JPH052988B2 - - Google Patents

Info

Publication number
JPH052988B2
JPH052988B2 JP57040008A JP4000882A JPH052988B2 JP H052988 B2 JPH052988 B2 JP H052988B2 JP 57040008 A JP57040008 A JP 57040008A JP 4000882 A JP4000882 A JP 4000882A JP H052988 B2 JPH052988 B2 JP H052988B2
Authority
JP
Japan
Prior art keywords
corona
electrode
charging
photoreceptor
charging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57040008A
Other languages
Japanese (ja)
Other versions
JPS58156963A (en
Inventor
Hidetoshi Kawabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP4000882A priority Critical patent/JPS58156963A/en
Publication of JPS58156963A publication Critical patent/JPS58156963A/en
Publication of JPH052988B2 publication Critical patent/JPH052988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0266Arrangements for controlling the amount of charge
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0291Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices corona discharge devices, e.g. wires, pointed electrodes, means for cleaning the corona discharge device

Description

【発明の詳細な説明】 技術分野 本発明は表面電位を均一に帯電することのでき
るコロナ帯電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a corona charging device capable of uniformly charging a surface potential.

従来技術 帯電装置として従来より広く利用されているタ
イプとして、直流高電圧源に接続されたコロナ電
極からのイオン放電で帯電する所謂コロトロンが
ある。このコロトロンは構成が簡素で安価である
という利点を有するが、逆に安定した均一帯電性
能に欠ける。つまり、より高品質な画像の再現、
ハードウエア側が要求する作像条件等を満足する
ためにはコロトロンでは対応できなくなつてきて
いる。
PRIOR ART As a type of charging device that has been widely used in the past, there is a so-called corotron, which charges by ion discharge from a corona electrode connected to a DC high voltage source. Although this corotron has the advantage of being simple and inexpensive, it lacks stable and uniform charging performance. In other words, higher quality image reproduction,
Corotrons are no longer able to meet the image forming conditions required by the hardware.

このことより、コロナ電極と感光体間にグリツ
ド電極を設け、コロナ電極に直流高電圧を印加す
るとともにグリツド電極に直流バイアス電圧を印
加して帯電する直流スコロトロンの採用が考えら
れる。この種のスコロトロンにあつては、帯電電
位をグリツド電極に印加する電位に略等しく設定
できるという利点を有する。もつともこの場合、
直流バイアス電圧を印加するためのトランスを必
要とし、それだけ構成的に大型且つ高価となる。
このため特公昭51−17419号公報に示されるよう
に自己バイアス電圧印加手段として機能する定電
圧受動素子をグリツド電極に接続し、該定電圧素
子の定電圧値を一定に定めれば、上記の様にトラ
ンスを要することなく定電圧値と略等しい電位に
帯電できる。しかし帯電電位の均一性という事か
ら見れば不充分で、特にグリツド電極は長期の使
用、つまり長時間コロナ放電に晒されると次第に
その表面に絶縁性の膜を形成し、この絶縁膜にコ
ロナ放電電荷がトラツプされてグリツド電極の実
効バイアス電圧値が変化し、結果的に帯電電位の
変動が生じる。また、グリツド電極にトナーが付
着したときにも極部的に帯電電位が変動する。
For this reason, it is conceivable to adopt a DC scorotron in which a grid electrode is provided between the corona electrode and the photoreceptor, and a DC high voltage is applied to the corona electrode, and a DC bias voltage is applied to the grid electrode for charging. This type of scorotron has the advantage that the charging potential can be set approximately equal to the potential applied to the grid electrode. In this case, however,
A transformer is required to apply a DC bias voltage, which makes the structure larger and more expensive.
Therefore, as shown in Japanese Patent Publication No. 51-17419, if a constant voltage passive element functioning as a self-bias voltage applying means is connected to the grid electrode and the constant voltage value of the constant voltage element is set constant, the above-mentioned result can be achieved. Similarly, it can be charged to a potential approximately equal to the constant voltage value without requiring a transformer. However, it is insufficient from the viewpoint of uniformity of charging potential.Grid electrodes in particular, when used for a long time, that is, exposed to corona discharge for a long time, gradually form an insulating film on the surface, and this insulating film is exposed to corona discharge. Charges are trapped and the effective bias voltage value of the grid electrode changes, resulting in fluctuations in the charging potential. Furthermore, when toner adheres to the grid electrode, the charging potential varies locally.

そこでグリツド電極に直流バイアス電圧を印加
しコロナ電極への電圧源とした交流型スコロトロ
ンの採用が考えられる。しかしこの交流型スコロ
トロンにあつては上述した直流型の欠点はほぼ解
消でき均一帯電性には優れているが、コロナ放電
電荷量が少ないため高速帯電ができない。しかも
コロナ放電電荷量が少ないために自己バイアス電
圧機能が低く、上記特公昭51−17419号のように
定電圧受動素子を用いることができず構成の大型
化は避けられない。
Therefore, it is possible to use an AC scorotron that applies a DC bias voltage to the grid electrode and uses it as a voltage source for the corona electrode. However, this AC type scorotron can almost eliminate the above-mentioned drawbacks of the DC type and has excellent uniform charging properties, but cannot perform high-speed charging due to the small amount of corona discharge charge. Moreover, since the amount of corona discharge charge is small, the self-bias voltage function is low, and it is not possible to use a constant voltage passive element as in the above-mentioned Japanese Patent Publication No. 17419/1985, making it inevitable to increase the size of the structure.

発明の目的 本発明は以上の事実に鑑みて成されたもので、
その目的とするところは、帯電むらがなく常に高
速均一帯電することのできるコロナ帯電装置を提
供することにある。
Purpose of the invention The present invention has been made in view of the above facts.
The purpose is to provide a corona charging device that can always perform high-speed uniform charging without uneven charging.

実施例 第1図は本発明に係るコロナ帯電装置の概略構
成を示し、その基本構成として何れもスコロトロ
ンタイプで、直流型コロナチヤージヤ1と交流型
コロナチヤージヤ2が並設されている。具体的に
3は直流高電圧源4に接続された第1コロナ電
極、5は交流高電圧源6に接続された第2コロナ
電極、7は感光体8に面して放電開口9,10を
有し各コロナ電極3,5を三方から包囲する関係
に設けられた一体ユニツト化された導電性シール
ドでそれ自体は接地されている。11は該放電開
口9,10に対向する関係に各コロナ電極3,5
と感光体8間に設けられたグリツド電極で、それ
にはZNRのような定電圧受動素子12が接続さ
れているとともにその素子12は接地されてい
る。
Embodiment FIG. 1 shows a schematic configuration of a corona charging device according to the present invention, and its basic configuration is of the scorotron type, and a DC type corona charger 1 and an AC type corona charger 2 are arranged side by side. Specifically, 3 is a first corona electrode connected to a DC high voltage source 4, 5 is a second corona electrode connected to an AC high voltage source 6, and 7 has discharge openings 9 and 10 facing the photoreceptor 8. A conductive shield is provided as an integral unit surrounding each corona electrode 3, 5 from three sides, and is itself grounded. Reference numeral 11 denotes each corona electrode 3, 5 in a relationship facing the discharge openings 9, 10.
A constant voltage passive element 12 such as ZNR is connected to the grid electrode provided between the photoreceptor 8 and the photoreceptor 8, and the element 12 is grounded.

以上の構成のコロナ帯電装置にあつては定電圧
受動素子12の定電圧値に略等しいかそれに近い
電位に帯電するのが帯電効率、性能面から最も優
れている。本発明ではまず直流型コロナチヤージ
ヤ1で感光体を所定の表面電位に帯電する。つま
り直流高電圧源4に接続された第1コロナ電極3
からの放電作用により感光体を1次帯電する。こ
の際、その電圧源が直流であり第1コロナ電極3
からの放電電荷量が大であるのでグリツド電極1
1に流れるコロナ電流も一定以上が保証されて希
望する表面電位に帯電される。この一次帯電によ
る表面電位は定電圧受動素子12の定電圧値と略
等しくしてもよいしあるいはそれ以上、以下でも
よく最終的に後述する2次帯電で所望の電位に帯
電されればよい。
In the corona charging device having the above configuration, charging to a potential substantially equal to or close to the constant voltage value of the constant voltage passive element 12 is most excellent in terms of charging efficiency and performance. In the present invention, first, the photoreceptor is charged to a predetermined surface potential using the DC type corona charger 1. That is, the first corona electrode 3 connected to the DC high voltage source 4
The photoreceptor is primarily charged by the discharge action from the photoreceptor. At this time, the voltage source is DC and the first corona electrode 3
Since the amount of discharged charge from the grid electrode 1 is large,
The corona current flowing through 1 is guaranteed to be above a certain level, and the surface potential is charged to a desired level. The surface potential due to this primary charging may be approximately equal to the constant voltage value of the constant voltage passive element 12, or may be greater or less than that, as long as it is finally charged to a desired potential by secondary charging, which will be described later.

この直流型コロナチヤージヤ1による1次帯電
だけでは前述した通り、電位の均一性で不充分で
ある。そこで本発明では1次帯電に引き続き交流
型コロナチヤージヤ2により2次帯電するもの
で、この際、直流コロナチヤージヤ1のコロナ放
電にグリツド電極11に対する自己バイアス機能
を持たせた状態で帯電する。つまり、グリツド電
極8を直流型、交流型コロナチヤージヤ1,2
夫々独立して設けた場合、直流型では問題がない
としても交流型コロナチヤージヤ2では交流高電
圧源6に接続された第2コロナ電極5から正負両
イオンが放電するために電荷量としては少なくグ
リツド電極に対して有効な自己バイアス電圧印加
手段として機能しない。換言すればグリツド電極
を設ける意味がない。しかし本発明においては、
グリツド電極11を直流型コロナチヤージヤ1の
放電開口9にも跨がつて設けられているので交流
型コロナチヤージヤ2による2次帯電では直流型
コロナチヤージヤ1による大なるコロナ放電によ
る直流コロナ電流がグリツド電極11に流れ、そ
れを介して定電圧受動素子12に流れることによ
つて生じる電圧も高い値が保証され、結果的に交
流コロチヤージヤ2の帯電性能が大巾に向上する
とともにそれが本来持つ均一帯電性もそのまま生
かされる。従つて1次帯電では均一性を考慮する
ことなく一定の電位に帯電し、2次帯電で定電圧
受動素子11の定電圧値に略等しいか近い表面電
位に帯電ムラなく均一に帯電する。
As mentioned above, the primary charging by the direct current type corona charger 1 alone is insufficient in terms of potential uniformity. Therefore, in the present invention, after the primary charging, secondary charging is performed by the AC corona charger 2. At this time, the corona discharge of the DC corona charger 1 is charged with a self-biasing function for the grid electrode 11. In other words, the grid electrode 8 is connected to a DC type corona charger and an AC type corona charger 1, 2.
If they are installed independently, there is no problem with the DC type, but with the AC type corona charger 2, both positive and negative ions are discharged from the second corona electrode 5 connected to the AC high voltage source 6, so the amount of charge is small and the grid It does not function as an effective means for applying a self-bias voltage to the electrodes. In other words, there is no point in providing a grid electrode. However, in the present invention,
Since the grid electrode 11 is provided across the discharge opening 9 of the DC type corona charger 1, during secondary charging by the AC type corona charger 2, a DC corona current due to a large corona discharge by the DC type corona charger 1 flows to the grid electrode 11. , the voltage generated by flowing to the constant voltage passive element 12 through it is guaranteed to have a high value, and as a result, the charging performance of the AC corrocharger 2 is greatly improved, and its original uniform charging property remains unchanged. be kept alive. Therefore, in the primary charging, it is charged to a constant potential without considering uniformity, and in the secondary charging, it is uniformly charged to a surface potential that is approximately equal to or close to the constant voltage value of the constant voltage passive element 11 without charging unevenness.

第2図は本発明に係る第2の実施例をを示し、
第1図と同一部材には同一図番を符してその説明
を省略する。この実施例では直流型コロトロン1
3で1次帯電して交流型スコロトロンで2次帯電
するもので、導電性シールド14は第1コロナ電
極3を、誘電体シールド15は第2コロナ電極5
を三方から包囲する関係に設けられている。グリ
ツド電極16は第2コロナ電極5と感光体8間に
放電開口10に対向して設けられ、それ自体、直
流型コロトロンの導電性シールド14に接続され
るとともに定電圧受動素子に接続されている。こ
れに関連して導電性シールド14はその一部が誘
電体シールド15の上部に延設されてグリツド電
極16に接続されている。交流型スコロトロンに
誘電体シールド15を利用するのは、この実施例
の場合、グリツド電極16が放電開口10のみに
対向してあるためで、導電性シールドとすれば第
2コロナ電極5からの交流コロナ電流が流れてし
まい直流型コロトロンのグリツド電極16に対す
る自己バイアス機能が著しく低下してしまうから
である。
FIG. 2 shows a second embodiment according to the present invention,
Components that are the same as those in FIG. 1 are designated by the same reference numbers and their explanations will be omitted. In this example, a DC type corotron 1
The conductive shield 14 connects the first corona electrode 3, and the dielectric shield 15 connects the second corona electrode 5.
It is set up in such a way that it surrounds it from three sides. A grid electrode 16 is provided between the second corona electrode 5 and the photoreceptor 8, facing the discharge aperture 10, and is itself connected to the conductive shield 14 of the DC corotron and to a constant voltage passive element. . In this regard, a portion of the conductive shield 14 extends above the dielectric shield 15 and is connected to the grid electrode 16. The dielectric shield 15 is used in the AC scorotron because, in this embodiment, the grid electrode 16 faces only the discharge opening 10, and if a conductive shield is used, the AC from the second corona electrode 5 is This is because a corona current flows and the self-biasing function of the DC corotron with respect to the grid electrode 16 is significantly degraded.

第2図の構成において、感光体8はまず直流型
コロトロン13により一定の電位に帯電される。
このときの電位は第1図との関連で述べた通り適
当でよく均一性も配慮しなくてもよい。続いて感
光体8は交流型スコロトロン2で2次帯電される
が、このとき直流型コロトロンの第1コロナ電極
3からの直流コロナ放電電流が導電性シールド1
4を介して定電圧受動素子12に流れ、結果的に
高いバイアス電圧がグリツド電極に保証される。
よつて感光体8は2次帯電で定電圧値に略等しい
かそれに近い電位に均一帯電される。
In the configuration shown in FIG. 2, the photoreceptor 8 is first charged to a constant potential by the DC type corotron 13.
The potential at this time may be set appropriately as described in connection with FIG. 1, and uniformity need not be considered. Subsequently, the photoreceptor 8 is secondarily charged by the AC type scorotron 2, but at this time, the DC corona discharge current from the first corona electrode 3 of the DC type corotron is applied to the conductive shield 1.
4 to the constant voltage passive element 12, as a result of which a high bias voltage is guaranteed to the grid electrode.
Therefore, the photoreceptor 8 is uniformly charged by secondary charging to a potential substantially equal to or close to the constant voltage value.

第3図は第2図構成のコロナ帯電装置を用い、
直流型コロトロン13の直流コロナ放電電流を変
化させたときの帯電特性を示すものである。感光
体8として基板上にCdS.nCdCO3光導電性粉末を
樹脂バインダーに分散して厚さ30ミクロン塗布し
たものを用い、移動速度を13cm/sec、またグリ
ツド電極16と感光体間の距離を1mmに設定した
下で実験を行つた。尚、ZNR定電圧受動素子1
2の定電圧値(VZNR)は630V、交流高電圧源6
は6.5KV、直流高電圧源4は5乃至6.5KVの範囲
内で可変とした。
Figure 3 uses the corona charging device configured in Figure 2,
It shows the charging characteristics when the DC corona discharge current of the DC type corotron 13 is changed. As the photoreceptor 8, a substrate with CdS.nCdCO 3 photoconductive powder dispersed in a resin binder and coated to a thickness of 30 microns was used, the moving speed was 13 cm/sec, and the distance between the grid electrode 16 and the photoreceptor was The experiment was conducted under a setting of 1 mm. In addition, ZNR constant voltage passive element 1
The constant voltage value (V ZNR ) of 2 is 630V, AC high voltage source 6
was 6.5KV, and the DC high voltage source 4 was variable within the range of 5 to 6.5KV.

第3図において、交流型スコロトロン2のみで
帯電したときの電位は150Vであつた。これから
交流コロナ放電電流ではグリツド電極に対する自
己バイアス機能が余りないことが分かる。そこで
直流コロナ放電電流が260μAの下で1次帯電し引
き続き2次帯電したところ460Vの表面電位に荷
電された。因に1次帯電による電位は580Vであ
つたので交流型スコロトロンの2次帯電で120V
除電されたこととなる。直流コロナ放電電流を増
大することによつて表面電位は上昇し、330μAで
500V.410μAで530V.530μAで580V.650μAで定電
圧値(VZNR)と等しい630V、740μAで
60V.820μAで700Vに帯電される。従つて帯電電
位を定電圧値と略等しくかそれに近い値にするに
は直流コロナ放電電流を定めればよい。尚、帯電
電位はその他、コロトロンそのものの形状、グリ
ツド電極と感光体間の距離、グリツド電極の形状
等にも依存するのでこれらも合わせて勘案する必
要がある。
In FIG. 3, the potential when only the AC scorotron 2 was charged was 150V. This shows that the AC corona discharge current has little self-biasing function for the grid electrode. Therefore, when a DC corona discharge current of 260 μA was used for primary charging and then secondary charging, the surface potential was 460 V. Incidentally, since the potential due to the primary charging was 580V, the potential due to the secondary charging of the AC scorotron was 120V.
This means that the static electricity has been removed. By increasing the DC corona discharge current, the surface potential increases and reaches 330 μA.
500V.410μA at 530V.530μA at 580V.650μA equals the constant voltage value (V ZNR ) at 630V, 740μA
Charged to 700V at 60V.820μA. Therefore, in order to make the charging potential approximately equal to or close to the constant voltage value, it is sufficient to determine the DC corona discharge current. The charging potential also depends on the shape of the corotron itself, the distance between the grid electrode and the photoreceptor, the shape of the grid electrode, etc., and these must also be taken into consideration.

上記において同一条件の下で直流コロナ電流を
可変して1次、2次帯電し、続いて画像露光、現
像、転写してその作像を調べたところ、何れから
も鮮明な画像が得られた。このことは諸条件を勘
案して決定される表面電位は、本発明のコロナ帯
電装置を利用すれば容易に得られるばかりでなく
多少の変動があつても鮮明な画像の再生を保証す
ることを意味している。
Under the same conditions as above, we investigated the image formation by varying the DC corona current to perform primary and secondary charging, followed by image exposure, development, and transfer, and clear images were obtained in all cases. . This means that the surface potential, which is determined by taking various conditions into account, is not only easily obtained by using the corona charging device of the present invention, but also guarantees the reproduction of clear images even if there are slight fluctuations. It means.

尚、第1図、第2図に示した構成において、グ
リツド電極11,16としては例えば実開昭54−
10240号公報に示されるようなメツシユ状のもの
乃至は第4図に示すように多数本のワイア17を
微細間隔を保つて並列に張設し枠体18で支持構
成したもの等を用いることができる。尚、この場
合ワイヤ18は感光体8移動方向に傾斜して張設
するのが望ましい。また、定電圧受動素子12と
してはZNRに限らず定電圧ダイオード、定電圧
放電管等を用いることができる。また直流型のス
コロトロン1あるいはコロトロン13と交流型ス
コロトロン2は一体構造である必要はなく、別体
でよく要は直流コロナ放電電流がグリツド電極1
1,16に対して自己バイアス機能を果すよう構
成されておればよい。
In the configuration shown in FIGS. 1 and 2, the grid electrodes 11 and 16 are, for example,
It is possible to use a mesh-like wire as shown in Japanese Patent No. 10240, or a wire in which a large number of wires 17 are stretched in parallel with fine intervals as shown in FIG. 4 and supported by a frame 18. can. In this case, it is preferable that the wire 18 be stretched in an inclined manner in the direction in which the photoreceptor 8 moves. Further, the constant voltage passive element 12 is not limited to ZNR, but a constant voltage diode, a constant voltage discharge tube, etc. can be used. In addition, the DC type scorotron 1 or corotron 13 and the AC type scorotron 2 do not need to be an integral structure, and may be separate bodies.
1 and 16, it is sufficient if the structure is configured to perform a self-biasing function.

効 果 以上の説明から明らかなように、本発明に係る
コロナ帯電装置によれば、帯電ムラなく高速均一
帯電することができる。しかも帯電電位の設定が
容易で構成的にも簡素で直流、交流コロナチヤー
ジヤの本来の優れた機能を損うことなくグリツド
電極に対する自己バイアス機能を保証する等多く
の効果を有する。
Effects As is clear from the above explanation, according to the corona charging device according to the present invention, high-speed uniform charging can be performed without uneven charging. In addition, it is easy to set the charging potential, the structure is simple, and it has many effects such as guaranteeing the self-biasing function for the grid electrode without impairing the original excellent functions of the DC and AC corona chargers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係るコロナ帯電装
置の概略構成図、第3図は直流コロナ放電電流と
帯電特性の関係を示すグラフ図、第4図はグリツ
ド電極の構成の一例を示す図である。 1……直流型スコロトロン、2……交流型スコ
ロトロン、3……第1コロナ電極、4……直流高
電圧源、5……第2コロナ電極、6……交流高電
圧源、7,14……導電性シールド、11,16
……グリツド電極、12……定電圧受動素子、1
3……直流型コロトロン。
Figures 1 and 2 are schematic configuration diagrams of a corona charging device according to the present invention, Figure 3 is a graph showing the relationship between DC corona discharge current and charging characteristics, and Figure 4 shows an example of the configuration of a grid electrode. It is a diagram. 1... DC scorotron, 2... AC scorotron, 3... First corona electrode, 4... DC high voltage source, 5... Second corona electrode, 6... AC high voltage source, 7, 14... ...Conductive shield, 11, 16
... Grid electrode, 12 ... Constant voltage passive element, 1
3...DC type corotron.

Claims (1)

【特許請求の範囲】 1 感光体を均一帯電するための帯電装置であつ
て、直流高電圧源に接続された第1コロナ電極を
有する第1コロナチヤージヤと、 交流高電圧源に接続された第2コロナ電極を有
し、上記第1コロナチヤージヤによつて帯電され
た感光体に対して電荷を付与する第2コロナチヤ
ージヤと、 上記第2コロナ電極と感光体との間に設けら
れ、定電圧受動素子を介して接地されたグリツド
電極と、 上記第1コロナ電極の近傍に設けられるととも
に、上記定電圧受動素子の上記グリツド電極側に
電気的に接続されており、上記第1コロナ電極か
らの直流コロナ放電電流を受け、それによつて生
じる電流を上記定電圧素子に流す導電性部材とを
備えたことを特徴とするコロナ帯電装置。 2 上記第1コロナチヤージヤは接地された導電
性シールドを有している特許請求の範囲第1項記
載のコロナ帯電装置。 3 上記導電性部材は、上記第1コロナ電極と感
光体との間にも一体的に延設された上記グリツド
電極である特許請求の範囲第2項記載のコロナ帯
電装置。 4 上記第2コロナチヤージヤは接地された導電
性シールドを有している特許請求の範囲第1項乃
至第3項記載のコロナ帯電装置。 5 上記導電性部材は、上記第1コロナ電極の周
囲に設けられ、上記感光体に対向する部分に開口
を有する導電性シールドである特許請求の範囲第
1項乃至第3項記載のコロナ帯電装置。 6 上記第2コロナチヤージヤは誘電体シールド
を有している特許請求の範囲第5項記載のコロナ
帯電装置。
[Scope of Claims] 1. A charging device for uniformly charging a photoreceptor, comprising: a first corona charger having a first corona electrode connected to a DC high voltage source; and a second corona charger connected to an AC high voltage source. a second corona charger having a corona electrode and applying an electric charge to the photoreceptor charged by the first corona charger; and a constant voltage passive element provided between the second corona electrode and the photoreceptor. a grid electrode grounded through the grid electrode; and a DC corona discharge from the first corona electrode, which is provided near the first corona electrode and electrically connected to the grid electrode side of the constant voltage passive element. A corona charging device comprising: a conductive member that receives a current and causes the resulting current to flow through the constant voltage element. 2. The corona charging device according to claim 1, wherein the first corona charger has a grounded conductive shield. 3. The corona charging device according to claim 2, wherein the conductive member is the grid electrode integrally extended between the first corona electrode and the photoreceptor. 4. The corona charging device according to claims 1 to 3, wherein the second corona charger has a grounded conductive shield. 5. The corona charging device according to claims 1 to 3, wherein the conductive member is a conductive shield provided around the first corona electrode and having an opening in a portion facing the photoreceptor. . 6. The corona charging device according to claim 5, wherein the second corona charger has a dielectric shield.
JP4000882A 1982-03-12 1982-03-12 Corona electrifying device Granted JPS58156963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4000882A JPS58156963A (en) 1982-03-12 1982-03-12 Corona electrifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4000882A JPS58156963A (en) 1982-03-12 1982-03-12 Corona electrifying device

Publications (2)

Publication Number Publication Date
JPS58156963A JPS58156963A (en) 1983-09-19
JPH052988B2 true JPH052988B2 (en) 1993-01-13

Family

ID=12568873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4000882A Granted JPS58156963A (en) 1982-03-12 1982-03-12 Corona electrifying device

Country Status (1)

Country Link
JP (1) JPS58156963A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241426A (en) * 1992-12-24 1993-09-21 Canon Inc Corona discharge device
US5991579A (en) * 1998-11-23 1999-11-23 Xerox Corporation High slope DC/AC combination charging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430833A (en) * 1977-08-12 1979-03-07 Canon Inc Electrophotographic method
JPS5662266A (en) * 1979-10-26 1981-05-28 Fuji Xerox Co Ltd Electric charging device of electrophotography

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430833A (en) * 1977-08-12 1979-03-07 Canon Inc Electrophotographic method
JPS5662266A (en) * 1979-10-26 1981-05-28 Fuji Xerox Co Ltd Electric charging device of electrophotography

Also Published As

Publication number Publication date
JPS58156963A (en) 1983-09-19

Similar Documents

Publication Publication Date Title
US5581331A (en) Color image forming apparatus
US4656356A (en) Device for charging electrophotographic apparatus
JPH052988B2 (en)
US5245502A (en) Semi-conductor corona generator for production of ions to charge a substrate
JPH0452467B2 (en)
US4041312A (en) Apparatus for electrostatically charging an electrophotographic film
US4194466A (en) Electrophotographic apparatus for developing latent electrostatic charge images
US4478870A (en) Corona image transfer method
JPS6161389B2 (en)
US3873895A (en) Technique for charging dielectric surfaces to high voltage
JPH05297683A (en) Electrostatic charge device
US4287278A (en) Two superimposed ion current formed images using photoconductive screen gives wider potential range for gradation control in electrophotography
JPS60179759A (en) Device for charging photosensitive body of electronic copying machine
JPH0562740B2 (en)
JPS6123548B2 (en)
JPS6145827B2 (en)
JPS63121064A (en) Destaticizer/electrifier
JPH0214702B2 (en)
JPS6113251A (en) Electrostatic image recording body
JP2002040754A (en) Image forming device
JPS6289074A (en) Electrostatic recording device
JPH05273839A (en) Electrostatic charging device and its manufacture
JPS60229079A (en) Transfer device
JPH01217474A (en) Electrostatic discharging device
JPH07186437A (en) Ion printer