JPS6348340B2 - - Google Patents

Info

Publication number
JPS6348340B2
JPS6348340B2 JP55032262A JP3226280A JPS6348340B2 JP S6348340 B2 JPS6348340 B2 JP S6348340B2 JP 55032262 A JP55032262 A JP 55032262A JP 3226280 A JP3226280 A JP 3226280A JP S6348340 B2 JPS6348340 B2 JP S6348340B2
Authority
JP
Japan
Prior art keywords
screen
latent image
photoreceptor
corona
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55032262A
Other languages
Japanese (ja)
Other versions
JPS56128966A (en
Inventor
Noboru Narita
Keiichi Murai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3226280A priority Critical patent/JPS56128966A/en
Publication of JPS56128966A publication Critical patent/JPS56128966A/en
Publication of JPS6348340B2 publication Critical patent/JPS6348340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/05Apparatus for electrographic processes using a charge pattern for imagewise charging, e.g. photoconductive control screen, optically activated charging means
    • G03G15/051Apparatus for electrographic processes using a charge pattern for imagewise charging, e.g. photoconductive control screen, optically activated charging means by modulating an ion flow through a photoconductive screen onto which a charge image has been formed

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)

Description

【発明の詳細な説明】 本発明は多数の微細な開口を有したスクリーン
感光体を用いた電子写真法に関するものである。 スクリーン感光体を用い、このスクリーン上に
形成した静電像である1次潜像に基づいて、コロ
ナイオン流を変調し、記録部材上に同じく静電像
である2次潜像を形成する電子写真法は種々知ら
れている。かかる電子写真法は、スクリーン感光
体上に形成した単一の1次潜像から多数回に亘
り、2次潜像を形成することができ、したがつて
1回の画像露光から多数枚の複写が得られる利点
がある。しかし、スクリーン感光体上に形成され
た1次潜像から得られる複写枚数は、スクリーン
感光体の電荷保持性があまりよくない場合は、1
次潜像の減衰によつて支配され有限値である。ま
た特開昭50―19455号および特開昭51―314号にお
いて示された、多数の微細な開口を有しており、
基体となる導電性基体に設けた光導電層と表面絶
縁層を基本構成とした断面形状の感光体スクリー
ンを用いた場合は、絶縁層上に1次潜像が形成さ
れているため、形成された潜像電荷の減衰が極め
て少なく、また変調用コロナ源側に導電部材が存
在するため、変調時に過剰な、又は、不要な変調
用コロナが導電部材から流失し、1次潜像に悪影
響を及ぼすことは少ないが、わずかにはスクリー
ン感光体に廻りこんで、スクリーン感光体上の1
次潜像が除々に打ち消されてしまい、このために
繰り返しコピーの枚数が制限される。 従来、この複写枚数を増加させるために、1次
潜像電位の減衰および変調用コロナの影響による
変調能力の低下に応じて、変調用コロナイオン流
の量を制御する方法が研究されたが変調用コロナ
イオン流の量が増加するにつれて、変調用コロナ
の影響による変調能力の低下が著しくなり、最終
的には調節が不可能になる。 而して本発明は、2次潜像形成用とは別に、ス
クリーン感光体を介してコロナ帯電器と対向電極
を設け、スクリーン感光体との距離と電界を制御
することにより、繰り返しコピーの枚数を飛躍的
に増大せしめる電子写真法を提供することを主た
る目的とする。 本発明による電子写真法は、2次潜像形成用の
コロナ放電器と対向電極とは別にコロナ放電器と
対向電極をスクリーン感光体を挾んで設け、2次
潜像形成用の対向電極とスクリーン感光体との間
隔を2mm以下にし、且つ両者間のバイアス電界を
1.2KV/mm以下にし、また、2次潜像形成用とは
別に設けた対向電極とスクリーン感光体との間隔
を2〜6mmとし、且つ両者間のバイアス電界を
1.5〜2.5KV/mmの範囲にすることを特徴とする
ものである。 以下図面を参照にして本発明を詳細に説明す
る。 第1図は本発明に使用するスクリーン感光体の
一例の構成を示す断面図である。第1図に示すス
クリーン感光体1は、多数の開口を有する導電性
基体2上に光導電層3を設け、該光導電層上に絶
縁層4を形成したものである。第2図から第5図
に、本発明に係る電子写真法による1次及び2次
潜像形成工程の1例を示す。第2図はスクリーン
感光体に行なう1次電圧印加工程、第3図は画像
照射及び2次電圧印加工程、第4図は全面照射工
程を示し、そして上記各工程により形成したスク
リーンの1次静電潜像により、イオン流を変調し
て行なう2次静電潜像形成工程を第5図に示す。 第2図は1次電圧印加工程を示し、電圧印加手
段としてコロナ放電器5により正(+)極性でス
クリーン感光体1を一様に帯電した状態を示す。
上記帯電により絶縁層4の表面には正極性の電荷
が帯電し、この帯電により、光導電層3の絶縁層
4近傍には、上記帯電とは逆極性である負極性の
電荷層を形成する。なお、光導電層3と導電性基
体2の界面及び光導電層が、多数キヤリアーは注
入されるが少数キヤリアーは注入されない様な性
質で整流性を有する場合には、暗部においても、
注入により上記の如き光導電層3中の絶縁層4近
傍に電荷層を形成することが可能である。上記整
流性を有さないものや1次電圧印加により上記の
如き電荷層を形成しないものにおいては、米国特
許明細書第2955938号に記載のような明部で絶縁
層を帯電する如き帯電を行いうる。 第3図は、上記1次電圧印加工程を経たスクリ
ーン感光体1に、画像照射と2次電圧印加工程を
同時に行なつた結果を示す。なお図中6は原画像
でありD側が暗部、またL側が明部を示し、矢印
7は光源(図示せず)からの光を示す。そして8
は2次電圧印加用のコロナ放電器で、図では負
(−)極性の直流電圧を印加したコロナワイヤか
らのコロナ放電により、上記絶縁層4の表面電位
が負極性となるように逆極性に帯電したものであ
る。 上記の如く絶縁層4の表面電位を負極性にする
と、画像照射による明部側Lにおいては光導電層
3の物質が導電性となり、その結果絶縁層4の表
面電位は負極性となる。しかし、暗部側Dにおい
ては光導電層3の絶縁層4側に存在する負電荷層
のため、絶縁層4の表面の電荷は正のままであ
る。 ここで上記工程におけるスクリーン1の絶縁層
4上の電位の極性変化速度を考えると、絶縁層の
コロナ放電器8に面する部分(表面側)が最も速
く変化し、この面する部分を挾み開口部を構成す
る略側面部はそれより遅れて変化する。従つて、
画像照射部においては導電性基体2が露出する側
面側の電位は導電性基体2の電位であり、この裏
面側から表面側へと次第に電位が高い状態とな
る。 第4図は画像照射と2次電圧印加工程を行なつ
たスクリーン1に対し、その全面に全面照射工程
として一様な露光を行なつた結果を示し、図中矢
印9は光源からの均一光を示す。この全面照射に
よりスクリーン感光体の暗部側Dの電位は、絶縁
層4の表面の電荷量に比例した電位に変化する。 第5図は上記1次潜像によりイオン流を変調
し、受像体上に2次潜像を形成している状態を示
す。図において10は放電器のコロナワイヤ、1
1は対向電極部材、12は可帯電面である紙フイ
ルムなどの受像体でありこの表面に2次潜像を形
成する。13,14は電源部で上記コロナワイヤ
と受像体12間にコロナイオンが流れる方向の電
場を形成する。受像体12はスクリーン感光体の
絶縁層4が面する側に近接配置し、そしてスクリ
ーン感光体を介して配置したコロナワイヤ10か
らイオン流を受像体12へ印加する。このときス
クリーン感光体の1次潜像による電界、即ち画像
明部側では実線αで示す負極性イオン流を阻止す
る電界が作用し、逆に暗部側では実線βで示すイ
オン流を加速する電界が作用する。これにより受
像体12上に原稿像のポジ像の状態で2次潜像が
形成される。 さらに、上記2次潜像形成用とは別に、スクリ
ーン感光体を介してコロナ放電器と対向電極部材
を設け、該スクリーン感光体と該対向電極部材間
の距離を2mm〜6mmにして、スクリーン感光体と
対向電極部材との間の電界を1.5KV/mm〜
2.5KV/mmの範囲の値に調節し、上記スクリーン
にコロナイオン流を通過させることで、繰り返し
コピー枚数を飛躍的に増大せしむるものである。 本発明を更に詳しく説明すると、2つの電極間
に荷電粒子が流れる場合荷電粒子が空気を電離し
て、電離イオンが発生することが知られている。 本発明は上記現像を利用して、スクリーン感光
体上の1次潜像の減衰による減少した電荷分又は
変調用コロナにより減少したスクリーン上の1次
潜像の電荷分を補い、スクリーンのコロナ変調能
力を一定に保つ方法に関するものである。即ち、
第5図に示すスクリーン感光体の原画像暗部にあ
たる部分では、コロナワイヤー10からのコロナ
イオン流がスクリーン感光体を通過し、スクリー
ン感光体と対向電極11の間で、空気をイオン化
し、発生した電離イオンのうち負のイオンは、コ
ロナワイヤーからコロナイオン流と共に対向電極
11に到着する。また発生した電離イオンのうち
正のイオンは電界によりスクリーン感光体側の方
へ移動し、スクリーン感光体の1次潜像の減衰又
は変調用コロナによつて打ち消された正電荷を補
う。一方、スクリーン感光体の原画像明部にあた
る部分ではコロナワイヤー10からのコロナイオ
ン流はスクリーン感光体の導電性基体2に流れ込
み、スクリーン1を通過せず、電離イオンは発生
しない。したがつて繰り返しコピー作成時にスク
リーン感光体を通過するコロナイオン流の変化は
電位の減衰が少ない場合、スクリーン感光体の1
次潜像の減衰又は変調用コロナによつて打ち消さ
れ減少する正電荷量Aと、スクリーン感光体と対
向電極の間で発生した電離陽イオンのうち、スク
リーン感光体に付着する正電荷量Bの2つの電荷
量の差によつて決定される。即ち、Aの電荷量が
Bの電荷量を上回つている場合は、スクリーン感
光体を通過する電流が繰り返しコピー枚数の増加
と共に除々に減少していく。またBの電荷量がA
の電荷量を上回つている場合は、スクリーン感光
体を通過する電流が繰り返しコピー枚数の増加と
共に除々に増加していく。またBの場合の発生す
る電離イオンは、スクリーン感光体を通過するコ
ロナイオンの量とスクリーン感光体と対向電極1
2との間にかかるバイアス電界の強さによつて決
まり、対向電極11の種類、材質にはよらない。 したがつて、スクリーン感光体と対向電極11
との間にかかるバイアス電界を適当に制御するこ
とで上記AとBを釣り合わせ、スクリーン感光体
を通過する電流を一定に保つことが可能である。 上記現象を有効に利用するためには、スクリー
ン感光体と対向電極の距離を6mm以下にすること
が必要で、それより大きい距離の場合は、発生し
た電離イオンにより電界が歪み、火花放電を生じ
易くなり、スクリーン感光体の表面の絶縁破壊を
起こす恐れがある。また、スクリーン感光体と対
向電極との間の電界を1.5〜2.5KV/mm、好まし
くは1.5KV/mm〜2.0KV/mmの範囲内で使用する
ときに最も有効に、1次潜像の減衰又は変調用コ
ロナの影響により減少した正電荷に釣り合う電離
正イオンを供給することが認められた。 しかし、2次潜像を形成する際のスクリーン感
光体と受像体との間隔は、小さい方が原価像の再
現に関しては良で、とくにスクリーン感光体およ
び受像体の形状を円筒状にする際には、両者の曲
率が異なる場合などは、両者の間隔が大きいと、
形成された2次潜像の周方向の長さが、1次潜像
と一致しなくなるといつた現象が生じ、好ましく
ない。さらにスクリーン感光体は2次潜像極形成
時には、スクリーン感光体と対向電極との間のバ
イアス電圧印加による電界のために、対向電極
(又は2次潜像形成部材)側に引かれ、スクリー
ン感光体と対向電極間の距離を変化させ(=変
位)、またこの変位量は電界が強くなれば大きく
なる。 又、バイアス電界による変位はスクリーン感光
体の各部分によつて異なるため、実際のバイアス
電界はこの変位による分だけ増大し、スクリーン
の各部分に差ができる。 したがつて、スクリーン感光体と対向電極の間
隔が小さい場合ほど、各部分の差、増加分は大き
くなり、バイアス電界が不均一になり、変位の大
きい部分では火花放電などを起こし易くなる。 したがつて、バイアス電界の均一性を考えた場
合、スクリーン感光体と対向電極の間隔は大きい
方が好ましい。そのために、2次潜像形成は原画
像を忠実に再現するためにスクリーン感光体と受
像体との間隔は小さくし、バイアス電圧印加によ
る変形により、実効的に作用するバイアス電界が
不均一にならないように低バイアスで用いること
とし、更に、2次潜像形成とは別にスクリーン感
光体を介してコロナ放電器と対向電極を設け、こ
のスクリーン感光体と対向電極の間隔を大きく
し、2次潜像形成と同じ極性のバイアス電界印加
によるスクリーン感光体の変位の画像への影響を
少なくした状態でスクリーン感光体の1次潜像の
減衰又は変調用コロナによつて打ち消され減少す
る正電荷量Aと、スクリーン感光体と対向電極の
間で発生した電離陽イオンのうちスクリーン感光
体に付着する正電荷量Bの量を釣り合わせ、スク
リーン感光体を通過する電流を一定に保つて、2
次潜像形成時における1次潜像の減衰を防止する
ものである。 すなわち、2次潜像形成用ではスクリーンと2
次潜像形成部材との間隔を2mm以下に配置し、両
者間のバイアス電界を1.2KV/mm以下、特には
1.0KV/mm以下に設定する。2次潜像形成用とは
別に設けたコロナ放電器はスクリーン感光体と対
向電極の間隔は2mm以上6mm以下、好ましくは4
mm〜6mm程度に配置し両者のバイアス電界を1.5
〜2.5KV/mmの範囲内で調節することで可能とな
る。バイアス電界が1.5KV/mmより小さいと、コ
ロナイオンは発生しないか、また発生しにくく減
衰防止の効果は得られない。また、2.5KV/mmよ
り大きいと、電界によるスクリーン感光体の変形
等により対向電極との接触によつて火花放電を生
じやすくなる。更に、バイアス電界が1.5〜
2.5KV/mmで範囲であつても対向電極とスクリー
ン感光体の間隔が2mmより小さいと火花放電を生
じやすく、また6mmより大きいと有効な減衰防止
効果が得られない。 なお、第1図〜第5図に示される場合の他、ス
クリーン感光体の種類に従つて、帯電極性は反対
にされる。 第6図は本発明に用いる電子写真装置の1例で
ある。原画像は原稿台15に置かれ、光源16、
ミラー17、プリズム18、レンズ20およびミ
ラー19からなる光学系でスクリーン感光体31
に画像露光される。画像露光に先立つてスクリー
ン感光体はコロナ放電器21によつて帯電され、
画像露光と同時にコロナ放電器22によつて反対
極性に帯電される。次に光源23によつて全面露
光され1次潜像を形成する。次に給紙部24から
送られてきた転写紙にコロナ放電器25と対向電
極26とが配置された部位でコロナイオン流の変
調により2次潜像を形成する。転写紙に形成され
た2次潜像は現像器27および定着器28で現
像・定着処理されコピーが形成される。2次潜像
形成後スクリーン感光体は別に設けられているコ
ロナ放電器29と対向電極30により、本発明に
よる1次潜像の減衰を防止するための処理がなさ
れる。 <実施例> 本発明に係るスクリーン感光体の作成におい
て、導電部材としてエレクトロフオーミング法に
より形成した線幅30μのニツケル合金より成る
250メツシユの基板を用い、一般の電子写真の感
光体に用いられるCdS(硫化カドミウム)粉末に
バインダとして常温硬化型シリコン樹脂を30重量
パーセントの割合で混合した溶液を、上記導電部
材の開口を塞がないようにこの導電部材の一方面
側からスプレーで塗布して光導電層を形成する。
そしてこの際、光導電層を最大厚さ部が約25μに
なるように付着する。その後、乾燥・硬化し更に
上記バインダと同一樹脂を同様にスプレーにより
やはり開口を塞がないようにして、最大厚さ部が
約3μになるように、表面絶縁層を作成した後乾
燥・硬化した。 以上のように作成したスクリーン感光体に1次
電圧印加工程により+300Vに帯電する。次いで
8ルツクス・秒の露光量で画像照射をし、約同時
にマイナスコロナ放電を与えて逆極性にスクリー
ン感光体を帯電し、後に全面照射を行う。その結
果、スクリーン感光体の表面絶縁層に1次静電潜
像を得る。このように形成した1次潜像面に対し
て1mmの間隔をおいて可帯電面である静電記録紙
を対置させる。この記録紙の電位をスクリーン感
光体の導電部材に対し+0.75KVに保ちながらス
クリーン感光体の1次潜像を介して記録紙に向け
て負極性のコロナ放電を行う。この際、コロナワ
イヤは導電部材に対して−4KV程度印加し、ス
クリーン感光体を40cm/秒程度の速さで作動させ
る。これにより1次潜像によりコロナイオン流は
変調されて記録紙上に2次静電潜像が形成され
る。 また2次潜像形成用とは別に、スクリーン感光
体表面から4mmの間隔をおいて対向電極を対置さ
せる。この対向電極の電位をスクリーン感光体の
導電基板に対し+6.80KVに保ちながら、スクリ
ーン感光体を介して対向電極に向けて負極性のコ
ロナ放電を行い1次潜像の減衰防止処理を行う。
この際、コロナワイヤーは導電基板に対して−
4KV程度印加する。 2次潜像形成用のコロナ帯電器のみの場合
と、これとは別に1次潜像減衰防止処理を行つた
場合の比較を下記に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic method using a screen photoreceptor having a large number of fine apertures. Using a screen photoreceptor, electrons modulate the corona ion flow based on the primary latent image, which is an electrostatic image, formed on the screen, and form a secondary latent image, which is also an electrostatic image, on the recording member. Various photographic methods are known. In this electrophotographic method, secondary latent images can be formed many times from a single primary latent image formed on a screen photoreceptor, and therefore many copies can be made from one image exposure. There are advantages that can be obtained. However, the number of copies obtained from the primary latent image formed on the screen photoreceptor is only 1 if the screen photoreceptor has poor charge retention.
It is dominated by the attenuation of the next latent image and has a finite value. It also has a large number of fine openings as shown in Japanese Patent Application Laid-open No. 50-19455 and Japanese Patent Application Laid-open No. 51-314.
When using a photoreceptor screen with a cross-sectional shape that basically consists of a photoconductive layer provided on a conductive substrate and a surface insulating layer, a primary latent image is formed on the insulating layer. Since the latent image charge decays very little and there is a conductive member on the modulating corona source side, excessive or unnecessary modulating corona will flow away from the conductive member during modulation, adversely affecting the primary latent image. Although the effect is small, a small amount may go around the screen photoreceptor and cause damage to the 1st layer on the screen photoreceptor.
The subsequent latent image is gradually canceled out, which limits the number of copies that can be repeated. Conventionally, in order to increase the number of copies, research has been conducted on methods to control the amount of modulating corona ion flow in response to the attenuation of the primary latent image potential and the decrease in modulation ability due to the influence of the modulating corona. As the amount of the corona ion flow increases, the modulation ability due to the influence of the modulating corona will decrease significantly, and eventually adjustment will become impossible. Therefore, in the present invention, in addition to forming a secondary latent image, a corona charger and a counter electrode are provided via the screen photoreceptor, and by controlling the distance to the screen photoreceptor and the electric field, the number of copies can be repeatedly made. The main purpose is to provide an electrophotographic method that dramatically increases the In the electrophotographic method according to the present invention, a corona discharger and a counter electrode are provided separately from a corona discharger and a counter electrode for forming a secondary latent image, sandwiching a screen photoreceptor between the counter electrode and a screen for forming a secondary latent image. Keep the distance from the photoconductor to 2 mm or less, and reduce the bias electric field between them.
1.2 KV/mm or less, and the distance between the counter electrode provided separately from the one for forming the secondary latent image and the screen photosensitive member is 2 to 6 mm, and the bias electric field between the two is set to 1.2 KV/mm or less.
It is characterized by being in the range of 1.5 to 2.5 KV/mm. The present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing the structure of an example of a screen photoreceptor used in the present invention. A screen photoreceptor 1 shown in FIG. 1 has a photoconductive layer 3 provided on a conductive substrate 2 having a large number of openings, and an insulating layer 4 formed on the photoconductive layer. 2 to 5 show an example of the process of forming primary and secondary latent images by electrophotography according to the present invention. Figure 2 shows the primary voltage application process performed on the screen photoreceptor, Figure 3 shows the image irradiation and secondary voltage application process, and Figure 4 shows the entire surface irradiation process. FIG. 5 shows a secondary electrostatic latent image forming step performed by modulating the ion flow using the electrostatic latent image. FIG. 2 shows the primary voltage application step, and shows a state in which the screen photoreceptor 1 is uniformly charged with positive (+) polarity by a corona discharger 5 as a voltage application means.
Due to the above-mentioned charging, the surface of the insulating layer 4 is charged with positive polarity, and due to this charging, a negative-polarity charge layer having the opposite polarity to the above-mentioned charging is formed in the vicinity of the insulating layer 4 of the photoconductive layer 3. . Note that if the interface between the photoconductive layer 3 and the conductive substrate 2 and the photoconductive layer have rectifying properties such that majority carriers are injected but minority carriers are not injected, even in dark areas,
By injection, it is possible to form a charge layer in the vicinity of the insulating layer 4 in the photoconductive layer 3 as described above. For those that do not have the above-mentioned rectifying properties or that do not form a charge layer as described above by applying a primary voltage, charging is performed such as charging the insulating layer in a bright area as described in U.S. Pat. No. 2,955,938. sell. FIG. 3 shows the results of simultaneously performing image irradiation and a secondary voltage application process on the screen photoreceptor 1 that has undergone the above-mentioned primary voltage application process. Note that 6 in the figure is an original image, the D side shows a dark part, the L side shows a bright part, and an arrow 7 shows light from a light source (not shown). and 8
is a corona discharger for applying a secondary voltage, and in the figure, corona discharge from a corona wire to which a DC voltage of negative (-) polarity is applied reverses the polarity so that the surface potential of the insulating layer 4 becomes negative. It is electrically charged. When the surface potential of the insulating layer 4 is made negative as described above, the substance of the photoconductive layer 3 becomes conductive on the bright side L due to image irradiation, and as a result, the surface potential of the insulating layer 4 becomes negative. However, on the dark side D, because of the negative charge layer existing on the insulating layer 4 side of the photoconductive layer 3, the charge on the surface of the insulating layer 4 remains positive. Considering the rate of change in polarity of the potential on the insulating layer 4 of the screen 1 in the above process, the part of the insulating layer facing the corona discharger 8 (front side) changes fastest, and the part facing the corona discharger 8 changes fastest. The substantially side surface forming the opening changes later. Therefore,
In the image irradiation section, the potential on the side surface where the conductive substrate 2 is exposed is the potential of the conductive substrate 2, and the potential gradually increases from the back side to the front side. Figure 4 shows the results of uniform exposure as a whole-surface irradiation process on the entire surface of the screen 1 that has undergone the image irradiation and secondary voltage application processes. shows. Due to this entire surface irradiation, the potential on the dark side D of the screen photoreceptor changes to a potential proportional to the amount of charge on the surface of the insulating layer 4. FIG. 5 shows a state in which the ion flow is modulated by the primary latent image to form a secondary latent image on the image receptor. In the figure, 10 is the corona wire of the discharger, 1
1 is a counter electrode member, and 12 is an image receptor such as a paper film which is a chargeable surface, and a secondary latent image is formed on the surface thereof. Reference numerals 13 and 14 denote power supply units that form an electric field between the corona wire and the image receptor 12 in the direction in which corona ions flow. The image receptor 12 is placed close to the side of the screen photoreceptor facing the insulating layer 4, and an ion current is applied to the image receptor 12 from a corona wire 10 placed through the screen photoreceptor. At this time, an electric field due to the primary latent image of the screen photoreceptor acts, that is, an electric field that blocks the negative ion flow shown by the solid line α acts on the bright side of the image, and an electric field that accelerates the ion flow shown as the solid line β acts on the dark side. acts. As a result, a secondary latent image is formed on the image receptor 12 in the state of a positive image of the original image. Furthermore, in addition to the secondary latent image formation described above, a corona discharger and a counter electrode member are provided via the screen photoreceptor, and the distance between the screen photoreceptor and the counter electrode member is set to 2 mm to 6 mm. The electric field between the body and the counter electrode member is 1.5KV/mm ~
By adjusting the value to a value in the range of 2.5 KV/mm and passing a corona ion stream through the screen, the number of repeated copies can be dramatically increased. To explain the present invention in more detail, it is known that when charged particles flow between two electrodes, the charged particles ionize the air, generating ionized ions. The present invention utilizes the above-mentioned development to compensate for the reduced charge due to the attenuation of the primary latent image on the screen photoreceptor or the reduced charge of the primary latent image on the screen due to the modulation corona, thereby modulating the corona of the screen. It is about how to keep the ability constant. That is,
In the dark part of the original image of the screen photoreceptor shown in FIG. 5, the corona ion flow from the corona wire 10 passes through the screen photoreceptor, ionizes the air between the screen photoreceptor and the counter electrode 11, and generates Among the ionized ions, negative ions arrive at the counter electrode 11 along with the corona ion flow from the corona wire. Further, among the generated ionized ions, positive ions move toward the screen photoreceptor side due to the electric field, and compensate for the positive charge canceled by the corona for attenuation or modulation of the primary latent image on the screen photoreceptor. On the other hand, in the portion of the screen photoreceptor corresponding to the bright area of the original image, the corona ion flow from the corona wire 10 flows into the conductive substrate 2 of the screen photoreceptor, does not pass through the screen 1, and no ionized ions are generated. Therefore, when making repeated copies, changes in the corona ion flow passing through the screen photoreceptor will occur if the attenuation of the potential is small.
The amount of positive charge A that is canceled out and reduced by the corona for attenuation or modulation of the next latent image, and the amount of positive charge B that adheres to the screen photoreceptor among the ionized cations generated between the screen photoreceptor and the counter electrode. It is determined by the difference between the two amounts of charge. That is, when the amount of charge on A exceeds the amount of charge on B, the current passing through the screen photoreceptor gradually decreases as the number of copies is increased. Also, the amount of charge of B is A
If the amount of charge exceeds the amount of charge, the current passing through the screen photoreceptor gradually increases as the number of copies is increased. In addition, the ionized ions generated in case B are the amount of corona ions passing through the screen photoreceptor and the amount of corona ions passing through the screen photoreceptor and the counter electrode 1.
2, and does not depend on the type or material of the counter electrode 11. Therefore, the screen photoreceptor and the counter electrode 11
By appropriately controlling the bias electric field applied between , it is possible to balance A and B and keep the current passing through the screen photoreceptor constant. In order to make effective use of the above phenomenon, it is necessary to keep the distance between the screen photoreceptor and the counter electrode at 6 mm or less; if the distance is greater than that, the electric field will be distorted by the generated ionized ions, causing spark discharge. This may cause dielectric breakdown on the surface of the screen photoreceptor. In addition, the primary latent image is most effectively attenuated when the electric field between the screen photoreceptor and the counter electrode is used within the range of 1.5 to 2.5 KV/mm, preferably 1.5 KV/mm to 2.0 KV/mm. Alternatively, it has been confirmed that ionized positive ions can be supplied to balance the positive charge decreased due to the influence of the modulating corona. However, the smaller the distance between the screen photoreceptor and the image receptor when forming the secondary latent image, the better the reproduction of the cost image, especially when the screen photoreceptor and image receptor are made cylindrical in shape. If the distance between the two is large, such as when the curvatures of the two are different,
If the length of the formed secondary latent image in the circumferential direction does not match that of the primary latent image, a phenomenon occurs, which is undesirable. Furthermore, when forming a secondary latent image pole, the screen photoconductor is drawn toward the counter electrode (or secondary latent image forming member) due to the electric field caused by applying a bias voltage between the screen photoconductor and the counter electrode, and the screen photoconductor is The distance between the body and the opposing electrode is changed (=displacement), and the amount of displacement increases as the electric field becomes stronger. Furthermore, since the displacement due to the bias electric field differs depending on each part of the screen photoreceptor, the actual bias electric field increases by the amount of this displacement, creating a difference between each part of the screen. Therefore, the smaller the distance between the screen photoreceptor and the counter electrode, the larger the difference or increase in each part becomes, the bias electric field becomes non-uniform, and spark discharge is more likely to occur in parts with large displacements. Therefore, when considering the uniformity of the bias electric field, it is preferable that the distance between the screen photoreceptor and the counter electrode be large. Therefore, in order to faithfully reproduce the original image when forming a secondary latent image, the distance between the screen photoreceptor and the image receptor is kept small, and the effective bias electric field does not become non-uniform due to deformation due to bias voltage application. In addition, apart from the formation of the secondary latent image, a corona discharger and a counter electrode are provided via the screen photoreceptor, and the distance between the screen photoreceptor and the counter electrode is increased to increase the secondary latent image formation. The amount of positive charge A that is reduced by attenuation of the primary latent image of the screen photoreceptor or canceled by the modulating corona while the influence on the image of the displacement of the screen photoreceptor due to the application of a bias electric field of the same polarity as that for image formation is reduced. By balancing the amount of positive charge B attached to the screen photoreceptor among the ionized cations generated between the screen photoreceptor and the counter electrode, and keeping the current passing through the screen photoreceptor constant, 2
This prevents attenuation of the primary latent image when forming the next latent image. In other words, for secondary latent image formation, the screen and
The distance from the next latent image forming member is set to 2 mm or less, and the bias electric field between the two is set to 1.2 KV/mm or less, especially
Set to 1.0KV/mm or less. In the corona discharger provided separately from the one for forming the secondary latent image, the distance between the screen photoreceptor and the counter electrode is 2 mm or more and 6 mm or less, preferably 4 mm.
mm to 6 mm, and the bias electric field for both is 1.5 mm.
This is possible by adjusting within the range of ~2.5KV/mm. If the bias electric field is smaller than 1.5 KV/mm, corona ions are not generated or are difficult to generate, and the effect of preventing attenuation cannot be obtained. Moreover, if it is larger than 2.5 KV/mm, spark discharge is likely to occur due to contact with the counter electrode due to deformation of the screen photoreceptor due to the electric field, etc. Furthermore, the bias electric field is 1.5~
Even within the range of 2.5 KV/mm, if the distance between the counter electrode and the screen photoreceptor is smaller than 2 mm, spark discharge is likely to occur, and if it is larger than 6 mm, an effective attenuation prevention effect cannot be obtained. In addition to the cases shown in FIGS. 1 to 5, the charging polarity is reversed depending on the type of screen photoreceptor. FIG. 6 shows an example of an electrophotographic apparatus used in the present invention. The original image is placed on a document table 15, and a light source 16,
The screen photoreceptor 31 is an optical system consisting of a mirror 17, a prism 18, a lens 20, and a mirror 19.
image is exposed. Prior to image exposure, the screen photoreceptor is charged by a corona discharger 21,
Simultaneously with image exposure, it is charged to the opposite polarity by a corona discharger 22. Next, the entire surface is exposed by the light source 23 to form a primary latent image. Next, a secondary latent image is formed on the transfer paper fed from the paper feed section 24 at a portion where the corona discharger 25 and the counter electrode 26 are arranged by modulating the corona ion flow. The secondary latent image formed on the transfer paper is developed and fixed by a developing device 27 and a fixing device 28 to form a copy. After the secondary latent image is formed, the screen photoreceptor is processed by a separately provided corona discharger 29 and counter electrode 30 to prevent the primary latent image from attenuating according to the present invention. <Example> In the production of the screen photoreceptor according to the present invention, the conductive member was made of a nickel alloy with a line width of 30μ formed by electroforming method.
Using a 250 mesh substrate, the openings of the conductive member were filled with a solution containing 30% by weight of room-temperature curing silicone resin as a binder mixed with CdS (cadmium sulfide) powder, which is used in general electrophotographic photoreceptors. A photoconductive layer is formed by spraying the photoconductive layer from one side of the conductive member.
At this time, the photoconductive layer is deposited so that its maximum thickness is approximately 25 μm. After that, it was dried and cured, and then the same resin as the binder was sprayed in the same manner as above to make a surface insulating layer so that the maximum thickness was about 3μ without blocking the openings, and then dried and cured. . The screen photoreceptor produced as described above is charged to +300V by the primary voltage application process. Next, an image is irradiated with an exposure amount of 8 lux·sec, and at about the same time, a negative corona discharge is applied to charge the screen photoreceptor to the opposite polarity, and then the entire surface is irradiated. As a result, a primary electrostatic latent image is obtained on the surface insulating layer of the screen photoreceptor. Electrostatic recording paper, which is a chargeable surface, is placed opposite to the primary latent image surface formed in this manner at a distance of 1 mm. While keeping the potential of this recording paper at +0.75 KV with respect to the conductive member of the screen photoreceptor, negative corona discharge is performed toward the recording paper via the primary latent image on the screen photoreceptor. At this time, the corona wire applies about -4 KV to the conductive member, and the screen photoreceptor is operated at a speed of about 40 cm/sec. As a result, the corona ion flow is modulated by the primary latent image, and a secondary electrostatic latent image is formed on the recording paper. In addition to the electrode for forming the secondary latent image, a counter electrode is placed oppositely at a distance of 4 mm from the surface of the screen photoreceptor. While maintaining the potential of this counter electrode at +6.80 KV with respect to the conductive substrate of the screen photoreceptor, negative corona discharge is applied to the counter electrode via the screen photoreceptor to prevent attenuation of the primary latent image.
At this time, the corona wire is -
Approximately 4KV is applied. A comparison will be made below between a case where only a corona charger for forming a secondary latent image is used and a case where a process for preventing attenuation of a primary latent image is separately performed. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いるスクリーン感光体の1
態様を示す。第2図〜第5図は本発明による電子
写真法の1態様を示し、第2図は1次電圧印加工
程、第3図は画像露光同時2次電圧印加工程、第
4図は全面照射工程および第5図は2次潜像形成
工程を示す。第6図は本発明に用いる電子写真装
置の1態様を示す。 1…スクリーン感光体、2…導電性基体、3…
光導電層、4…絶縁層、5…コロナ放電器、6…
原画像、25および29…コロナ放電器、26お
よび30…対向電極、31…スクリーン感光体。
Figure 1 shows one of the screen photoreceptors used in the present invention.
Indicates the mode. 2 to 5 show one embodiment of the electrophotographic method according to the present invention, in which FIG. 2 shows the primary voltage application step, FIG. 3 shows the image exposure simultaneous secondary voltage application step, and FIG. 4 shows the entire surface irradiation step. and FIG. 5 shows the secondary latent image forming step. FIG. 6 shows one embodiment of an electrophotographic apparatus used in the present invention. 1... Screen photoreceptor, 2... Conductive substrate, 3...
Photoconductive layer, 4... Insulating layer, 5... Corona discharger, 6...
Original image, 25 and 29...corona discharger, 26 and 30...counter electrode, 31...screen photoreceptor.

Claims (1)

【特許請求の範囲】[Claims] 1 スクリーン感光体に形成した1次潜像により
イオン流を変調して受像体上に1次潜像に対応す
る2次潜像を形成する電子写真法において、2次
潜像形成用のコロナ放電器と対向電極とは別にコ
ロナ放電器と対向電極をスクリーン感光体を挾ん
で設け、2次潜像形成用の対向電極とスクリーン
感光体との間隔を2mm以下にし、且つ両者間のバ
イアス電界を1.2KV/mm以下にし、また、2次潜
像形成用とは別に設けた対向電極とスクリーン感
光体との間隔を2〜6mmとし、且つ両者間のバイ
アス電界を1.5〜2.5KV/mmの範囲にすることを
特徴とする電子写真法。
1 In electrophotography, in which a secondary latent image corresponding to the primary latent image is formed on an image receptor by modulating the ion flow using a primary latent image formed on a screen photoreceptor, corona radiation for forming the secondary latent image is used. Separately from the electric device and the counter electrode, a corona discharger and a counter electrode are provided sandwiching the screen photoreceptor, and the distance between the counter electrode for forming a secondary latent image and the screen photoreceptor is 2 mm or less, and the bias electric field between the two is reduced. 1.2 KV/mm or less, and the distance between the counter electrode provided separately from that for secondary latent image formation and the screen photoreceptor is 2 to 6 mm, and the bias electric field between the two is in the range of 1.5 to 2.5 KV/mm. An electrophotographic method characterized by:
JP3226280A 1980-03-13 1980-03-13 Electrophotographic method Granted JPS56128966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3226280A JPS56128966A (en) 1980-03-13 1980-03-13 Electrophotographic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3226280A JPS56128966A (en) 1980-03-13 1980-03-13 Electrophotographic method

Publications (2)

Publication Number Publication Date
JPS56128966A JPS56128966A (en) 1981-10-08
JPS6348340B2 true JPS6348340B2 (en) 1988-09-28

Family

ID=12354091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3226280A Granted JPS56128966A (en) 1980-03-13 1980-03-13 Electrophotographic method

Country Status (1)

Country Link
JP (1) JPS56128966A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489643A (en) * 1978-11-20 1979-07-16 Canon Inc Electrophotographic apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489643A (en) * 1978-11-20 1979-07-16 Canon Inc Electrophotographic apparatus

Also Published As

Publication number Publication date
JPS56128966A (en) 1981-10-08

Similar Documents

Publication Publication Date Title
US3967891A (en) Imaging system for electrostatic reproduction machines
US2817765A (en) Xerographic method
US3456109A (en) Method and means for photoelectrostatic charging
US3976484A (en) Screen electrophotographic process
EP0004380B1 (en) Scorotron charging apparatus
US4021709A (en) Method and device for charging an electrophotographic photosensitive material
US4575216A (en) Electrophotographic copying apparatus including transfer charge corona and shield
US4278343A (en) Inversion developing method for electrophotography and relevant apparatuses
JPS6348340B2 (en)
CA1085906A (en) Apparatus for electrostatically charging an electrophotographic film
US4265531A (en) Electrophotography
KR920002924B1 (en) Electro graph &#39;s record apparatus
JPH06110300A (en) Device for charging photoconductive surface at uniform potential
US4287278A (en) Two superimposed ion current formed images using photoconductive screen gives wider potential range for gradation control in electrophotography
JPS597105B2 (en) Electrostatic latent image formation method
JP2000347480A (en) Ac scorotron
JP2862608B2 (en) Image forming method and apparatus
JPH052988B2 (en)
JPH03170965A (en) Photosensitive body electrostatic charging device
JP2887025B2 (en) Charging method in image forming method
JPS6147967A (en) Photosensitive body and image forming device
JPS6013179B2 (en) Image forming method
US4174215A (en) Electrophotographic screen
JPS6310426B2 (en)
JPS59178462A (en) Latent image forming drum