JPH0723481B2 - Stainless steel powder - Google Patents
Stainless steel powderInfo
- Publication number
- JPH0723481B2 JPH0723481B2 JP61191243A JP19124386A JPH0723481B2 JP H0723481 B2 JPH0723481 B2 JP H0723481B2 JP 61191243 A JP61191243 A JP 61191243A JP 19124386 A JP19124386 A JP 19124386A JP H0723481 B2 JPH0723481 B2 JP H0723481B2
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- steel powder
- density
- ppm
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はステンレス鋼粉に係り、特に圧縮密度、焼結密
度を向上し得る粉末冶金用に好適なステンレス鋼粉に関
する。TECHNICAL FIELD The present invention relates to a stainless steel powder, and more particularly to a stainless steel powder suitable for powder metallurgy which can improve the compression density and the sintering density.
(従来の技術及び解決しようとする問題点) ステンレス鋼粉にはNi系、Cr系などがあるが、Ni系ステ
ンレス鋼粉は耐食性、耐熱性、非磁性などステンレスの
特徴を活かした焼結機械部品、各種フィルター等に適し
ており、Cr系ステンレス鋼粉は高強度、耐摩耗焼結材用
に適している。(Prior art and problems to be solved) There are Ni-based and Cr-based stainless steel powders, but Ni-based stainless steel powders are sintering machines that utilize the characteristics of stainless steel such as corrosion resistance, heat resistance, and non-magnetism. Suitable for parts and various filters, Cr-based stainless steel powder is suitable for high-strength, wear-resistant sintered materials.
このようなステンレス鋼粉は、一般に、原料を高周波誘
導炉等の溶解炉で溶解、精錬し、次いで水噴霧法により
溶湯を霧化して製造されているが、不純物レベルが高く
硬質化しやすいため、圧縮密度や焼結密度が上がらず、
焼結体の特性が劣化するという問題があった。Such stainless steel powder is generally manufactured by melting and refining the raw material in a melting furnace such as a high frequency induction furnace, and then atomizing the molten metal by a water spray method, but since the impurity level is high and it is easy to harden, Compressed density and sintered density do not increase,
There is a problem that the characteristics of the sintered body are deteriorated.
そこで、これらの密度を向上させる方法が種々研究され
るようになり、焼鈍によって軟質化したり、或いは、例
えば、特開昭61−30604号公報に示すように、溶解・精
錬工程でいわゆるAOD炉(アルゴン・酸素精錬炉)等を
使用して窒素含有量を150ppm以下、酸素含有量を1000pp
m以下のように主として窒素含有量を低減する等の試み
がある。しかし、焼鈍による軟質化はコスト上昇を招
き、一方、このような不純物量の低減により圧縮密度や
焼結密度は一応向上するものの、大幅な改善は期待でき
ないのが現状である。Therefore, various methods for improving these densities have been studied, and they are softened by annealing, or, for example, as shown in JP-A-61-30604, a so-called AOD furnace ( Nitrogen content is 150ppm or less, oxygen content is 1000pp using an argon / oxygen refining furnace)
Attempts have been made to reduce the nitrogen content, such as m or less. However, softening due to annealing causes a cost increase. On the other hand, although the compression density and the sintering density are improved for the time being due to the reduction of the amount of such impurities, a significant improvement cannot be expected at present.
(発明の目的) 本発明は、上記従来技術の欠点を解消し、圧縮密度、焼
結密度を顕著に向上し得るステンレス鋼粉を提供するこ
とを目的とするものである。(Object of the Invention) It is an object of the present invention to provide a stainless steel powder capable of solving the above-mentioned drawbacks of the prior art and significantly improving the compression density and the sintering density.
(発明の構成) 上記目的を達成するため、本発明者は、ステンレス鋼粉
中の不純物を低減する従来の方法について種々検討した
ところ、不純物として単に酸素や窒素の含有量を低減す
るだけではステンレス鋼粉の硬質化を効果的に防止でき
ないことが判明した。そこで他の不純物について低減策
を研究した結果、酸素や窒素のほか、特にAlN、TiNなど
の窒化物を低下させるならば、ステンレス鋼粉の硬さ、
特にクロム系ステンレス鋼粉の硬さを低下でき、したが
って、圧縮密度や焼結密度を更に向上できることを見い
出したものである。(Structure of the invention) In order to achieve the above object, the present inventor has made various studies on conventional methods for reducing impurities in stainless steel powder, and as a result of simply reducing the contents of oxygen and nitrogen as impurities, It was found that hardening of steel powder could not be effectively prevented. Therefore, as a result of researching reduction measures for other impurities, if oxygen, nitrogen, and especially nitrides such as AlN and TiN are reduced, the hardness of stainless steel powder,
In particular, it has been found that the hardness of the chromium-based stainless steel powder can be reduced, and therefore the compression density and the sintering density can be further improved.
すなわち、本発明に係るステンレス鋼粉は、TotalAl≦4
0ppm、TotalTi≦150ppm、TotalO≦2000ppm、TotalN≦15
0ppmに規制したことを特徴とするものである。That is, the stainless steel powder according to the present invention, TotalAl ≦ 4
0ppm, TotalTi ≦ 150ppm, TotalO ≦ 2000ppm, TotalN ≦ 15
It is characterized by being regulated to 0 ppm.
次に、本発明のステンレス鋼粉における化学成分の限定
理由を説明する。Next, the reasons for limiting the chemical components in the stainless steel powder of the present invention will be described.
TotalAlを40ppm以下に限定したのは、40ppmを超えて含
有させると、生成されるAlNの量が多くなり、ステンレ
ス鋼粉の硬さが高くなり過ぎ、したがって、圧縮密度や
焼結密度を向上することが出来ないからである。The reason why TotalAl is limited to 40 ppm or less is that if the content exceeds 40 ppm, the amount of AlN produced increases and the hardness of the stainless steel powder becomes too high, thus improving the compression density and the sintering density. Because I cannot do it.
TotalTiを150ppm以下に限定したのは、150ppmを超えて
含有させると、生成されるTiNの量が多くなり、ステン
レス鋼粉の硬さが高くなり過ぎ、したがって、圧縮密度
や焼結密度を向上することが出来ないからである。The limitation of TotalTi to 150ppm or less is that when it is contained in excess of 150ppm, the amount of TiN produced increases and the hardness of the stainless steel powder becomes too high, thus improving the compression density and the sintering density. Because I cannot do it.
TotalOを2000ppm以下に限定したのは、2000ppmを超えて
含有させると、生成される酸化物の量が多くなるため
に、ステンレス鋼粉の硬さが高く、しかも結合し難くな
り、したがって、圧縮密度や焼結密度を向上することが
出来ないばかりでなく、焼結強度を向上するこができな
いからである。The limitation of TotalO to 2000ppm or less is that when it is contained in excess of 2000ppm, the amount of oxides produced increases, the hardness of stainless steel powder becomes high, and it becomes difficult to bond it. This is because not only the sintering density cannot be improved but also the sintering strength cannot be improved.
また、TotalNを150ppm以下に限定したのは、150ppmを超
えて、含有させると、生成されるAlN、TiNなどの窒化物
の量が多くなり、ステンレス鋼粉の硬さが高くなり過
ぎ、したがって、圧縮密度や焼結密度を向上することが
出来ないからである。Further, the total N is limited to 150 ppm or less, exceeding 150 ppm, if included, the amount of nitrides such as AlN and TiN produced increases, and the hardness of the stainless steel powder becomes too high, therefore, This is because the compression density and the sintering density cannot be improved.
以下に本発明を実施例に基づいて詳細に説明する。The present invention will be described in detail below based on examples.
本発明のステンレス鋼粉は、まず、AOD炉を使用して溶
鋼中の窒素、酸素を低減させ、次いで高周波誘導炉等の
溶解炉によって原料を再溶解し、その後水噴霧法にて霧
化し製造する。この場合、通常の操業により得られるAO
D材は、窒素が150〜200ppm含まれるが、窒素ガスの使用
による窒素のピックアップを防止するためにArガスを使
用すれば、100〜150ppmに低減され、また酸素含有量は2
000ppm以下に低減される。The stainless steel powder of the present invention is manufactured by first reducing nitrogen and oxygen in molten steel by using an AOD furnace, then remelting the raw material by a melting furnace such as a high frequency induction furnace, and then atomizing by a water spray method. To do. In this case, AO obtained by normal operation
Material D contains 150 to 200 ppm of nitrogen, but if Ar gas is used to prevent nitrogen pickup due to the use of nitrogen gas, it is reduced to 100 to 150 ppm, and the oxygen content is 2
Reduced to 000ppm or less.
しかし、TiやAlの含有量レベルは、通常、Alが50〜60pp
m、Tiが200ppm程度と高く、鋼中にAlN、TiN等の窒化物
が多く存在し、硬度低下は期待できない。これは、ステ
ンレス鋼の溶解の場合、原料として用いるクロム源から
Tiなどの不純物が混入するためであり、AOD炉を用いて
もこのような不純物量を低減することは不可能である。However, the content level of Ti and Al is usually 50-60 pp for Al.
Since m and Ti are as high as about 200 ppm, and there are many nitrides such as AlN and TiN in the steel, hardness reduction cannot be expected. This is due to the chromium source used as a raw material in the case of melting stainless steel.
This is because impurities such as Ti are mixed in, and it is impossible to reduce the amount of such impurities even if an AOD furnace is used.
そこで、通常の溶解、精錬工程であっても効果的にTi
N、AlNなどの窒化物量を低減するには、Ti、Alの少ない
原料を用い、特にクロム源であるFe−Cr合金として低T
i、Alのものを使用すればよい。Therefore, even in the normal melting and refining process, Ti
To reduce the amount of nitrides such as N and AlN, use a raw material with a small amount of Ti and Al.
i and Al may be used.
かくして得られたステンレス鋼の溶湯は、AlとTiが従来
の含有量レベルより低く、Alが40ppm以下、Tiが150ppm
以下に低減されているので、従来と同様、水噴霧法によ
って霧化すれば、硬度の低いステンレス鋼粉が得られ
る。The stainless steel melt thus obtained had Al and Ti lower than the conventional content levels, Al 40ppm or less, and Ti 150ppm.
Since it has been reduced to the following, if it is atomized by a water spraying method as in the conventional case, a stainless steel powder having a low hardness can be obtained.
(実施例) クロム源として低Al、TiのFe−Cr合金を用いた原料をAr
ガスを使用するAOD炉によって精錬し、次いで1ton高周
波誘導溶解炉によって再溶解し、得られた溶湯を水噴霧
法にて霧化して、第1表に示す化学成分(wt%)を有す
る各種ステンレス鋼粉を得た。(Example) A raw material using a Fe-Cr alloy of low Al and Ti as a chromium source is Ar.
Refining in an AOD furnace using gas, then remelting in a 1 ton high frequency induction melting furnace, atomizing the resulting melt by a water atomization method, and various stainless steels having the chemical composition (wt%) shown in Table 1. Obtained steel powder.
また、比較のため、クロム源として通常のFe−Cr合金を
用い、同様にして溶解、精錬し、水噴霧法にてステンレ
ス鋼粉を得た。Further, for comparison, a normal Fe-Cr alloy was used as a chromium source, melted and refined in the same manner, and stainless steel powder was obtained by a water atomization method.
これらのステンレス鋼粉を使用して常法により成形、焼
結し、得られた成形体、焼結体のそれぞれの密度を調べ
た。その結果を第2表に示す。These stainless steel powders were used for molding and sintering by a conventional method, and the densities of the obtained molded body and sintered body were examined. The results are shown in Table 2.
第2表から明らかなように、本発明のステンレス鋼粉を
用いた場合には、圧縮密度、焼結密度のいずれも改善さ
れており、特に焼結密度が大幅に向上している。また、
Al、Ti含有量を低減させれば、酸素含有量が比較的多く
ても改善効果が減殺されない。 As is clear from Table 2, when the stainless steel powder of the present invention is used, both the compression density and the sintered density are improved, and especially the sintered density is greatly improved. Also,
If the Al and Ti contents are reduced, the improvement effect is not diminished even if the oxygen content is relatively large.
次に、上記410系において、本発明例として、Ti含有量
を100ppm、Al含有量を10ppmに規制した溶湯と、従来例
として、Ti含有量が200ppm、Al含有量が60ppmの溶湯に
つき、炭素当量(C+aN)(a:定数)を変化させる精錬
を行い、水噴霧法にてステンレス鋼粉を製造し、これを
成形して圧縮密度を調べた。その結果は第1図に示すと
うり、炭素当量(特に窒素含有量)を低下させることに
よって圧縮密度を上げることができるが、Ti、Al含有量
の少ない本発明例の方が従来例よりも圧縮密度の改善効
果が大きく、したがって、焼結密度の改善効果も大きく
なる。Next, in the 410 system, as an example of the present invention, Ti content is 100 ppm, molten metal with Al content regulated to 10 ppm, as a conventional example, Ti content is 200 ppm, Al content is 60 ppm, with respect to molten metal, carbon Refining was performed by changing the equivalent weight (C + aN) (a: constant), stainless steel powder was produced by the water atomization method, and this was molded to examine the compression density. As shown in FIG. 1, the result shows that the compression density can be increased by lowering the carbon equivalent (particularly the nitrogen content), but the present invention example having a smaller Ti and Al content than the conventional example. The effect of improving the compressed density is large, and therefore the effect of improving the sintered density is also large.
(発明の効果) 以上詳述したように、本発明によれば、鋼中不不純物と
して酸素、窒素のみならず、TiN、AlNなどの窒化物量を
低減したステンレス鋼粉が提供できるので、その硬度を
低下でき、したがって、圧縮密度並びに焼結密度を大幅
に改善することが可能となり、優れた特性の焼結品を製
造することができる。(Effects of the Invention) As described in detail above, according to the present invention, not only oxygen and nitrogen as impurities in steel, but also stainless steel powder with a reduced amount of nitrides such as TiN and AlN can be provided. Therefore, it is possible to significantly improve the compression density and the sintered density, and it is possible to manufacture a sintered product having excellent characteristics.
第1図はステンレス鋼粉の炭素当量と圧縮密度の関係を
示す図である。FIG. 1 is a diagram showing the relationship between the carbon equivalent of stainless steel powder and the compression density.
Claims (1)
O≦2000ppm、TotalN≦150ppmに規制したことを特徴とす
るステンレス鋼粉。[Claim 1] Total Al ≤ 40 ppm, Total Ti ≤ 150 ppm, Total
A stainless steel powder characterized by being regulated to O ≦ 2000 ppm and Total N ≦ 150 ppm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61191243A JPH0723481B2 (en) | 1986-08-15 | 1986-08-15 | Stainless steel powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61191243A JPH0723481B2 (en) | 1986-08-15 | 1986-08-15 | Stainless steel powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6347302A JPS6347302A (en) | 1988-02-29 |
JPH0723481B2 true JPH0723481B2 (en) | 1995-03-15 |
Family
ID=16271278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61191243A Expired - Lifetime JPH0723481B2 (en) | 1986-08-15 | 1986-08-15 | Stainless steel powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0723481B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0456703A (en) * | 1990-06-27 | 1992-02-24 | Daido Steel Co Ltd | Stainless steel powder for powder metallurgy |
JPH0456704A (en) * | 1990-06-27 | 1992-02-24 | Daido Steel Co Ltd | Stainless steel powder for powder metallurgy |
JP3258765B2 (en) * | 1993-06-02 | 2002-02-18 | 川崎製鉄株式会社 | Manufacturing method of high-strength iron-based sintered body |
KR100297764B1 (en) * | 1998-04-27 | 2001-08-07 | 윤종용 | Optical pickup device capable of recording/reproducing with high density |
US7837812B2 (en) | 2004-05-21 | 2010-11-23 | Ati Properties, Inc. | Metastable beta-titanium alloys and methods of processing the same by direct aging |
JP4825140B2 (en) * | 2007-01-15 | 2011-11-30 | 株式会社小糸製作所 | Vehicle lighting |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6130604A (en) * | 1984-07-23 | 1986-02-12 | Taiheiyo Kinzoku Kk | Stainless steel powder for powder metallurgy |
-
1986
- 1986-08-15 JP JP61191243A patent/JPH0723481B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6130604A (en) * | 1984-07-23 | 1986-02-12 | Taiheiyo Kinzoku Kk | Stainless steel powder for powder metallurgy |
Also Published As
Publication number | Publication date |
---|---|
JPS6347302A (en) | 1988-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60221844T2 (en) | METHOD FOR THE PRODUCTION OF GRAIN METAL | |
US5856625A (en) | Stainless steel powders and articles produced therefrom by powder metallurgy | |
AU725169B2 (en) | Stainless steel powder | |
KR102074121B1 (en) | Method for manufacturing alloy steel powder for sintered member raw material | |
KR102064146B1 (en) | Method for producing alloyed steel powder for sintered member starting material | |
JPH0723481B2 (en) | Stainless steel powder | |
JP3446322B2 (en) | Alloy steel powder for powder metallurgy | |
CA2074276C (en) | Agent for the treatment of cast iron melts | |
GB2298869A (en) | Stainless steel powders and articles produced therefrom by powder metallurgy | |
US3615380A (en) | Sintered nitrogen-containing key steel refining alloy | |
JPH08209202A (en) | Alloy steel powder for high strength sintered material excellent in machinability | |
US4251266A (en) | Method for taking care of metallic waste products by remelting | |
JPS61295302A (en) | Low-alloy iron powder for sintering | |
JPS6130604A (en) | Stainless steel powder for powder metallurgy | |
CN1062558A (en) | A kind of smelting process of Ti-containing steel and Ti-containing additive | |
JPH07103442B2 (en) | Manufacturing method of high strength sintered alloy steel | |
JP2000192192A (en) | White spot preventive steel, and its manufacture | |
JPH07233402A (en) | Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom | |
SU1014955A1 (en) | Modifier | |
JPH07138602A (en) | Low alloy steel powder for powder metallurgy | |
SU883186A1 (en) | Method of producing sintered tool steel | |
JPS59129753A (en) | Alloy steel powder for high strength sintered material | |
JPS591761B2 (en) | stainless steel powder for powder metallurgy | |
JPH0456704A (en) | Stainless steel powder for powder metallurgy | |
JPH0125361B2 (en) |