JPS58139161A - Electrifier - Google Patents

Electrifier

Info

Publication number
JPS58139161A
JPS58139161A JP2152782A JP2152782A JPS58139161A JP S58139161 A JPS58139161 A JP S58139161A JP 2152782 A JP2152782 A JP 2152782A JP 2152782 A JP2152782 A JP 2152782A JP S58139161 A JPS58139161 A JP S58139161A
Authority
JP
Japan
Prior art keywords
voltage
grid electrode
constant voltage
electrode
passive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2152782A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kawabata
英俊 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2152782A priority Critical patent/JPS58139161A/en
Publication of JPS58139161A publication Critical patent/JPS58139161A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0291Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices corona discharge devices, e.g. wires, pointed electrodes, means for cleaning the corona discharge device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To charge a photoreceptor to a stable potential for a long time, by providing a grid electrode between a corona electrode and the photoreceptor and connecting a variable resistor and a constant voltage passive element in series to the grid electrode and grounding the constant voltage passive element. CONSTITUTION:A corona electrode 4 connected to a DC high voltage source 3 is provided in a conductive shield 1 provided for a photoreceptor 2. A grid electrode 5 is provided between the corona electrode 4 and the photoreceptor 2, and a variable resistor 6 and a constant voltage passive element 7 are connected directly to the electrode 5, and the element 7 is grounded. When the bias voltage of the grid electrode 5, the constant voltage value of th passive element 7, the voltage generated in the resistor 6, and th voltage accumulated on the surface of the grid electrode are denoted as Vg, Vt, Vr, and Vm respectively, expression is true. The voltage Vm rises in accordance with the number of times of corona discharge, and the resistance value of the variable resistor 6 is adjusted in accordance with this rise to obtain the always constant bias Vg, thereby obtaining a stable image for a long time.

Description

【発明の詳細な説明】 技術分野 本発明はスコロトロンタイプの帯電装置に関する0 亘】」1阪 帯電装置として従来より広く利用されているタイプとし
て、直流高電圧源に接続されたコロナ電極からのイオン
放電で帯電する所謂コロトロンがある。このコロトロン
は構成が簡素で安価であるという利点を有するが、逆に
安定した均一帯電性能に欠ける。つまり、より高品質な
画像の再現、ハードウェア側が要求する作像条件等を満
足するためにはコロトロンでは対応できなくなってきて
いる。
[Detailed Description of the Invention] Technical Field The present invention relates to a scorotron type charging device, which is a type that has been widely used in the past as a scorotron type charging device. There is a so-called corotron that is charged by ion discharge. Although this corotron has the advantage of being simple and inexpensive, it lacks stable and uniform charging performance. In other words, the corotron is no longer able to reproduce higher-quality images and satisfy the imaging conditions required by the hardware.

2このことより、コロナ電極と感光体間にグリッド電極
を設け、コロナ電極に高電圧を印加するとともにグリッ
ド電極に直流バイアス電圧を印加し。
2 For this reason, a grid electrode is provided between the corona electrode and the photoreceptor, and a high voltage is applied to the corona electrode, and a DC bias voltage is applied to the grid electrode.

て帯電するスコロトロンの採用が考えられる。この種の
スコロトロンにあっては、帯電電位をグリッド−極に印
加する電位に略等しく設定でき、結果的に任意の電位に
均一帯電できるという利点を有する。もつともこの場合
、直流バイアス電圧を印加するためのトランスを必要と
し、それだけ構成的に大型且つ高価となる。このため特
公昭51−17419号公報に示されるように自己バイ
アス電圧印加手段として機能する定電圧受動素子をグリ
ッド電極に接続し、該定電圧素子の定電圧値を一定に定
めれば、上記の様にトランスを要することなく定゛亀圧
値と略等しい電位に均一帯電、できる0とF4 ころがグリッド電極は長襖の使用、つまり長時間コロナ
放tvc晒されると次第にその表面に絶縁性の膜を形成
し、この絶縁膜にコロナ放電電荷がトラップされてグリ
ッド電極の実効バイアス電圧値が変化し、結果的に帯電
電位も変動する。換言すれば、グリッド電極の使用初期
では所定の電位に帯電することができるが次第に電位変
動が生じ、画像#度に変化を生じる。
It is conceivable to use a scorotron that is charged by This type of scorotron has the advantage that the charging potential can be set approximately equal to the potential applied to the grid-poles, and as a result, it can be uniformly charged to any potential. Of course, in this case, a transformer for applying a DC bias voltage is required, which makes the structure larger and more expensive. Therefore, as shown in Japanese Patent Publication No. 51-17419, if a constant voltage passive element functioning as a self-bias voltage applying means is connected to the grid electrode and the constant voltage value of the constant voltage element is set constant, the above-mentioned result can be achieved. 0 and F4 can be uniformly charged to a potential approximately equal to the constant voltage value without the need for a transformer. A film is formed, and corona discharge charges are trapped in this insulating film, causing the effective bias voltage value of the grid electrode to change, and as a result, the charged potential also changes. In other words, the grid electrode can be charged to a predetermined potential at the initial stage of use, but the potential gradually fluctuates, causing a change in image quality.

」口LΩ」口劇 本発明に上記欠点に鑑み1て成されたもので、その目的
とするところは、長期に渡って変動がなく常に安定した
電位に帯電することのできるWI’を装置R′fc提供
することにある。
"mouth LΩ" mouth play This invention was made in view of the above-mentioned drawbacks, and its purpose is to provide device R' with WI', which can be charged to a constant potential without fluctuation over a long period of time. The goal is to provide fc.

実施例 第1図は本発明に係るスコロトロン帯電装置の概略構成
を示し、(1)はその開口部を感光体(2)に対向して
設けられた導電性シールドで、その中には直流高電圧源
(3)に接続されるコロナ電極(4)が張設されている
。コロナ電極(4)と感光体(2)間にはグリッド電極
(5)が設けられ、そのグリッド電極(5)には可変抵
抗器(6)とZNHのような定電圧受動素子(7)が直
列に接続されるとともに定電圧受動素子(7)が接地さ
れている。換言すればグリッド電極(5)と感光体(2
)の電極間に可変抵抗器(6)と定電圧受動素子(7)
が直列接続されている。尚、シールド(1)は誘電体で
構成されていてもよい。
Embodiment FIG. 1 shows a schematic configuration of a scorotron charging device according to the present invention, in which (1) is a conductive shield provided with its opening facing the photoreceptor (2), in which a high DC A corona electrode (4) connected to a voltage source (3) is provided. A grid electrode (5) is provided between the corona electrode (4) and the photoreceptor (2), and the grid electrode (5) is equipped with a variable resistor (6) and a constant voltage passive element (7) such as ZNH. A constant voltage passive element (7) is connected in series and grounded. In other words, the grid electrode (5) and the photoreceptor (2
) between the electrodes of the variable resistor (6) and constant voltage passive element (7)
are connected in series. Note that the shield (1) may be made of a dielectric material.

グリッド電極(5)としては例えば実開昭54−102
40号公報に示されるようなメツシュ状のもの乃至は第
2図に示すように多数本のワイア(8)を微細間隔を保
って並列に張設し枠体(9)で支持構成したもの等を用
いることができる。尚、ワイヤ(8)は感光体  1(
2)移動方向に傾斜して張設するのが望ましい。また、
定電圧受動素子(7)としてはZNHに限らず定電圧ダ
イオード、定電圧放電管等を用いることができる。
As the grid electrode (5), for example, Utility Model Application No. 54-102
A mesh-like structure as shown in Publication No. 40, or a structure in which a large number of wires (8) are stretched in parallel at fine intervals and supported by a frame (9) as shown in Fig. 2. can be used. Note that the wire (8) is attached to the photoreceptor 1 (
2) It is desirable to install it in an inclined manner in the direction of movement. Also,
As the constant voltage passive element (7), not only ZNH but also a constant voltage diode, a constant voltage discharge tube, etc. can be used.

以上の構成の帯電、装置の作用につき、可変抵抗器(6
)のない従来の構成のものと対比して説明するOまずO
1変抵抗器(6)がなくグリッド電極(5) K直接定
電圧受動素子(7)を接続した場合の帯電電位の変動に
ついて述べる。未使用のグリッド電極(5) 1に感光
体表面から1mm 離隔して配置する一方、定電圧とこ
ろ、600 Vの表面電位に荷電された。このことは帯
電0表面電位金定電圧受動素子の値と略等しくなるよう
制御できることを意味している。同一条件の下で上記帯
電を3万回繰り返して表面電位を測定したところ、最初
の1万回位いまでは600Vの所定電位が得られたがそ
の後、徐々に上昇して3万回でハロ50乃至670Vま
でに上昇する。これはグリッド電極(5)の表面に絶縁
膜がイオン放電により形成されるためで、この絶縁膜に
放電電荷が次第にトラップされ電位の上昇を生じるので
ある0ここでグリッド電極(5)は新しいものと取り換
えると表面電位は再び所定の600vとなり繰り返し使
用すると電位が一ヒ昇するという問題が生じる。
Due to the operation of the charging and device with the above configuration, a variable resistor (6
).
1. Fluctuations in the charged potential will be described when the constant voltage passive element (7) is directly connected to the grid electrode (5) without the variable resistor (6). An unused grid electrode (5) 1 was placed at a distance of 1 mm from the surface of the photoreceptor, and was charged to a surface potential of 600 V at a constant voltage. This means that the surface potential can be controlled to be approximately equal to the value of the gold constant voltage passive element with no charge. When the surface potential was measured by repeating the above charging 30,000 times under the same conditions, a predetermined potential of 600V was obtained for the first 10,000 times, but after that, it gradually increased to 50V after 30,000 times. It increases to 670V. This is because an insulating film is formed on the surface of the grid electrode (5) by ion discharge, and the discharge charge is gradually trapped in this insulating film, causing an increase in potential.0Here, the grid electrode (5) is a new one. When replaced with , the surface potential becomes the predetermined 600V again, and a problem arises in that the potential rises even more when used repeatedly.

結果的に所定の表面電位を保つにはグリッド電極を頻繁
に交換しなければならない。
As a result, the grid electrode must be replaced frequently to maintain a predetermined surface potential.

これに対し本発明では第1図に示したように可変抵抗器
(6)ヲ定′亀圧受動素子(7)と直列接続することに
よって、常に一定の表面電位を保証しようとするもので
ある。つまり、本発明においては、定電圧受動素子(7
)とし、て所定の表面電位より低い定電圧値のものを用
い、表面電位と定電圧値の差の電圧を可変抵抗器(61
に発生する電圧で補償するものである。換言すわば、グ
リッドを極(5)IC印加されるバイアス電圧(帯電さ
れる表面電位)iVg。
In contrast, the present invention attempts to always guarantee a constant surface potential by connecting a variable resistor (6) in series with a constant voltage passive element (7) as shown in FIG. . In other words, in the present invention, the constant voltage passive element (7
) with a constant voltage value lower than the predetermined surface potential, and the voltage difference between the surface potential and the constant voltage value is measured using a variable resistor (61
This is compensated by the voltage generated in the In other words, the bias voltage (charged surface potential) iVg applied to the grid (5) IC.

定電圧受動素子(7)の定電圧値をvt1可変抵抗器(
6)に生、しる電圧をVr、そしてグリッド電極(5)
の表面に蓄積される電圧をVmとしたときに下記の式が
成立する。
The constant voltage value of the constant voltage passive element (7) is set by the vt1 variable resistor (
6), the voltage applied to Vr, and the grid electrode (5)
The following equation holds true when the voltage accumulated on the surface of is Vm.

Vg = Vt + Vr + Vm ここでVmは上述からも理解できるように、グリツド電
極(5)の使用初期でttovic等しく、可変抵抗’
4 (6) itそこに生じる電圧Vrが所定の表面電
位Vgと定電圧匝■tの差を補償するよう、その抵抗値
を調整する。即ち、Vg=Vr+Vtとなるよう抵抗値
を調’I t ルa 4&FVgカ600 V 、 V
tカ500 V fあルナらばVrとして100vの゛
電圧が生じるように可変抵抗器(6)の抵抗値を調整す
る。しかしながら、Vmはグリッド電極(5)が繰り返
しコロナ放′亀に晒されることによって徐々に上昇する
。そこで本発明ではVmのL昇に応じて可変抵抗器(6
)の′、抵抗値を調整してVri変えていき、常に一定
のVgが得られるようしている。つまり上記の式でVt
の上昇を応じてVrt Ni2整する。例えばVmが7
0Vとなればvrが30Vとなるように可変抵抗器(6
)の抵抗値を調整してVgがVm=OVのときと同様に
600vとなることを保証する。
Vg = Vt + Vr + Vm Here, as can be understood from the above, Vm is equal to ttovic at the beginning of use of the grid electrode (5) and is a variable resistance '
4 (6) The resistance value is adjusted so that the voltage Vr generated therein compensates for the difference between the predetermined surface potential Vg and the constant voltage t. In other words, adjust the resistance value so that Vg=Vr+Vt.
The resistance value of the variable resistor (6) is adjusted so that a voltage of 100 V is generated when Vr is 500 V and Vr is 500 V. However, Vm gradually increases as the grid electrode (5) is repeatedly exposed to corona radiation. Therefore, in the present invention, a variable resistor (6
), the resistance value is adjusted to change Vri so that a constant Vg is always obtained. In other words, in the above formula, Vt
Adjust VrtNi2 accordingly. For example, Vm is 7
If it becomes 0V, connect the variable resistor (6) so that vr becomes 30V.
) to ensure that Vg is 600V, the same as when Vm=OV.

可変抵抗器(6)の抵抗値は例:え、ば感光体の表面電
位をプローブで測定し、所定の表面宵2位と比較演算[
7てその*、位差と等しい電圧値がVrで補正されるよ
う調整すればよい。この場合、Vrはグリッド電極に蓄
積される電圧Vm VC応じて補正されるのは勿論のこ
とであるが、感光体の疲労による表面電位の変動、更に
は定電圧受動素子(7)の定電圧値のばらつき等に対し
ても合わせて対処するので効果的である。尚、表面電位
の測定は複写毎でもよいし一定枚数毎でもよい。その他
、定期的に画像濃度の変化を見て、それに応じて可・変
抵抗器(6)の抵抗値を調整してもよい〇 可変抵抗器(6)の抵抗値はグリッド電極(5)に流れ
るコロナ電流と補正したい範囲のVrの電圧11M、 
vr基づき決定することができる。例えばグリッド電極
に流れる電流が200μAで、抵抗器に生じる電圧Vr
をIO乃至100vの範囲内で可変としたいときは可変
抵抗器(6)として0乃至500にΩのものを用いれば
よい。尚、定電圧受動素子(7)の定電圧値Vtと可変
抵抗器(6)に生じる電圧Vrの関係であるが、Vtが
Vgの70%以上、残りヲVrが補償する関係に設定す
   、するのが望ましい。これはコロナ電流が環境条
件の変化等によって変動するためで、Vrの補償範囲を
大きくとりすぎると対応しきれなくなるためである0 実販では、グリッド電極(5)ヲ感光体(2)から1m
m離隔した位@vc設け、vtとしテ500 V 、 
Vrとして0 < Vr < 100 Vにしてコロナ
電極に6KVの直流電圧を印加して帯電電位Vgt測定
した0それによると最初の約1万回位≠4ではVrlに
100Vとする限りにおいて帯電電位としてVtとの和
の約600Vが測定されたが、それ以後、徐々に上昇し
たO帯電′亀位が630vのときVrが70V  とな
るよう可変抵抗器(6)の抵抗値を切り換えたところ、
電位は再び所定の600 V K近い値に補正された。
The resistance value of the variable resistor (6) can be determined by, for example, measuring the surface potential of the photoreceptor with a probe and comparing it with a predetermined surface potential [
7. It is only necessary to adjust so that the voltage value equal to the phase difference is corrected by Vr. In this case, Vr is of course corrected according to the voltage Vm VC accumulated on the grid electrode, but also changes in the surface potential due to fatigue of the photoreceptor, and furthermore, the constant voltage of the constant voltage passive element (7) This is effective because it also deals with variations in values. Incidentally, the surface potential may be measured every copy or every fixed number of copies. In addition, you may periodically monitor changes in image density and adjust the resistance value of the variable resistor (6) accordingly. The resistance value of the variable resistor (6) may be adjusted to the grid electrode (5). The flowing corona current and the Vr voltage 11M in the range you want to correct,
It can be determined based on vr. For example, when the current flowing through the grid electrode is 200 μA, the voltage Vr generated in the resistor
If it is desired to make the voltage variable within the range of IO to 100V, a variable resistor (6) with a resistance of 0 to 500 Ω may be used. The relationship between the constant voltage value Vt of the constant voltage passive element (7) and the voltage Vr generated in the variable resistor (6) is set so that Vt is 70% or more of Vg and Vr compensates for the remainder. It is desirable to do so. This is because the corona current fluctuates due to changes in environmental conditions, etc., and if the Vr compensation range is too large, it will not be able to cope with it.
Set @vc at a distance of m, set VT to 500 V,
The charging potential Vgt was measured by applying a DC voltage of 6KV to the corona electrode with Vr as 0 < Vr < 100 V.According to this, in the first approximately 10,000 cycles≠4, as long as Vrl is 100V, the charging potential is Approximately 600V, the sum of Vt and Vt, was measured, but after that, the resistance value of the variable resistor (6) was changed so that Vr would be 70V when the O charging level, which gradually increased, was 630V.
The potential was again corrected to a predetermined value close to 600 VK.

帯電型。Charged type.

位の上昇に応じてVrt補正したところ何れの場合も約
600■の理想電位となった。
When Vrt was corrected in accordance with the rise in potential, the ideal potential was approximately 600 cm in all cases.

!! 以上の説明から明らかなように、本発明に係る帯電装置
i#によhば、常に理想表面電位に等しい電位[帯電す
ることができ長期に渡って安定した画像1kmることか
できる。しかもその構成、制御も簡素で、グリッド電極
も頻繁に交換する必要もない等、優れた効果を有する。
! ! As is clear from the above description, the charging device i# according to the present invention can always charge the surface to a potential equal to the ideal surface potential, and can produce stable images over a long period of 1 km. Furthermore, the configuration and control are simple, and the grid electrode does not need to be replaced frequently, so it has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る帯電装置の概略構成を示す図、第
2図はグリッド電極の構成の一例を示す図である。 (1)・・・導電性シールド、(4)・・・コロナ電極
。 (5)・・・グリッド電極、(6)・・・可変抵抗器。 (7)・・・定電圧受動素子〇 出願人  ミノルタカメラ株式会社
FIG. 1 is a diagram showing a schematic configuration of a charging device according to the present invention, and FIG. 2 is a diagram showing an example of the configuration of a grid electrode. (1)... Conductive shield, (4)... Corona electrode. (5)...grid electrode, (6)...variable resistor. (7)...Constant voltage passive element〇Applicant: Minolta Camera Co., Ltd.

Claims (1)

【特許請求の範囲】 1、高電圧源に接続されたコロナ電極と、該コロナ電極
と感光体間にグリッド電極を補え、該グリッド電極に可
変抵抗器と定電圧受動素子を直列に接続するとともに該
定電圧受動素子を接地してなること全特徴とする帯電装
置。 2、前記グリッド電極に印加さねる電圧をvg。 定電圧受動素子の定電圧値をVt、可変抵抗器に生じる
電圧をVr sグリッド電極の表面に蓄積される電圧を
Vmとしたとき、 Vg = Vt + Vr + Vm の式が成立し、VrHVmの変動に応じて補正されるこ
とを特徴とする特許請求の範囲第1項記載の帯電装置。
[Claims] 1. A corona electrode connected to a high voltage source, a grid electrode between the corona electrode and the photoreceptor, and a variable resistor and a constant voltage passive element connected in series to the grid electrode. A charging device characterized in that the constant voltage passive element is grounded. 2. The voltage applied to the grid electrode is vg. When the constant voltage value of the constant voltage passive element is Vt, the voltage generated in the variable resistor is Vrs, and the voltage accumulated on the surface of the grid electrode is Vm, the formula Vg = Vt + Vr + Vm is established, and VrHVm is 2. The charging device according to claim 1, wherein the charging device is corrected according to fluctuations.
JP2152782A 1982-02-13 1982-02-13 Electrifier Pending JPS58139161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152782A JPS58139161A (en) 1982-02-13 1982-02-13 Electrifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152782A JPS58139161A (en) 1982-02-13 1982-02-13 Electrifier

Publications (1)

Publication Number Publication Date
JPS58139161A true JPS58139161A (en) 1983-08-18

Family

ID=12057421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152782A Pending JPS58139161A (en) 1982-02-13 1982-02-13 Electrifier

Country Status (1)

Country Link
JP (1) JPS58139161A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156069A (en) * 1984-12-21 1986-07-15 ゼロツクス コーポレーシヨン Self-bias type corona discharger
JPH01193879A (en) * 1988-01-29 1989-08-03 Canon Inc Electrifier
JP2000206768A (en) * 1999-01-14 2000-07-28 Sharp Corp Image forming device
JP2000214662A (en) * 1999-01-20 2000-08-04 Sharp Corp Image forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156069A (en) * 1984-12-21 1986-07-15 ゼロツクス コーポレーシヨン Self-bias type corona discharger
JPH01193879A (en) * 1988-01-29 1989-08-03 Canon Inc Electrifier
JP2000206768A (en) * 1999-01-14 2000-07-28 Sharp Corp Image forming device
JP2000214662A (en) * 1999-01-20 2000-08-04 Sharp Corp Image forming device

Similar Documents

Publication Publication Date Title
JPS6040024B2 (en) Electrostatic latent image stabilization method
US4335420A (en) Corona discharge device
US3934141A (en) Apparatus for automatically regulating the amount of charge applied to an insulating surface
US4112299A (en) Corona device with segmented shield
DE19708854A1 (en) Corona charger using high cycle AC voltage
JPS6253779B2 (en)
US5521383A (en) Corona discharge device
CA1123041A (en) Apparatus and method for low sensitivity corona charging of a moving photoconductor
JPS58139161A (en) Electrifier
US3909614A (en) Scorotron power supply circuit
EP0342960A2 (en) Electrophotographic system
JPH06222652A (en) Adjustable scorotron for application of uniform charge potential
CA1053743A (en) Charging mask for electrophotography
US5742871A (en) High duty cycle sawtooth AC charger
US4228480A (en) Electrophotographic apparatus with improved corona charging
JPH0452467B2 (en)
US3976880A (en) Corona stabilization arrangement
JPS58156963A (en) Corona electrifying device
JPS63132269A (en) Electrophotographic recorder
JPH0546547B2 (en)
JPS6055362A (en) Controller for electrostatic charging potential of photosensitive body
JPH0675222B2 (en) Charger control device for photoconductor
SU1449965A1 (en) Apparatus for dynamic charging of electrophotographic information carrier
JPS60208775A (en) Electrostatic charge potential controller for photosensitive body
JPS5986067A (en) Electrophotographic recording device