JPS58156963A - Corona electrifying device - Google Patents

Corona electrifying device

Info

Publication number
JPS58156963A
JPS58156963A JP4000882A JP4000882A JPS58156963A JP S58156963 A JPS58156963 A JP S58156963A JP 4000882 A JP4000882 A JP 4000882A JP 4000882 A JP4000882 A JP 4000882A JP S58156963 A JPS58156963 A JP S58156963A
Authority
JP
Japan
Prior art keywords
corona
electrode
charger
charging
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4000882A
Other languages
Japanese (ja)
Other versions
JPH052988B2 (en
Inventor
Hidetoshi Kawabata
英俊 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP4000882A priority Critical patent/JPS58156963A/en
Publication of JPS58156963A publication Critical patent/JPS58156963A/en
Publication of JPH052988B2 publication Critical patent/JPH052988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0266Arrangements for controlling the amount of charge
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0291Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices corona discharge devices, e.g. wires, pointed electrodes, means for cleaning the corona discharge device

Abstract

PURPOSE:To eliminate uneven electrification and to enable always uniform electrification at a high speed by electrifying a photoreceptor secondarily with an AC type corona charger in succession to primary electrification. CONSTITUTION:A photoreceptor 8 is electrified primarily by the electric discharging effect from a corona electrode 3 connected to a DC high voltage source 4, and is, in succession, electrified secondarily by an AC type corona charger 2. The photoreceptor is elecrified in this stage while a self-biasing function for a grid electrode 11 is provided to the corona discharge of a DC corona charger 1. The electrode 11 is provided across the discharge opening 9 of the charger 1 as well, and the DC corona current by the large corona discharge by the charger 1 flows through the electrode 11. As a result, the electrifying performace of the charger 2 is improved considerably, and the uniform electrification is made possible.

Description

【発明の詳細な説明】 技術分野 本発明は表面電位を均一に帯電することのできるコロナ
帯電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a corona charging device capable of uniformly charging a surface potential.

従来技術 帯電装置として従来より広く利用されているタイプとし
て、直流高電圧源に接続されたコロナ電極からのイオン
放電で帯電する所謂コロトロンがある。このコロトロン
は構成が簡素で安価であるという利点を有するが、逆に
安定した均一帯電性能に欠ける。つまり、より高品質な
画像の再現、ハードウェア側が要求する作像条件等を満
足するためにはコロトロンでは対応できなくなってきて
いる。
BACKGROUND OF THE INVENTION A type of charging device that has been widely used in the past is a so-called corotron, which charges by ion discharge from a corona electrode connected to a DC high voltage source. Although this corotron has the advantage of being simple and inexpensive, it lacks stable and uniform charging performance. In other words, the corotron is no longer able to reproduce higher-quality images and satisfy the imaging conditions required by the hardware.

このことより、コロナ電極と感光体間にグリ・ノド電極
を設け、コロナ電極に直流高電圧を印加するとともにグ
リッド電極に直流ノくイアスミ圧を印加しテ帯電する直
流スコロトロンの採用が考えらレル。この種のスコロト
ロンにあっては、帯電電位をグリッド電極に印加する電
位に略等しく設定できるという利点を有する。もつとも
この場合、直流バイアス電圧を印加するためのトランス
を必要とし、それだけ構成的に大型且つ高価となる。
From this, it is possible to adopt a DC scorotron that charges the grid electrode by providing a grid electrode between the corona electrode and the photoreceptor, applying a DC high voltage to the corona electrode, and applying DC pressure to the grid electrode. . This type of scorotron has the advantage that the charging potential can be set approximately equal to the potential applied to the grid electrode. Of course, in this case, a transformer for applying a DC bias voltage is required, which makes the structure larger and more expensive.

このため特公昭51−17419号公報に示されるよう
に自己バイアス電圧印加手段として機能する定電圧受動
素子をグリッド電極に接続し、該定電圧素子の定電圧値
を一定に定めれば、上記の様にトランスを要することな
く定電圧値と略等し+1)電位に帯電できる。しかし帯
電電位の均一性という事から見れば不充分で、特にグリ
・ノド電極は長期の使用、つまり長時間コロナ放電に晒
されると次第にその表面に絶縁性の膜を形成し、この絶
縁膜にコロナ放電電荷がトラップされてグリ・ノド電極
の実効バイアス電圧値が変化し、結果的に帯電電位の変
動が生じる。また、グリッド電極にトナーが付着したと
きにも極部的に帯電電位が変動する。
Therefore, as shown in Japanese Patent Publication No. 51-17419, if a constant voltage passive element functioning as a self-bias voltage applying means is connected to the grid electrode and the constant voltage value of the constant voltage element is set constant, the above-mentioned result can be achieved. Similarly, it can be charged to a potential approximately equal to a constant voltage value of +1) without requiring a transformer. However, it is insufficient in terms of uniformity of charging potential.Grid-node electrodes, in particular, gradually form an insulating film on their surface when used for a long time, that is, exposed to corona discharge for a long time. The corona discharge charges are trapped and the effective bias voltage value of the grid electrode changes, resulting in fluctuations in the charging potential. Furthermore, when toner adheres to the grid electrode, the charging potential varies locally.

そこでグリッド電極に直流バイアス電圧を印加しコロナ
電極への電圧源とした交流型スコロトロンの採用が考え
られる。しかしこの交流型スコロトロンにあっては上述
した直流型の欠点はほぼ解消でき均一帯電性には優れて
いるが、コロナ放電電荷量が少ないため高速帯電ができ
ない。しかもコロナ放電電荷量が少ないために自己バイ
アス電圧機能が低く、上記特公昭51−17419号の
ように定電圧受動素子を用いることができず構成の大型
化は避けられない。
Therefore, it is possible to use an AC scorotron that applies a DC bias voltage to the grid electrode and uses it as a voltage source for the corona electrode. However, although this AC type scorotron can almost eliminate the drawbacks of the DC type described above and has excellent uniform charging properties, it cannot perform high-speed charging due to the small amount of corona discharge charge. Moreover, since the amount of corona discharge charge is small, the self-bias voltage function is low, and a constant voltage passive element cannot be used as in the above-mentioned Japanese Patent Publication No. 51-17419, making it inevitable to increase the size of the structure.

発明の目的 本発明は以上の事実に鑑みて成されたもので、その目的
とするところは、帯電むらがな(常に高速均一帯電する
ことのできるコロナ帯電装置を提供することにある。
OBJECTS OF THE INVENTION The present invention has been made in view of the above facts, and its purpose is to provide a corona charging device that can perform uniform charging at high speed and at all times.

実施例 第1図は本発明に係るコロナ帯電装置の概略構成を示し
、その基本構成として何れもスコロトロンタイプで、直
流型コロナチャージャ(1)と交流型コロナチャージャ
(2)が並設されている。具体的に(3)は直流高電圧
源(4)に接続された第1コロナ電極、(5)は交流高
電圧源(6)に接続された第2コロナ電極、(7)は感
光体(8)に面して放電開口(9)、(10)を有り各
コロナ電極(31、(5)を三方から包囲する関係に設
けられた一体ユニット化された導電性シールドでそれ自
体は接地されている。(11)は該放電開口(91、(
10)に対向する関係に各コロナ電極(3)。
Embodiment FIG. 1 shows a schematic configuration of a corona charging device according to the present invention, and its basic configuration is of the scorotron type, with a DC type corona charger (1) and an AC type corona charger (2) installed in parallel. There is. Specifically, (3) is the first corona electrode connected to the DC high voltage source (4), (5) is the second corona electrode connected to the AC high voltage source (6), and (7) is the photoreceptor ( It is an integrated conductive shield that has discharge openings (9) and (10) facing the corona electrodes (8) and surrounds each corona electrode (31 and (5) from three sides), and is itself grounded. (11) is the discharge opening (91, (
10) each corona electrode (3) in opposing relation.

(5)と感光体(8)間に設けられたグリッド電極で、
それにはZNRのような定電圧受動素子(12)が接続
されているとともにその素子(12)は接地されている
A grid electrode provided between (5) and the photoreceptor (8),
A constant voltage passive element (12) such as a ZNR is connected to it, and the element (12) is grounded.

以上の構成のコロナ帯電装置にあっては定電圧受動素子
(12)の定電圧値に略等」、いかそれに近い電位に帯
電するのが帯電効率、性能面から最も優れている。本発
明ではまず直流型コロナチャージャ(1)で感光体を所
定の表面電位に帯電する。つまり直流高電圧源(4)に
接続された第1コロナ電極(3)からの放電作用により
感光体を1次帯電する。
In the corona charging device having the above configuration, charging to a potential that is approximately equal to or close to the constant voltage value of the constant voltage passive element (12) is most excellent in terms of charging efficiency and performance. In the present invention, first, a photoreceptor is charged to a predetermined surface potential using a DC type corona charger (1). That is, the photoreceptor is primarily charged by the discharge action from the first corona electrode (3) connected to the DC high voltage source (4).

この際、その電圧源が直流であり第1コロナ電極(3)
からの放電電荷量が大であるのでグリッド電極(11)
に流れるコロナ電流も一定以上が保証されて希望する表
面電位に帯電される。この−次帯電による表面電位は定
電圧受動素子(12)の定電圧値と略等しくてもよいし
あるいはそれ以上、以下でもよく最終的に後述する2次
帯電で所望の電位に帯電されればよい。
At this time, the voltage source is DC and the first corona electrode (3)
Since the amount of discharged charge from the grid electrode (11) is large,
The corona current flowing through the surface is also guaranteed to be above a certain level, and the surface potential is charged to a desired level. The surface potential due to this second-order charging may be approximately equal to the constant voltage value of the constant-voltage passive element (12), or may be greater than or less than that, as long as it is finally charged to a desired potential by secondary charging, which will be described later. good.

この直流型コロナチャージャ(1)による1次帯電だけ
では前述した通り、電位の均一性で不充分である。そこ
で本発明では1次帯電に引き続き交流型コロナチャージ
ャ(2)により2次帯電するもので、この際、直流コロ
ナチャージャ(1)のコロナ放電にグリッド電極(11
)に対する自己バイアス機能を持たせた状態で帯電する
。つまり、グリッド電極(8)を直流型、交流型コロナ
チャージャ(11、(2)夫々独立して設けた場合、直
流型では問題がないとしても交流型コロナチャージャ(
2)では交流高電圧源(6)に接続された第2コロナ電
極(5)から正負両イオンが放電するために電荷量とし
ては少なくグリツド電極に対し7て有効な自己バイアス
電圧印加手段として機能しない。換言すればグリッド電
極を設ける意味がない。しかし本発明においては、グリ
ッド電極(11)を直流型コロナチャージャ(1)の放
電開口(9)にも跨がって設けられているので交流型コ
ロナチャージャ(2)による2次帯電では直流型コロナ
チャージャ(1)による大なるコロナ放電による直流コ
ロナ電流がグリッド電極(11)に流れ、それを介して
定電圧受動素子(12)に流れることによって生じる電
圧も高い値が保証され、結果的に交流コロチャージャ(
2)の帯電性能が大巾に向上するとともにそれが本来持
つ均一帯電性もそのまま生かされる。従って1次帯電で
は均一性を考慮することなく一定の電位に帯電し、2次
帯電で定電圧受動素子(11)の定電圧値に略等しいか
近い表面電位に帯電ムラなく均一に帯電するっ宵   
 第2図は本発明に係る第2の実施例を示し、第1図と
同一部材には同一図番を符してその説明を省略する。こ
の実施例では直流型コロトロン(13)で1次帯電して
交流型スコロトロンで2次帯電するもので、導電性シー
ルド(14)は第1コロナ電極(3)を、誘電体シール
ド(15)は第2コロナ電極(5)を三方から包囲する
関係に設けられている。グリッド電極(16)は第2コ
ロナ電極(5)と感光体(8)間に放電開口(10)に
対向して設けられ、それ自体、直流型コロトロンの導電
性シールド(14)に接続されるとともに定電圧受動素
子に接続されている。これに関連して導電性シールド(
14)はその一部が誘電体シールド(15)の上部に延
設されてグリッド電極(16)に接続されている。交流
型スコロトロンに誘電体シールド(15)を利用する。
As described above, the primary charging by the DC type corona charger (1) alone is insufficient in terms of potential uniformity. Therefore, in the present invention, secondary charging is performed by an AC corona charger (2) following primary charging, and at this time, the grid electrode (11
) is charged with a self-bias function. In other words, if the grid electrode (8) is provided independently for the DC type and AC type corona chargers (11, (2)), even if there is no problem with the DC type, the AC type corona charger (
In 2), since both positive and negative ions are discharged from the second corona electrode (5) connected to the AC high voltage source (6), the amount of charge is small and functions as an effective means for applying a self-bias voltage to the grid electrode. do not. In other words, there is no point in providing a grid electrode. However, in the present invention, since the grid electrode (11) is also provided across the discharge opening (9) of the DC type corona charger (1), secondary charging by the AC type corona charger (2) is performed using the DC type. The DC corona current caused by the large corona discharge from the corona charger (1) flows to the grid electrode (11) and then to the constant voltage passive element (12), which ensures that the voltage generated is also high, and as a result, AC corocharger (
The charging performance of 2) is greatly improved, and the inherent uniform charging property can be utilized as is. Therefore, in the primary charging, a constant potential is charged without considering uniformity, and in the secondary charging, the surface potential is uniformly charged to a surface potential that is approximately equal to or close to the constant voltage value of the constant voltage passive element (11). evening
FIG. 2 shows a second embodiment of the present invention, and the same parts as those in FIG. 1 are designated by the same reference numbers and their explanations will be omitted. In this embodiment, a DC type corotron (13) is used for primary charging, and an AC type scorotron is used for secondary charging.The conductive shield (14) connects the first corona electrode (3), and the dielectric shield (15) It is provided so as to surround the second corona electrode (5) from three sides. A grid electrode (16) is provided between the second corona electrode (5) and the photoreceptor (8) opposite the discharge aperture (10) and is itself connected to the conductive shield (14) of the DC corotron. It is also connected to a constant voltage passive element. In this connection a conductive shield (
14), a part of which extends above the dielectric shield (15) and is connected to the grid electrode (16). A dielectric shield (15) is used in an AC scorotron.

のは、この実施例の場合、グリッド電極(16)が放電
開口(10)のみに対向しであるためで、導電性シール
ドとすれば第2コロナ電極(5)からの交流コロナ電流
が流れてしまい直流型コロトロンのグリッド電極(16
)に対する自己バイアス機能が著【7く低下してしまう
、からである。
This is because, in this embodiment, the grid electrode (16) faces only the discharge opening (10), and if a conductive shield is used, the AC corona current from the second corona electrode (5) will not flow. The grid electrode of the DC corotron (16
This is because the self-bias function for ``) is significantly reduced.

第2図の構成!こおいて、感光体(8)はまず直流型コ
ロトロン(13)により一定の電位に帯電される。
Configuration of Figure 2! Here, the photoreceptor (8) is first charged to a constant potential by a DC corotron (13).

このときの電位は第1図との関連で述べた通り適当でよ
く均一性も配慮しなく′てもよい。続いて感光体(8)
は交流型スコロトロン(2)で2次帯電されるが、この
とき直流型コロトロンの第1コロナ電極(3)からの直
流コロナ放電電流が導電性シールド(14)を介して定
電圧受動素子(12)に流れ、結果的に高いバイアス電
圧がグリッド電極に保証される。よって感光体(8)4
;! 2次帯電で定電圧値に略等しいかそれに近い電位
に均一帯電される。
The potential at this time may be set as appropriate as described in connection with FIG. 1, and uniformity may not be considered. Next is the photoreceptor (8)
is secondarily charged in the AC scorotron (2), and at this time, the DC corona discharge current from the first corona electrode (3) of the DC corotron passes through the conductive shield (14) to the constant voltage passive element (12). ), resulting in a high bias voltage guaranteed to the grid electrode. Therefore, photoreceptor (8) 4
;! By secondary charging, it is uniformly charged to a potential that is approximately equal to or close to the constant voltage value.

第3図は第2図構成のコロナ帯電装置を用い、直流型コ
ロトロン(13)の直流コロナ放電電流を変化させたと
きの帯電特性を示すものである。感光体(8)として基
板上にC48、nCdCO3光導電性粉末を樹脂バイン
ダーに分散して厚さ30ミクロン塗布したものを用い、
移動速度を13 cm/sec 、またグリッド電極(
16)と感光体間の距離を1−に設定【、たドで実験を
行った。尚、ZNR定電圧受動素子(12)の定電圧値
(V zNt)は630V、交流高電圧源(6)it 
6.5 KV 、直流11111[、源(4) it 
5 乃至6.5 KVの範囲内で可変とした。
FIG. 3 shows charging characteristics when the DC corona discharge current of the DC type corotron (13) is varied using the corona charging device configured as shown in FIG. As a photoreceptor (8), a C48, nCdCO3 photoconductive powder dispersed in a resin binder and coated to a thickness of 30 microns was used on a substrate.
The moving speed was 13 cm/sec, and the grid electrode (
16) and the distance between the photoreceptors was set to 1-. In addition, the constant voltage value (V zNt) of the ZNR constant voltage passive element (12) is 630V, and the AC high voltage source (6) it
6.5 KV, DC 11111[, Source (4) it
It was variable within the range of 5 to 6.5 KV.

第3図において、交流型スコロトロン(2)のみで帯電
したときの電位は150vであった。これから交流コロ
ナ放電電流ではグリッド電極に対する自己バイアス機能
が余りないことが分かる。そこで直流コロナ放電電流が
260バの下で1次帯電し引き続き2次帯電したところ
460vの表面電位に荷電された。因に1次帯電による
電位は580■であったので交流型スコロトロンの2次
帯電で120v除電されたこととなる。直流コロナ放電
電流を増大することによって表面電位は上昇し、330
ハで500 V 、 410/JA テ530 V 、
 530/jAテ580 V 、 650pkテ定電圧
値(VIHB)!:等り、イ630 V、 740pA
テロ70 V 、 820.cA テア00 V ニ帯
電すレル。従ッテ帯電電位を定電圧値と略等しくかそれ
に近い値にするには直流コロナ放電電流を定めればよい
。尚、帯電電位はその他、コロトロンそのものの形状、
グリッド電極と感光体間の距離、グリッド電極の形状等
にも依存するのでこれらも合わせて勘案する必要がある
In FIG. 3, the potential when charged only by the AC scorotron (2) was 150V. This shows that the AC corona discharge current has little self-biasing function for the grid electrode. Thereupon, a DC corona discharge current of 260 volts was used for primary charging, followed by secondary charging, resulting in a surface potential of 460 volts. Incidentally, since the potential due to the primary charging was 580V, 120V of static electricity was removed by the secondary charging of the AC scorotron. By increasing the DC corona discharge current, the surface potential increases and 330
500 V, 410/JA 530 V,
530/jA 580 V, 650pk constant voltage value (VIHB)! :Equal, i630V, 740pA
Terrorism 70 V, 820. cA Tare 00 V Ni-charged. The DC corona discharge current may be determined to make the charging potential approximately equal to or close to the constant voltage value. In addition, the charging potential is determined by the shape of the corotron itself,
Since it also depends on the distance between the grid electrode and the photoreceptor, the shape of the grid electrode, etc., these must also be taken into consideration.

上記において同一条件の下で直流コロナ電流を可変して
1次、2次帯電し、続いて画像露光、現像、転写してそ
の作像を調べたところ、何れからも鮮明な画像が得られ
た。このことは諸条件を勘案【7て決定される表面電位
は、本発明のコロナ帯電装置を利用すれば容易に得られ
るばかりでなく多少の変動があっても鮮明な画像の再生
を保証することを意味している。
Under the same conditions as above, we investigated the image formation by varying the DC corona current to perform primary and secondary charging, followed by image exposure, development, and transfer, and clear images were obtained in all cases. . This is because the surface potential determined by taking various conditions into account [7] is not only easily obtained by using the corona charging device of the present invention, but also guarantees the reproduction of a clear image even if there is some variation. It means.

尚、第1図、第2図に示した構成において、グリッド電
極(11)、(16)としては例えば実開昭54−10
240号公報に示されるようなメツシュ状のもの乃至は
第4図に示すように多数本のワイア(17)を微細間隔
を保って並列に張設し枠体(18)で支持構成したもの
等を用いることができる。尚、この場合ワイヤ(18)
は感光体(8)移動方向に傾斜【7て張設するのが望ま
しい。また、定電圧受動素子(12)としてはZNRに
限らず定電圧ダイオード、定電圧放電管等を用いること
ができる。また直流型のスコロトロン(1)あるいはコ
ロトロ:/(13)と交流型スコロトロン(2)は一体
構造である必要はなく、別体でよく要は直流コロナ放電
電流がグリッド電極(11)、(16)に対して自己バ
イアス機能を果すよう構成されておればよい。
In the configurations shown in FIGS. 1 and 2, the grid electrodes (11) and (16) are, for example,
A mesh-like structure as shown in Publication No. 240, or a structure in which a large number of wires (17) are stretched in parallel with minute intervals and supported by a frame (18) as shown in Fig. 4. can be used. In this case, the wire (18)
It is preferable that the photoreceptor (8) be installed at an angle [7] in the moving direction. Further, the constant voltage passive element (12) is not limited to ZNR, but a constant voltage diode, a constant voltage discharge tube, etc. can be used. Also, the DC type scorotron (1) or corotroron (13) and the AC type scorotron (2) do not need to be an integral structure, and may be separate bodies. ) may be configured to perform a self-bias function.

効  果 以上の説明から明らかなように、本発明に係るコロナ帯
電装置によれば、帯電ムラなく高速均一帯電することが
できる。しかも帯電電位の設定が容易で構成的にも簡素
で直流、交流コロナチャージャの本来の優れた機能を損
うことなくグリッド電極に対する自己バイアス機能を保
証する等多くの効果を有する。
Effects As is clear from the above explanation, the corona charging device according to the present invention can perform high-speed uniform charging without uneven charging. In addition, it is easy to set the charging potential, the structure is simple, and it has many effects such as guaranteeing the self-bias function for the grid electrode without impairing the original excellent functions of the DC and AC corona chargers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係るコロナ帯電装置の概略
構成図、第3図は直流コロナ放電電流と帯電特性の関係
を示すグラフ図、第4図はグリッド電極の構成の一例を
示す図である。 (1)・・・直流型スコロトロン、(21・・・交流型
スコロトロン、 (3)・・・第1コロナ電極、 (4
)・・・直流高電圧源、 (5)・・・第2コロナ電極
、 (6)・・・交流高電圧源、 け)、(14)・・
・導電性シールド、  (11) 、(16)・・・グ
リッド電極、  (12)・・・定電圧受動素子、(1
3)・・・直流型コロトロン。 第1図 WJZ図 第3図 五jtコロナ放電電渣OAA)
Figures 1 and 2 are schematic configuration diagrams of a corona charging device according to the present invention, Figure 3 is a graph showing the relationship between DC corona discharge current and charging characteristics, and Figure 4 shows an example of the configuration of a grid electrode. It is a diagram. (1)...DC scorotron, (21...AC scorotron, (3)...first corona electrode, (4
)...DC high voltage source, (5)...Second corona electrode, (6)...AC high voltage source, (14)...
・Conductive shield, (11), (16)... Grid electrode, (12)... Constant voltage passive element, (1
3)...DC type corotron. Figure 1 WJZ Figure 3 Figure 5 Corona discharge voltage OAA)

Claims (4)

【特許請求の範囲】[Claims] (1)  直流高電圧源に接続された第1コロナ電極と
、交流高電圧源に接続された第2コロナ電極と、各1i
J1、第2コロナ電極のための第1及び第2シールドと
、少なくとも該第2コロナ電極と感光体間に設けられた
グリッド電極と、該グリッド電極に接続されるとともに
該第1コロナ電極からの直流コロナ放電電流を受けそれ
によって生じる電圧を該グリッド電極に印加する電圧と
した定電圧受動素子とを備えたことを特徴とするコロナ
帯電装置。
(1) A first corona electrode connected to a DC high voltage source, a second corona electrode connected to an AC high voltage source, and 1i each
J1, first and second shields for a second corona electrode, a grid electrode provided between at least the second corona electrode and the photoreceptor, and a shield connected to the grid electrode and from the first corona electrode; A corona charging device comprising: a constant voltage passive element that receives a DC corona discharge current and uses the resulting voltage as a voltage to be applied to the grid electrode.
(2)−前記第1シールドは導電性で構成されるともに
接地され、前記グリッド電極はj81コロナ電極と感光
体間にも一体的に延設されていることを特徴とする特許
請求の範囲第1項記載のコロナ帯電装置。
(2)-The first shield is electrically conductive and grounded, and the grid electrode is also integrally extended between the J81 corona electrode and the photoreceptor. Corona charging device according to item 1.
(3)  前記@1シールドは導電性で構成されるとも
に前記定電圧受動素子に接続されていることを特徴とす
る特許請求の範囲s1項記載のコロナ帯電装置。
(3) The corona charging device according to claim s1, wherein the @1 shield is made of conductive material and is connected to the constant voltage passive element.
(4)前記第2シールドは誘電体で構成されていること
を特徴とする特許請求の範囲第3項記載のコロナ帯電装
置。
(4) The corona charging device according to claim 3, wherein the second shield is made of a dielectric material.
JP4000882A 1982-03-12 1982-03-12 Corona electrifying device Granted JPS58156963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4000882A JPS58156963A (en) 1982-03-12 1982-03-12 Corona electrifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4000882A JPS58156963A (en) 1982-03-12 1982-03-12 Corona electrifying device

Publications (2)

Publication Number Publication Date
JPS58156963A true JPS58156963A (en) 1983-09-19
JPH052988B2 JPH052988B2 (en) 1993-01-13

Family

ID=12568873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4000882A Granted JPS58156963A (en) 1982-03-12 1982-03-12 Corona electrifying device

Country Status (1)

Country Link
JP (1) JPS58156963A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241426A (en) * 1992-12-24 1993-09-21 Canon Inc Corona discharge device
US5991579A (en) * 1998-11-23 1999-11-23 Xerox Corporation High slope DC/AC combination charging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430833A (en) * 1977-08-12 1979-03-07 Canon Inc Electrophotographic method
JPS5662266A (en) * 1979-10-26 1981-05-28 Fuji Xerox Co Ltd Electric charging device of electrophotography

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430833A (en) * 1977-08-12 1979-03-07 Canon Inc Electrophotographic method
JPS5662266A (en) * 1979-10-26 1981-05-28 Fuji Xerox Co Ltd Electric charging device of electrophotography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05241426A (en) * 1992-12-24 1993-09-21 Canon Inc Corona discharge device
US5991579A (en) * 1998-11-23 1999-11-23 Xerox Corporation High slope DC/AC combination charging device

Also Published As

Publication number Publication date
JPH052988B2 (en) 1993-01-13

Similar Documents

Publication Publication Date Title
US2879395A (en) Charging device
JPS60158582A (en) Corona charger
US4112299A (en) Corona device with segmented shield
JPH01232369A (en) Electrostatic charger for electrophotography
US3783283A (en) Corona charging device with semiconductive shield
JPS58156963A (en) Corona electrifying device
US3875482A (en) Charging control device
JPH0452467B2 (en)
US4478870A (en) Corona image transfer method
US3873895A (en) Technique for charging dielectric surfaces to high voltage
CA1085906A (en) Apparatus for electrostatically charging an electrophotographic film
JPS61223758A (en) Corona discharge generator
JP2538700Y2 (en) Corona discharge device for image forming apparatus
JPS6348340B2 (en)
JPS6161389B2 (en)
JPH0214702B2 (en)
JPS5936262B2 (en) Static eliminator
SU442617A1 (en) Coronae electrician
JPS58196573A (en) Destaticizing device for electrophotographic receptor
JPH0341827B2 (en)
JPH0340390B2 (en)
JPH05273839A (en) Electrostatic charging device and its manufacture
JPH05204226A (en) Electrostatic charger
JPS5997161A (en) Electrophotographic method
JPS6122298B2 (en)