JPS6347302A - Stainless steel powder - Google Patents
Stainless steel powderInfo
- Publication number
- JPS6347302A JPS6347302A JP19124386A JP19124386A JPS6347302A JP S6347302 A JPS6347302 A JP S6347302A JP 19124386 A JP19124386 A JP 19124386A JP 19124386 A JP19124386 A JP 19124386A JP S6347302 A JPS6347302 A JP S6347302A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- steel powder
- density
- total
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010935 stainless steel Substances 0.000 title claims abstract description 29
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 29
- 239000000843 powder Substances 0.000 title claims abstract description 27
- 230000001105 regulatory effect Effects 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 abstract description 10
- 239000012535 impurity Substances 0.000 abstract description 8
- 150000004767 nitrides Chemical class 0.000 abstract description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 4
- 238000005245 sintering Methods 0.000 abstract description 3
- 230000006835 compression Effects 0.000 abstract 2
- 238000007906 compression Methods 0.000 abstract 2
- 238000009692 water atomization Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910017060 Fe Cr Inorganic materials 0.000 description 3
- 229910002544 Fe-Cr Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はステンレス鋼粉に係り、特に圧F!密度、焼結
密度を向上し得る粉末冶金用に好適なステンレス鋼粉に
関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to stainless steel powder, particularly pressure F! The present invention relates to a stainless steel powder suitable for powder metallurgy that can improve density and sintered density.
(従来の技術及び解決しようとする問題点)ステンレス
鋼粉にはNi系、Cr系などがあるが、Ni系ステンレ
ス鋼粉は耐食性、耐熱性、非磁性などステンレスの特徴
を活かした焼結機械部品、各種フィルター等に適してお
り、Cr系ステンレス鋼粉は高強度、耐摩耗焼結材用に
適している。(Conventional technology and problems to be solved) There are Ni-based and Cr-based stainless steel powders, but Ni-based stainless steel powder is a sintering machine that takes advantage of the characteristics of stainless steel, such as corrosion resistance, heat resistance, and non-magnetism. It is suitable for parts, various filters, etc., and Cr-based stainless steel powder is suitable for high-strength, wear-resistant sintered materials.
このようなステンレス鋼粉は、一般に、原料を高周波誘
導炉等の溶解炉で溶解、精錬し、次いで水噴霧法により
溶湯を霧化して製造されているが、不純物レベルが高く
硬質化しやすいため、圧縮密度や焼結密度が上がらず、
焼結体の特性が劣化するという問題があった。Such stainless steel powder is generally produced by melting and refining raw materials in a melting furnace such as a high-frequency induction furnace, and then atomizing the molten metal using a water spray method. Compressed density and sintered density do not increase,
There was a problem that the characteristics of the sintered body deteriorated.
そこで、これらの密度を向上させる方法が種々研究され
るようになり、焼鈍によって軟質化したり、或いは、例
えば、特開昭61−30604号公報に示すように、溶
解・精錬工程でいわゆるA○D炉(アルゴン・酸素精錬
炉)等を使用して窒素含有量を150ppm以下、酸素
含有量を100 oppm以下のように主として窒素含
有量を低減する等の試みがある。しかし、焼鈍による軟
質化はコスト上昇を招き、一方、このような不純物量の
低減により圧縮密度や焼結密度は一応向上するものの、
大幅な改善は期待できないのが現状である。Therefore, various methods for improving the density of these materials have been studied, such as softening by annealing, or, for example, as shown in Japanese Patent Application Laid-Open No. 61-30604, so-called A○D in the melting and refining process. There are attempts to mainly reduce the nitrogen content by using a furnace (argon/oxygen smelting furnace) or the like to reduce the nitrogen content to 150 ppm or less and the oxygen content to 100 oppm or less. However, softening due to annealing increases costs, and on the other hand, although the reduction in the amount of impurities improves the compressed density and sintered density,
At present, no significant improvement can be expected.
(発明の目的)
本発明は、上記従来技術の欠点を解消し、圧縮密度、焼
結密度を顕著に向上し得るステンレス鋼粉を提供するこ
とを目的とするものである。(Objective of the Invention) An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques and to provide a stainless steel powder that can significantly improve compressed density and sintered density.
(発明の構成)
上記目的を達成するため、本発明者は、ステンレス鋼粉
中の不純物を低減する従来の方法について種々検討した
ところ、不純物として単に酸素や窒素の含有量を低減す
るだけではステンレス鋼粉の硬質化を効果的に防止でき
ないことが判明した。(Structure of the Invention) In order to achieve the above object, the present inventor investigated various conventional methods for reducing impurities in stainless steel powder, and found that it is not possible to simply reduce the content of oxygen and nitrogen as impurities in stainless steel powder. It was found that hardening of steel powder could not be effectively prevented.
そこで他の不純物について低減策を研究した結果。This is the result of research into ways to reduce other impurities.
酸素や窒素のほか、特にAQN、TiNなどの窒化物を
低下させるならば、ステンレス鋼粉の硬さ、特にクロム
系ステンレス鋼粉の硬さを低下でき、したがって、圧縮
密度や焼結密度を更に向上できることを見い出したもの
である。If oxygen, nitrogen, and especially nitrides such as AQN and TiN are reduced, the hardness of stainless steel powder, especially chromium-based stainless steel powder, can be reduced, and the compacted density and sintered density can be further reduced. This is something we have discovered that can be improved.
すなわち、本発明に係るステンレス鋼粉は、Tota
Q A Q≦5 Qppm、 Tota Q Ti≦2
00ppm、Tota Q O≦2000ppm、 T
otafl N≦150ppmに規制したことを特徴と
するものである。That is, the stainless steel powder according to the present invention is Tota
Q A Q≦5 Qppm, Tota Q Ti≦2
00ppm, Tota Q O≦2000ppm, T
It is characterized by regulating otafl N≦150 ppm.
以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.
本発明のステンレス鋼粉は、まず、AOD炉を使用して
溶鋼中の窒素、酸素を低減させ、次いで高周波誘導炉等
の溶解炉によって原料を再溶解し、その後水噴霧法にて
霧化し製造する。この場合、通常の操業により得られる
AOD材は、窒素が150〜200ppm含まれるが、
窒素ガスの使用による窒素のピックアップを防止するた
めにArガスを使用すれば、100〜150ppmに低
減され、また酸素含有量は2000ppm以下に低減さ
れる。The stainless steel powder of the present invention is produced by first reducing nitrogen and oxygen in molten steel using an AOD furnace, then remelting the raw material in a melting furnace such as a high frequency induction furnace, and then atomizing it using a water spray method. do. In this case, the AOD material obtained through normal operation contains 150 to 200 ppm of nitrogen, but
If Ar gas is used to prevent nitrogen pickup due to the use of nitrogen gas, it is reduced to 100-150 ppm, and the oxygen content is reduced to 2000 ppm or less.
しかし、TiやAQの含有量レベルは、通常、Al1が
50〜60ppm、 Tiが200ppm程度と高く、
鋼中にAflN、TiN等の窒化物が多く存在し、硬度
低下は期待できない。これは、ステンレス鋼の溶解の場
合、原料として用いるクロム源からTiなどの不純物が
混入するためであり、AQD炉を用いてもこのような不
純物量を低減することは不可能である。However, the content levels of Ti and AQ are usually as high as 50 to 60 ppm for Al and 200 ppm for Ti.
Since many nitrides such as AflN and TiN exist in the steel, a decrease in hardness cannot be expected. This is because when stainless steel is melted, impurities such as Ti are mixed in from the chromium source used as a raw material, and it is impossible to reduce the amount of such impurities even by using an AQD furnace.
そこで、通常の溶解、精錬工程であっても効果的にTi
N、AQNなどの窒化物量を低減するには、Ti、An
の少ない原料を用い、特にクロム源であるFe−Cr合
金として低Ti、Aflのものを使用すればよい。Therefore, even in normal melting and refining processes, Ti
To reduce the amount of nitrides such as N and AQN, Ti and An
It is sufficient to use a raw material with low Ti and Afl, especially as a Fe-Cr alloy which is a chromium source.
かくして得られたステンレス鋼の溶湯は、従来と同様、
水噴霧法によって霧化すれば、硬度の低いステンレス鋼
粉が得られる。The molten stainless steel thus obtained is similar to the conventional method.
If atomized by a water spray method, stainless steel powder with low hardness can be obtained.
(実施例)
クロム源として低AQ、TiのFe−Cr合金を用いた
原料をArガスを使用するAOD炉によって精錬し、次
いでl ton高周波誘導溶解炉によって再溶解し、得
られた溶湯を水噴霧法にて霧化して、第1表に示す化学
成分(wt%)を有する各種ステンレス鋼粉を得た。(Example) A raw material using a Fe-Cr alloy with low AQ and Ti as a chromium source is refined in an AOD furnace using Ar gas, then remelted in a l ton high frequency induction melting furnace, and the resulting molten metal is heated with water. Various stainless steel powders having chemical components (wt%) shown in Table 1 were obtained by atomization using a spraying method.
また、比較のため、クロム源として通常のFe−Cr合
金を用い、同様にして溶解、精錬し、水噴霧法にてステ
ンレス鋼粉を得た。For comparison, a normal Fe-Cr alloy was used as a chromium source, melted and refined in the same manner, and stainless steel powder was obtained by a water spray method.
これらのステンレス鋼粉を使用して常法により成形、焼
結し、得られた成形体、焼結体のそれぞれの密度を調べ
た。その結果を第2表に示す。These stainless steel powders were molded and sintered in a conventional manner, and the densities of the resulting molded bodies and sintered bodies were examined. The results are shown in Table 2.
【以下余白1
第 2 表
第2表から明らかなように、本発明のステンレス鋼粉を
用いた場合には、圧縮密度、焼結密度のいずれも改善さ
れており、特に焼結密度が大幅に向上している。また、
A、Q、Ti含有量を低減させれば、酸素含有量が比較
的多くても改善効果が減殺されない。[Margin below 1 Table 2 As is clear from Table 2, when the stainless steel powder of the present invention is used, both compressed density and sintered density are improved, and in particular, sintered density is significantly improved. It's improving. Also,
If the A, Q, and Ti contents are reduced, the improvement effect will not be diminished even if the oxygen content is relatively high.
次に、上記4.10系において、本発明例として。Next, in the above 4.10 system, as an example of the present invention.
Ti含有量を100ppm、A Q含有量をIQppm
に規制した溶湯と、従来例として、Ti含有量が200
PPn+、 A Q含有−1,l:が60ppmの溶湯
につき、炭素当量(C+aN)(a:定数)を変化させ
る精錬を行い、水噴霧法にてステンレス鋼粉を製造し、
これを成形して圧縮密度を調べた。その結果は第1図に
示すとうり、炭素当量(特に窒素含有量)を低下させる
ことによって圧縮密度を上げることができるが、Ti、
AQ、含有量の少ない本発明例の方が従来例よりも圧縮
密度の改善効果が大きく、したがって、焼結密度の改善
効果も大きくなる。Ti content is 100ppm, AQ content is IQppm
As a conventional example, the Ti content is regulated to 200%.
A molten metal with a PPn+, AQ content of -1,l: of 60 ppm is refined to change the carbon equivalent (C+aN) (a: constant), and stainless steel powder is produced by a water spray method.
This was molded and the compressed density was examined. As shown in Fig. 1, the compacted density can be increased by lowering the carbon equivalent (particularly the nitrogen content);
AQ, the example of the present invention with a small content has a greater effect of improving compressed density than the conventional example, and therefore the effect of improving sintered density is also greater.
(発明の効果)
以上詳述したように、本発明によれば、鋼中不不純物と
して酸素、窒素のみならず、 TiN、Al2Nなどの
窒化物量を低減したステンレス鋼粉が提供できるので、
その硬度を低下でき5したがって、圧縮密度並びに焼結
密度を大幅に改善することが可能となり、優れた特性の
焼結晶を製造することができる。(Effects of the Invention) As detailed above, according to the present invention, it is possible to provide stainless steel powder with reduced amounts of not only oxygen and nitrogen as impurities in steel but also nitrides such as TiN and Al2N.
The hardness can be reduced 5. Therefore, it is possible to significantly improve the compressed density and the sintered density, and it is possible to produce a sintered crystal with excellent properties.
第1図はステンレス鋼粉の炭素当Xitと圧縮密度の関
係を示す図である。FIG. 1 is a diagram showing the relationship between carbon equivalent Xit and compressed density of stainless steel powder.
Claims (1)
ppm、Total¥O¥≦2000ppm、Tota
l¥N¥≦150ppmに規制したことを特徴とするス
テンレス鋼粉。TotalAl≦50ppm, TotalTi≦200
ppm, Total¥O¥≦2000ppm, Tota
A stainless steel powder characterized by being regulated to l\N\≦150ppm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61191243A JPH0723481B2 (en) | 1986-08-15 | 1986-08-15 | Stainless steel powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61191243A JPH0723481B2 (en) | 1986-08-15 | 1986-08-15 | Stainless steel powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6347302A true JPS6347302A (en) | 1988-02-29 |
JPH0723481B2 JPH0723481B2 (en) | 1995-03-15 |
Family
ID=16271278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61191243A Expired - Lifetime JPH0723481B2 (en) | 1986-08-15 | 1986-08-15 | Stainless steel powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0723481B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0456703A (en) * | 1990-06-27 | 1992-02-24 | Daido Steel Co Ltd | Stainless steel powder for powder metallurgy |
JPH0456704A (en) * | 1990-06-27 | 1992-02-24 | Daido Steel Co Ltd | Stainless steel powder for powder metallurgy |
WO1994027764A1 (en) * | 1993-06-02 | 1994-12-08 | Kawasaki Steel Corporation | Alloy steel powder for sinter with high strength, high fatigue strength and high toughness, sinter, and process for producing the sinter |
US6114689A (en) * | 1998-04-27 | 2000-09-05 | Samsung Electronics Co., Ltd. | Optical pickup device |
JP2008171773A (en) * | 2007-01-15 | 2008-07-24 | Koito Mfg Co Ltd | Vehicle lighting apparatus |
US9523137B2 (en) | 2004-05-21 | 2016-12-20 | Ati Properties Llc | Metastable β-titanium alloys and methods of processing the same by direct aging |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6130604A (en) * | 1984-07-23 | 1986-02-12 | Taiheiyo Kinzoku Kk | Stainless steel powder for powder metallurgy |
-
1986
- 1986-08-15 JP JP61191243A patent/JPH0723481B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6130604A (en) * | 1984-07-23 | 1986-02-12 | Taiheiyo Kinzoku Kk | Stainless steel powder for powder metallurgy |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0456703A (en) * | 1990-06-27 | 1992-02-24 | Daido Steel Co Ltd | Stainless steel powder for powder metallurgy |
JPH0456704A (en) * | 1990-06-27 | 1992-02-24 | Daido Steel Co Ltd | Stainless steel powder for powder metallurgy |
WO1994027764A1 (en) * | 1993-06-02 | 1994-12-08 | Kawasaki Steel Corporation | Alloy steel powder for sinter with high strength, high fatigue strength and high toughness, sinter, and process for producing the sinter |
US5666634A (en) * | 1993-06-02 | 1997-09-09 | Kawasaki Steel Corporation | Alloy steel powders for sintered bodies having high strength, high fatigue strength and high toughness, sintered bodies, and method for manufacturing such sintered bodies |
US6114689A (en) * | 1998-04-27 | 2000-09-05 | Samsung Electronics Co., Ltd. | Optical pickup device |
US9523137B2 (en) | 2004-05-21 | 2016-12-20 | Ati Properties Llc | Metastable β-titanium alloys and methods of processing the same by direct aging |
JP2008171773A (en) * | 2007-01-15 | 2008-07-24 | Koito Mfg Co Ltd | Vehicle lighting apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0723481B2 (en) | 1995-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2195386C2 (en) | Powder of stainless steel and method for making it | |
CN112941406A (en) | Stainless steel for knife and scissors | |
JPS6347302A (en) | Stainless steel powder | |
JPH07113107A (en) | Atomized iron powder for sintered forging material and production thereof | |
JP3446322B2 (en) | Alloy steel powder for powder metallurgy | |
KR100376423B1 (en) | AUSTENITIC ACID CORROSION-RESISTANT STAINLESS STEEL OF Al-Mn-Si-N SERIES | |
CN114737020B (en) | High-precision control method for effective titanium component in steelmaking process | |
US4174212A (en) | Method for the refining of steel | |
JP2991796B2 (en) | Melting method of thin steel sheet by magnesium deoxidation | |
US4251266A (en) | Method for taking care of metallic waste products by remelting | |
Yuasa et al. | Refining practice and application of the Ladle Furnace (LF) Process in Japan | |
JPS6130604A (en) | Stainless steel powder for powder metallurgy | |
JP3977288B2 (en) | Melting method of high nitrogen stainless steel by gas nitriding | |
Decarburization | flexibly better | |
JPH07138601A (en) | High cr alloy steel powder for wear resistant sintering material and its mixture | |
JPH0741829A (en) | Method for detoxicating oxide in high carbon chromium bearing steel | |
SU840182A1 (en) | Cast iron | |
SU1560569A1 (en) | Method of melting manganese-containing steel | |
CN113913673A (en) | Method for controlling size and quantity of inclusions in steel by magnesium-containing alloy | |
CN115233114A (en) | High-compactness, segregation-free, high-nitrogen, low-carbon, high-corrosion-resistant and antibacterial cutter steel and manufacturing method thereof | |
SU1525212A1 (en) | Alloying mixture for melting roll cast iron | |
CN114045439A (en) | Titanium-containing economical duplex stainless steel and preparation method thereof | |
RU2118992C1 (en) | Method of producing ferrotitanium | |
CN116555523A (en) | Method for treating inclusions in modified steel by rare earth lanthanum in refining | |
CN118460920A (en) | Low-carbon-emission low-nitrogen ferrite stainless steel and preparation method thereof |