面硬度の向上に限界がある。
First, methods (1) and (2) both require two independent steps and are inefficient. Moreover, since carbon atoms are diffused into the alloy layer after alloying the metal surface, it is difficult for carbon atoms to diffuse into the alloy layer, and although a thick alloy layer can be formed, it is difficult to make the alloy carbide layer too thick. There is a limit to the improvement of surface hardness.

また、■の方法では、炭化物を溶融することになるので
、金属粉末やカーボン粉末などを溶融する場合に比べて
かなりの熱エネルギーが必要となる。しかも、結果とし
て金属基材との合金ではなく金属基材表面にセラミック
ス膜を被着した形となるので、当該セラミックス膜の剥
がれ強度が不十分な点が指摘される。
Furthermore, in the method (2), since carbide is melted, a considerable amount of thermal energy is required compared to the case where metal powder, carbon powder, etc. are melted. Moreover, since the result is a ceramic film adhered to the surface of the metal base material rather than an alloy with the metal base material, it has been pointed out that the peel strength of the ceramic film is insufficient.

ところで、転がり軸受において、例えば軌道輪を非磁性
材例えばチタン合金やオーステナイト系ステンレス鋼な
どとすることがあるが、これらの素材では軸受としての
硬度が不足するために、浸炭法やセラミックス膜の成膜
法などを用いて、軌道輪の転動体転勤面や相手部材への
嵌合面の表面硬化を行う、しかしながら、前記浸炭法で
は充分に厚い硬化層が得られず、また、セラミックス膜
では剥がれ強度が不十分であるなどの問題点があり、軸
受寿命の向上や転がり特性の改善を図ることは不可能で
ある。なお、この非磁性軸受部品に対して上記■、■の
手法を利用しても、上述したと同様の不都合があって、
最善の手法が未だ開発されていない。
By the way, in rolling bearings, for example, the raceway rings are sometimes made of non-magnetic materials, such as titanium alloys or austenitic stainless steel, but these materials lack the hardness for bearings, so carburizing or forming a ceramic film is required. Surface hardening of the rolling element rolling surface of the raceway and the mating surface to the mating member is performed using a film method, etc. However, the carburizing method described above does not provide a sufficiently thick hardened layer, and the ceramic film does not peel off. There are problems such as insufficient strength, and it is impossible to improve bearing life or rolling characteristics. Note that even if the above methods (■) and (■) are used for this non-magnetic bearing component, there will be the same disadvantages as mentioned above.
The best method has not yet been developed.

第1の発明は、処理工数や処理に必要な熱エネルギーを
少なくしながらも、硬質な合金炭化層を充分厚く形成で
きるようにすることを目的としている。また、第2の発
明は、硬度が不足する非磁性軸受構成部品の表面硬度向
上と、転がり特性の改善とを図ることを目的としている
The first invention aims at making it possible to form a sufficiently thick carbonized layer of a hard alloy while reducing the number of processing steps and the thermal energy required for the processing. Furthermore, the second invention aims to improve the surface hardness and rolling characteristics of non-magnetic bearing components that lack hardness.

く課題を解決するための手段さ 本発明は、このような目的を達成するために、次のよう
な構成をとる。
Means for Solving the Problems The present invention has the following configuration in order to achieve the above objects.

第1の発明の金属表面の硬化方法は、金属表面に金属粉
末とカーボン粉末とを混合配置し、それらに高密度エネ
ルギービームを照射することに特徴を有する。
The method of hardening a metal surface according to the first invention is characterized in that metal powder and carbon powder are mixed and arranged on the metal surface and irradiated with a high-density energy beam.

また、第2の発明の非磁性軸受部品の表面硬化方法は、
非磁性材からなる軸受部品の表面に、非磁性の金属粉末
とカーボン粉末とを配置し、それらに高密度エネルギー
ビームを照射することに特徴を有する。
Further, the surface hardening method for non-magnetic bearing components according to the second invention is as follows:
It is characterized in that non-magnetic metal powder and carbon powder are placed on the surface of a bearing component made of non-magnetic material, and a high-density energy beam is irradiated onto them.

〈作用〉 まず、第1.第2の両発明では、−度の高密度エネルギ
ービームの照射によって、金属粉末、カーボン粉末およ
び金属表面カリ3融して、金属表面に合金炭化層が形成
されるとともに、金属表面で溶融させられるカーボン粉
末の炭素原子が金属内部へも拡散されることになる。そ
して、充分な量の金属粉末とカーボン粉末とを金属表面
に配置しておけば、膜厚が充分に厚い合金炭化層が得ら
れることになる。
<Effect> First, 1st. In the second invention, metal powder, carbon powder, and metal surface potassium are melted by irradiation with a high-density energy beam of -degrees to form an alloy carbonized layer on the metal surface and to melt the metal powder on the metal surface. The carbon atoms of the carbon powder will also be diffused into the metal. If sufficient amounts of metal powder and carbon powder are placed on the metal surface, a sufficiently thick alloy carbonized layer can be obtained.

また、このような処理によって硬度の不足している非磁
性軸受部品の表面に充分に厚い硬質な合金炭化層を形成
すれば、その硬度や耐摩耗性が増すことになるとともに
、炭素原子の自己潤滑作用によって、転動体の摩擦抵抗
が低減するとともに、損傷しにくくなる。
In addition, if a sufficiently thick hard alloy carbonized layer is formed on the surface of a non-magnetic bearing component that lacks hardness through such treatment, its hardness and wear resistance will increase, and the self-contained carbon atoms will increase. The lubrication effect reduces the frictional resistance of the rolling elements and makes them less likely to be damaged.

〈実施例〉 以下、本発明の実施例を図面に基づいて詳細に説明する
<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図および第2図に第1の発明の一実施例を示してい
る。第1図に示すように、まず、軟鋼(例えば5IOC
)からなる金属基材1の表面に例゛えばクロムなどの金
属粉末2とカーボン粉末3とを混合配置する。この各粉
末は、図中で極端に大きく表しているが、例えば350
メソシユ以下とするのが望ましい、この状態にて高密度
エネルギービームとしての電子ビームまたはレーザビー
ムを走査して照射する。この照射により、金属粉末2と
カーボン粉末3とが溶融させられるとともに、金属基材
1の表面も溶融させられることになり、金属基材1の表
面が金属粉末2によって合金化されつつ、この合金部分
にカーボン粉末3の炭素原子が含存させられる。その結
果、第2図に示すように、金属基材1の表面に合金炭化
層4が形成される。これと同時に、カーボン粉末3の炭
素原子は金属基材1の内部深くまで拡散される。なお拡
散された炭素成分を斑点で表している。
An embodiment of the first invention is shown in FIGS. 1 and 2. FIG. As shown in Figure 1, first, mild steel (for example, 5IOC
For example, a metal powder 2 such as chromium and a carbon powder 3 are mixed and arranged on the surface of a metal base material 1 consisting of a metal base material 1 made of chromium. Although each powder is shown extremely large in the figure, for example, 350
In this state, which is preferably less than 100 psi, an electron beam or laser beam as a high-density energy beam is scanned and irradiated. By this irradiation, the metal powder 2 and the carbon powder 3 are melted, and the surface of the metal base material 1 is also melted, and while the surface of the metal base material 1 is alloyed with the metal powder 2, this alloy The carbon atoms of the carbon powder 3 are included in the portion. As a result, an alloy carbonized layer 4 is formed on the surface of the metal base material 1, as shown in FIG. At the same time, the carbon atoms of the carbon powder 3 are diffused deep into the metal base material 1. Note that the diffused carbon components are represented by spots.

このように−度に合金炭化層4を形成するようにしてい
るから、金属基材1の表面に配置する各粉末量を多くす
ることによって、厚い合金炭化層4を得ることができる
ようになる。しかも、炭素原子は合金炭化層4のさらに
金属基材1内部深くまで拡散されるから、金属基材1の
表面硬度が充分に高められることになる。
Since the alloy carbonized layer 4 is formed in this way, a thick alloy carbonized layer 4 can be obtained by increasing the amount of each powder disposed on the surface of the metal base material 1. . Moreover, since the carbon atoms are diffused deeper into the metal base material 1 through the alloy carbonized layer 4, the surface hardness of the metal base material 1 is sufficiently increased.

以上のような金属表面の硬化方法は転がり軸受一般や圧
延ロールなど、機械構造物に対して広く適用できること
は言うまでもない、また、使用する金属粉末2としては
、前述したものの他に、タングステン、バナジウム、チ
タンなどが考えられる。
It goes without saying that the method for hardening metal surfaces described above can be widely applied to mechanical structures such as rolling bearings in general and rolling rolls.In addition to the above-mentioned metal powders, tungsten, vanadium, etc. , titanium, etc.

次に、第3図に第2の発明の一実施例を示している。Next, FIG. 3 shows an embodiment of the second invention.

ここでは深溝玉軸受を例に挙げる0図中、10は内輪、
11は外輪、12は玉、13は保持器である。この内外
輪10.11は、非磁性材、例えばチタン合金やオース
テナイト系ステンレス鋼などで形成されている。この内
外輪10.11の各転動体転勤面14゜15を、上記硬
化方法と同じ手順でもって硬化させる。ただし、合金化
のための粉末は、非磁性材料例えばチタンとする。
Here, we will take a deep groove ball bearing as an example. In Figure 0, 10 is the inner ring;
11 is an outer ring, 12 is a ball, and 13 is a retainer. The inner and outer rings 10.11 are made of a non-magnetic material such as titanium alloy or austenitic stainless steel. The rolling element rolling surfaces 14 and 15 of the inner and outer rings 10 and 11 are hardened using the same procedure as the above-mentioned hardening method. However, the powder for alloying is a non-magnetic material such as titanium.

このように内外輪10.11の各転動体転勤面14゜1
5の表面に合金炭化層4を形成するとともに、転動体転
勤面12.13の内部深くに炭素原子を拡散させれば、
硬度が不足する素材であってもその表面硬度を充分に高
めることができる上、合金炭化層4中の炭素原子の自己
潤滑作用によって転動体としての玉14の転がり摩擦抵
抗や微小領域での滑り抵抗を低減することができるよう
になる。
In this way, each rolling element rolling surface 14°1 of the inner and outer rings 10.11
If an alloy carbide layer 4 is formed on the surface of the rolling element 5 and carbon atoms are diffused deep inside the rolling element transfer surface 12.13,
Even if the material lacks hardness, its surface hardness can be sufficiently increased, and the self-lubricating effect of the carbon atoms in the alloy carbonized layer 4 reduces the rolling friction resistance of the balls 14 as rolling elements and the slippage in minute areas. It becomes possible to reduce resistance.

〈発明の効果〉 以上説明したように、第1の発明によれば、処理工数を
少なくして、無駄に熱エネルギーを使うことなく、金属
表面に硬質な合金炭化層を充分に厚く形成することがで
き、作業能率の向上と、製作コストの低減と、金属表面
の硬度の向上とを図ることができるようになる。
<Effects of the Invention> As explained above, according to the first invention, it is possible to form a sufficiently thick hard alloy carbonized layer on the metal surface without reducing the number of processing steps and wasting thermal energy. This makes it possible to improve work efficiency, reduce manufacturing costs, and improve the hardness of the metal surface.

また、第2の発明によれば、比較的軟質な非磁性材から
なる軸受部品の表面硬度を充分に高めることができると
ともに、転がり特性の向上を図ることができて、長寿命
化に大きく貢献できるようになる。
Further, according to the second invention, it is possible to sufficiently increase the surface hardness of the bearing component made of relatively soft non-magnetic material, and it is also possible to improve the rolling characteristics, which greatly contributes to longer life. become able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は第1の発明の一実施例にかかり、
第1図は金属表面の硬化過程の概略を示す断面図、第2
図は硬化処理後の金属表面を略伝する断面図である。 第3図は第2の発明の一実施例にかかり、内外の両軌道
輸に硬化処理を施した転がり軸受の上半断面図である。 1・・・金属基材、    2・・・金属粉末、3・・
・カーボン粉末、 4・・・合金炭化層。 第1図 1・・・金属基材 2・・・金属粉末 3・・・カーボン粉末 4・・合金炭化層 第2図
1 and 2 show an embodiment of the first invention,
Figure 1 is a cross-sectional view schematically showing the hardening process of the metal surface, Figure 2
The figure is a cross-sectional view schematically showing the metal surface after hardening treatment. FIG. 3 is an upper half sectional view of a rolling bearing according to an embodiment of the second invention, in which both the inner and outer raceways are hardened. 1... Metal base material, 2... Metal powder, 3...
- Carbon powder, 4... Alloy carbonized layer. Fig. 1 1...Metal base material 2...Metal powder 3...Carbon powder 4...Alloy carbonized layer Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1) 金属表面に金属粉末とカーボン粉末とを混合配
置し、それらに高密度エネルギービームを照射すること
を特徴とする金属表面の硬化方法。
(1) A method for hardening a metal surface, which comprises disposing a mixture of metal powder and carbon powder on a metal surface and irradiating them with a high-density energy beam.
(2) 非磁性材からなる軸受部品の表面に、非磁性の
金属粉末とカーボン粉末とを配置し、それらに高密度エ
ネルギービームを照射することを特徴とする非磁性軸受
部品の表面硬化方法。
(2) A method for surface hardening non-magnetic bearing parts, which comprises placing non-magnetic metal powder and carbon powder on the surface of a bearing part made of non-magnetic material, and irradiating them with a high-density energy beam.
JP14892689A 1989-06-12 1989-06-12 Method for surface-hardening metal and method for surface-hardening nonmagnetic bearing parts Pending JPH0313585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14892689A JPH0313585A (en) 1989-06-12 1989-06-12 Method for surface-hardening metal and method for surface-hardening nonmagnetic bearing parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14892689A JPH0313585A (en) 1989-06-12 1989-06-12 Method for surface-hardening metal and method for surface-hardening nonmagnetic bearing parts

Publications (1)

Publication Number Publication Date
JPH0313585A true JPH0313585A (en) 1991-01-22

Family

ID=15463754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14892689A Pending JPH0313585A (en) 1989-06-12 1989-06-12 Method for surface-hardening metal and method for surface-hardening nonmagnetic bearing parts

Country Status (1)

Country Link
JP (1) JPH0313585A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026970A (en) * 1988-11-14 1990-01-11 Fuji Xerox Co Ltd Control method for electronic copying machine
US5974276A (en) * 1997-01-28 1999-10-26 Minolta Co., Ltd. Image density adjustment method for image forming apparatus
JP2008269146A (en) * 2007-04-18 2008-11-06 Fuji Electric Retail Systems Co Ltd Vending machine
JP2011231769A (en) * 2011-06-17 2011-11-17 Yanmar Co Ltd Method for hardening surface of metal member
JP2013092150A (en) * 2012-11-26 2013-05-16 Yanmar Co Ltd Surface hardening method for valve seat of cast-iron cylinder head for internal combustion engine
WO2019208549A1 (en) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 Sliding member and manufacturing method thereof and power steering device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131357A (en) * 1981-02-04 1982-08-14 Mazda Motor Corp Local surface hardening method for ferrous parts
JPS583979A (en) * 1981-07-01 1983-01-10 Mitsubishi Heavy Ind Ltd Production of corrosion- and erosion resistant member
JPS6123730A (en) * 1984-07-12 1986-02-01 Toyota Motor Corp Production of crank shaft bearing for internal-combustion engine
JPS61296976A (en) * 1985-06-24 1986-12-27 Toyota Motor Corp Formation of carbide ceramic particle dispersed composite metallic layer
JPS63486A (en) * 1986-06-19 1988-01-05 Kobe Steel Ltd Method for improving wear resistance and seizure resistance for metallic member
JPH01242786A (en) * 1988-03-23 1989-09-27 Mitsubishi Heavy Ind Ltd Sliding member and production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131357A (en) * 1981-02-04 1982-08-14 Mazda Motor Corp Local surface hardening method for ferrous parts
JPS583979A (en) * 1981-07-01 1983-01-10 Mitsubishi Heavy Ind Ltd Production of corrosion- and erosion resistant member
JPS6123730A (en) * 1984-07-12 1986-02-01 Toyota Motor Corp Production of crank shaft bearing for internal-combustion engine
JPS61296976A (en) * 1985-06-24 1986-12-27 Toyota Motor Corp Formation of carbide ceramic particle dispersed composite metallic layer
JPS63486A (en) * 1986-06-19 1988-01-05 Kobe Steel Ltd Method for improving wear resistance and seizure resistance for metallic member
JPH01242786A (en) * 1988-03-23 1989-09-27 Mitsubishi Heavy Ind Ltd Sliding member and production thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026970A (en) * 1988-11-14 1990-01-11 Fuji Xerox Co Ltd Control method for electronic copying machine
JPH0529908B2 (en) * 1988-11-14 1993-05-06 Fuji Xerox Co Ltd
US5974276A (en) * 1997-01-28 1999-10-26 Minolta Co., Ltd. Image density adjustment method for image forming apparatus
JP2008269146A (en) * 2007-04-18 2008-11-06 Fuji Electric Retail Systems Co Ltd Vending machine
JP2011231769A (en) * 2011-06-17 2011-11-17 Yanmar Co Ltd Method for hardening surface of metal member
JP2013092150A (en) * 2012-11-26 2013-05-16 Yanmar Co Ltd Surface hardening method for valve seat of cast-iron cylinder head for internal combustion engine
WO2019208549A1 (en) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 Sliding member and manufacturing method thereof and power steering device and manufacturing method thereof
JP2019189925A (en) * 2018-04-27 2019-10-31 日立オートモティブシステムズ株式会社 Slide member, manufacturing method thereof, power steering device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR830002136B1 (en) Manufacturing method of selectively carburized and forged low alloy iron powder metal parts
JPS57192257A (en) Manufacture of bearing construction with solid lubricant
JPH0788851B2 (en) Rolling bearing
JP2002514511A (en) Method for joining a cast part and a part made of case-hardened steel and a part produced by this method
JPH0826446B2 (en) Rolling bearing
JPS62132031A (en) Rolling bearing
WO1998044270A1 (en) Rolling bearing
EP2888379B1 (en) Method for heat treating a steel component
JPH0313585A (en) Method for surface-hardening metal and method for surface-hardening nonmagnetic bearing parts
US9284983B2 (en) Raceway element for a large roller bearing and bearing assembly
US6485027B1 (en) Surface heat treatment of piston rings
CA2152990C (en) Rod end bearing for aircraft use
EP2888377B1 (en) Method for heat treating a steel component and a steel component
JPH05163582A (en) Treatment of surface
JPH02173212A (en) Sliding material and surface treatment method thereof
JP2006342409A (en) Iron-based parts and manufacturing method therefor
JP3234209B2 (en) Manufacturing method of sliding member
JP2926240B2 (en) Sliding material and surface treatment method
JPS63303223A (en) Manufacture of product, which has at least two movable part which is not separated mutually, particularly, roller bearing
JPS5947524A (en) Roller bearing surface-hardened by laser beam machining
JPH05209621A (en) Touch-down bearing for magnetic bearing device
JPH0788854B2 (en) Rolling bearing
US2770586A (en) Grid bearing and method of making same
Opačak et al. The laboratory testing of steel 20MnCr5
JPS59166730A (en) Solenoid brake clutch