JPS6347125B2 - - Google Patents

Info

Publication number
JPS6347125B2
JPS6347125B2 JP56110027A JP11002781A JPS6347125B2 JP S6347125 B2 JPS6347125 B2 JP S6347125B2 JP 56110027 A JP56110027 A JP 56110027A JP 11002781 A JP11002781 A JP 11002781A JP S6347125 B2 JPS6347125 B2 JP S6347125B2
Authority
JP
Japan
Prior art keywords
electrode
voltage
mol
sintered body
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56110027A
Other languages
Japanese (ja)
Other versions
JPS5812305A (en
Inventor
Motomasa Imai
Takashi Takahashi
Shigeki Uno
Hideyuki Kanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56110027A priority Critical patent/JPS5812305A/en
Publication of JPS5812305A publication Critical patent/JPS5812305A/en
Publication of JPS6347125B2 publication Critical patent/JPS6347125B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸化物半導体からなる電圧非直線抵抗
体に関する。 半導体を応用した回路素子の一つに電圧非直線
抵抗体に関する。 半導体を応用した回路素子の一つに電圧非直線
抵抗体があり、その代表的なものとしてZnOに
種々の酸化物を添加した焼結体を用いたバリスタ
が知られている。この種のバリスタは非直線的な
電圧電流特性を有しており、電圧の増大に伴ない
抵抗が急激に減少して電流が著しく増加するた
め、異常な電圧の吸収や電圧安定化用に実用化さ
れている。 ところで電圧非直線抵抗体の特性は一般に次の
近似式で示される電圧―電流特性をもつて評価さ
れている。 I=(V/C)〓 (但しIはバリスタに流れる電流、Vは印加電
圧、Cは定数、αは非直線係数である)従つてバ
リスタの一般特性はCとαの2つの定数で表示す
ることができ、通常はCの代りに1mAにおける
電圧V1で示される。 上記ZnOバリスタ(電圧非直線抵抗体)は前記
電圧―電流特性を任意に調節しうるなど多くの特
長を備えている一方これらZnO系バリスタを立ち
上がり時間の短いパルスに使用する場合には次の
ような欠点があつた。すなわち、従来のZnO系バ
リスタは、立ち上がり時間が短いパルスに対し
て、過電圧を吸収する能力が著しく低下し、非直
線抵抗素子として最も重視される機能が果せない
欠点があつた。このようなことは以下の理由によ
り起こる。一般にバリスタは、過電圧が印加され
た場合、その電圧に相応する電流を流すことによ
り、過電圧を吸収する。しかるに従来のZnO系バ
リスタにステツク状の電圧を印加したときの応答
電流(パルス応答性)は、時間とともに特徴的な
変化を示す。すなわち、最初にZnO系バリスタに
付層する容量による充電電流が流れ、ピークを経
て時間に対して指数関数的に減少する。しかる
後、ZnO系バリスタ本来の電流が数マイクロ秒〜
数十マイクロ秒の時定数で漸増し、前記電圧―電
流特性の近似式で表わされる電流値に収束する。 いいかえれば、従来のZnO系バリスタは、電圧
印加直後、数マイクロ秒の間にわたる、電流が著
しく制限される時間領域を有している。そして、
立上がり時間が短い過電圧パルスに対して、上記
時間領域内で、かかるバリスタに十分な電流が流
れないため、過電圧を吸収する能力が著しく低下
するものである。 本発明は、上記欠点を改良し、立上がり時間の
短いパルスにも使用できる酸化物電圧非直線抵抗
体を提供することを目的とする。 本発明は、ZnOを主成分とし、副成分として、
Bi,Co,MnそれぞれBi2O3,CO2O3,MnOに換
算して、それぞれ0.05〜2モル%、0.05〜2モル
%、0.05〜2モル%配合した原料に対して、Al,
In,Gaから選ばれた少なくとも一種をそれぞれ
Al2O3,In2O3,Ga2O3に換算して、1×10-4〜3
×102モル%添加配合して得られる焼結体と、前
記焼結体に、Agを主成分とし、硼珪酸鉛ガラス、
Bi2O3を含む電極組成に対し、ZrO2を1〜20重量
%含む電極を650〜900℃の温度で形成してなるこ
とを特徴とする酸化物電圧非直線抵抗体に関す
る。 以下、本発明を実施例(1)により説明すれば、
ZnOにBi2O3,Co2O3,Sb2O3,MnO,NiOをそ
れぞれ、0.5モル%、0.5モル%、1モル%、0.5モ
ル%、5モル%、0.2モル%配置した基本組成に、
さらに、Al2O3In2O3,Ga2O3の少なくとも1種を
1×10-4〜3×10-2モル%添加配合し、ボールミ
ルで十分に湿式混合を行ない、乾燥を行なつて調
整粉末を得た。かくして得られた調整粉末にポリ
ビニルアルコールを粘結剤として配合し、1ト
ン/cm3の圧力で成型し、直径20.0mm、厚さ2mmの
成型体にして後、1200℃の温度で焼成し、焼結体
を得た。しかる後、かかる焼結体の両面を平行に
研磨し、その研磨面に、焼付後の成分が、Agを
主成分とし副成分として硼珪酸鉛ガラス、Bi2O3
を含む電極組成に対し、ZrO2を1〜20重量%含
む電極ペースト材料を印刷により塗布し、空気中
650〜900℃の温度で焼付け、電圧非直線抵抗体を
得た。なお、このような電極ペースト材料はAg
を主成分とし、副成分として硼珪酸鉛ガラス、
Bi2O3を含む電極ペースト材料に所定量のZrO2
添加し、機械式メノウ乳鉢にて十分混合すること
により、容易に得られる。 このようにして得られた電圧非直線抵抗体のパ
ルス応答性を立ち上がり時間を変えたパルス電圧
を印加し、素子に0.1Aの電流を流したときの電
圧V0.1Aで表わし従来例、参考例を含め第1図に
示した。第1図で曲線1は本発明によるもので、
焼結体に含まれるAl2O3は1×10-3モル%、電極
に含まれる硼珪酸鉛ガラス、Bi2O3,ZrO2はそれ
ぞれ1重量%、1重量%、5重量%、電極焼付温
度は800℃のときのものである。 曲線2は、曲線1の条件で、電極成分のうち、
ZrO2を添加しないときのもの、曲線3は、曲線
1の条件で、焼結体成分のうちAl2O3を添加しな
いときのものでそれぞれ参考例を示す。 曲線4は曲線1の条件で、電極成分のうち
ZrO2を、焼結体成分のうちAl2O3をそれぞれ添加
しないときのもので従来例を示すものである。 第1図から明らかなように、本発明によれば、
立ち上がり時間の短かいパルスに対しても、パル
ス応答性が著しく改善されていることがわかる。 第2図にAl2O3の添加量とパルス応答性の関係
を示す。ここで、パルス応答性は、立ち上がり時
間5×10-8秒のパルスを印加したときの電圧
V0.1A(5×10-8)と立ち上がり時間1×10-5秒の
パルスを印加したときの電圧V0.1A(1×10-5)の
比Rで表わした。 R=V0.1A(5×10-8)/V0.1A(1×10-5) ここにRは印加パルスの立ち上がり時間の違い
による電圧上昇比を表わし、1に近づくほど良好
な応答性を示す。第2図の実線で示した曲線は本
実施例で、電極に含まれる硼珪酸鉛ガラス、
Bi2O,ZrO2はそれぞれ1重量%、1重量%、5
重量%、電極焼付温度は800℃のときのものであ
る。 第2図から明らかなように、Al2O3の添加量
が、1×10-4モル%以上で応答性の著しい改善が
見られる。さらに第2図には非直線性もあわせて
示した。非直線性は、素子に1Aの電流を流した
ときの電圧V1AとV1nAの比V1A/V1nAで表わし
た。第2図の破線で示した曲線から、Al2O3の添
加により、非直線性も改善されることがわかる。 第3図に電極焼付温度とパルス応答性の関係を
示す。第2図の場合と同様にパルス応答性は電圧
上昇比Rで示した。第3図で示される曲線は基本
組成にAl2O3を1×10-3モル%添加したもので、
電極に含まれる硼珪酸鉛ガラス、Bi2O3,ZrO2
それぞれ、1重量%、1重量%、5重量%のとき
のものである。電極焼付条件が650〜900℃のとき
にパルス応答性が著しく改善されることがわか
る。 第4図にIn2O3,Ga2O3の添加量とパルス応答
性の関係を同様に示す。第4図で曲線5はIn2O3
添加の場合であり、曲線6はGa2O3添加の場合で
それぞれ実線であらわした曲線で示した。あわせ
て電圧非直線性V1A/V1nAの変化の様子を破線で
示した。 第5図にAl2O3,In2O3,Ga2O3の混合物の添加
量とパルス応答性の関係、及び電圧非直線性の関
係を同様に示した。曲線7はAl2O3とGa2O3をそ
れぞれの割合で混合した場合、曲線8はAl2O3
In2O3をそれぞれ等モルの割合で混合した場合、
曲線9はAl2O3,In2O3,Ga2O3の3者をそれぞれ
等モルの割合で混合した場合のものである。第4
図,第5図において電極の形成条件は第2図の場
合と全く同じである。 第2図、第4図、及び第5図から明らかなよう
に、基本組成にAl2O3,In2O3,Ga2O3をそれぞれ
添加した場合、あるいはこれらを組合せて添加し
た場合に、パルス応答性が著しく改善されるとと
もに、非直線性も改善される。 なお本発明で、Al2O3,In2O3,及びGa2O3の添
加量の範囲を限定した理由は、これら添加物ある
いはこれら添加物の組合せで、その添加量が1×
10-4モル%未満ではパルス応答性の改善が、3×
10-2モル%を超えると非直線性がそれぞれ満足な
ものが得られないためである。 第6図に電極成分のうちのZrO2の添加量とパ
ルス応答性の関係を同様に示す。第6図は、焼結
体成分のうち、Al2O3添加量が1×10-3wt%、電
極成分のうち硼珪酸鉛ガラス、Bi2O3がそれぞれ
1重量%、1重量%、電極焼付温度800℃のとき
のものである。第6図から明らかなように、電極
成分にZrO2を1重量%以上含有せしめることに
より、パルス応答性が著しく改善される。なお
ZrO2の含有量が20%を超えると非直線性及び電
極のハンダ付性が悪くなり、実用に十分なものが
得られない。 次に実施例(2)について説明すれば、ZnOに
Bi2O3,Co2O3,MnOをそれぞれ、0.05〜2モル
%、0.05〜2モル%、0.05〜2モル%、必要に応
じてSb2O3,MgO,NiOをそれぞれ0.1〜3モル、
0.1〜15モル、0.05〜2モル%配合した基本組成
に対し、Al2O3,In2O3,Ga2O3の少くとも1種を
それぞれ1×10-3モル%添加配合し、焼成して得
られた焼結体に焼付後の成分がAgを主成分とし、
副成分として硼珪酸鉛ガラス、Bi2O3,ZrO2それ
ぞれ1重量%、1重量%、5重量%含む電極材料
を印刷により塗布し、空気中800℃の温度で焼付
け、実施例(1)の場合と同一条件で実験を行い、参
考例をも含めて、第1表に示すような電圧非直線
抵抗体の特性データを得た。
The present invention relates to a voltage nonlinear resistor made of an oxide semiconductor. One of the circuit elements using semiconductors is a voltage nonlinear resistor. One of the circuit elements using semiconductors is a voltage nonlinear resistor, and a typical example is a varistor using a sintered body of ZnO with various oxides added. This type of varistor has non-linear voltage-current characteristics, and as the voltage increases, the resistance rapidly decreases and the current increases significantly, so it is useful for absorbing abnormal voltages and stabilizing voltages. has been made into By the way, the characteristics of a voltage nonlinear resistor are generally evaluated using the voltage-current characteristics expressed by the following approximate equation. I = (V/C) (where I is the current flowing through the varistor, V is the applied voltage, C is a constant, and α is a nonlinear coefficient) Therefore, the general characteristics of a varistor are expressed by two constants, C and α. and is usually expressed as a voltage V 1 at 1 mA instead of C. The above ZnO varistors (voltage non-linear resistors) have many features such as the ability to adjust the voltage-current characteristics as desired. However, when using these ZnO varistors for pulses with short rise times, the following There was a drawback. In other words, conventional ZnO-based varistors have a drawback in that their ability to absorb overvoltage for pulses with a short rise time is significantly reduced, and they cannot perform the most important function as a nonlinear resistance element. This happens for the following reasons. Generally, when an overvoltage is applied to a varistor, it absorbs the overvoltage by flowing a current corresponding to the voltage. However, when a step voltage is applied to a conventional ZnO-based varistor, the response current (pulse response) shows a characteristic change over time. That is, a charging current due to the capacitance attached to the ZnO-based varistor first flows, and after reaching a peak, it decreases exponentially with respect to time. After that, the original current of the ZnO varistor decreases for several microseconds.
The current value gradually increases with a time constant of several tens of microseconds and converges to the current value expressed by the approximate expression of the voltage-current characteristic. In other words, the conventional ZnO-based varistor has a time region of several microseconds immediately after voltage application, in which the current is significantly limited. and,
In response to an overvoltage pulse with a short rise time, sufficient current does not flow through the varistor within the above time range, so the ability to absorb the overvoltage is significantly reduced. The object of the present invention is to improve the above-mentioned drawbacks and provide an oxide voltage nonlinear resistor that can be used even for pulses with short rise times. The present invention has ZnO as a main component, and as a subcomponent,
Al , _ _
At least one selected from In and Ga, respectively.
Converted to Al 2 O 3 , In 2 O 3 , Ga 2 O 3 , 1×10 -4 ~3
A sintered body obtained by adding 2 mol% of ×10 and a borosilicate lead glass containing Ag as a main component,
The present invention relates to an oxide voltage nonlinear resistor characterized in that an electrode containing 1 to 20% by weight of ZrO 2 is formed at a temperature of 650 to 900° C. with respect to an electrode composition containing Bi 2 O 3 . The present invention will be explained below with reference to Example (1).
Basic composition in which Bi 2 O 3 , Co 2 O 3 , Sb 2 O 3 , MnO, and NiO are arranged in ZnO at 0.5 mol %, 0.5 mol %, 1 mol %, 0.5 mol %, 5 mol %, and 0.2 mol %, respectively. To,
Furthermore, at least one of Al 2 O 3 In 2 O 3 and Ga 2 O 3 is added in an amount of 1×10 −4 to 3×10 −2 mol %, sufficiently wet mixed in a ball mill, and dried. A prepared powder was obtained. The prepared powder thus obtained was blended with polyvinyl alcohol as a binder and molded at a pressure of 1 ton/cm 3 to form a molded product with a diameter of 20.0 mm and a thickness of 2 mm, and then fired at a temperature of 1200°C. A sintered body was obtained. Thereafter, both sides of the sintered body are polished in parallel, and the polished surfaces are coated with Ag as the main component and borosilicate lead glass and Bi 2 O 3 as secondary components.
An electrode paste material containing 1 to 20% by weight of ZrO 2 was applied by printing to an electrode composition containing
Baking at a temperature of 650-900℃, a voltage nonlinear resistor was obtained. Note that such electrode paste material is Ag
The main component is lead borosilicate glass as a subcomponent.
It can be easily obtained by adding a predetermined amount of ZrO 2 to an electrode paste material containing Bi 2 O 3 and thoroughly mixing it in a mechanical agate mortar. The pulse response of the voltage nonlinear resistor obtained in this way is expressed as the voltage V 0.1 A when a pulse voltage with different rise times is applied and a current of 0.1 A flows through the element. It is shown in Figure 1. In FIG. 1, curve 1 is according to the present invention,
Al 2 O 3 contained in the sintered body is 1×10 -3 mol%, lead borosilicate glass, Bi 2 O 3 and ZrO 2 contained in the electrode are 1% by weight, 1% by weight and 5% by weight, respectively. The baking temperature is 800℃. Curve 2 shows, under the conditions of curve 1, that among the electrode components,
Curve 3 shows a reference example when ZrO 2 is not added, and curve 3 shows a case when Al 2 O 3 among the sintered body components is not added under the conditions of curve 1. Curve 4 is the condition of curve 1, and the electrode component
This is a conventional example in which ZrO 2 and Al 2 O 3 among the components of the sintered body are not added. As is clear from FIG. 1, according to the present invention,
It can be seen that the pulse response is significantly improved even for pulses with short rise times. FIG. 2 shows the relationship between the amount of Al 2 O 3 added and the pulse response. Here, the pulse response is the voltage when a pulse with a rise time of 5 × 10 -8 seconds is applied.
It was expressed as the ratio R of V 0.1A (5×10 −8 ) and the voltage V 0.1A (1×10 −5 ) when a pulse with a rise time of 1×10 −5 seconds was applied. R = V 0.1A (5 × 10 -8 ) / V 0.1A (1 × 10 -5 ) Here, R represents the voltage rise ratio due to the difference in the rise time of the applied pulse, and the closer to 1, the better the response. show. The curve shown by the solid line in FIG. 2 is the curve shown in this example.
Bi 2 O and ZrO 2 are 1% by weight, 1% by weight, and 5% by weight, respectively.
Weight% and electrode baking temperature are at 800°C. As is clear from FIG. 2, when the amount of Al 2 O 3 added is 1×10 −4 mol % or more, the response is significantly improved. Furthermore, nonlinearity is also shown in FIG. Nonlinearity was expressed as the ratio V 1A /V 1nA of the voltage V 1A to V 1nA when a current of 1A was passed through the element. From the curve shown by the broken line in FIG. 2, it can be seen that nonlinearity is also improved by adding Al 2 O 3 . Figure 3 shows the relationship between electrode baking temperature and pulse response. As in the case of FIG. 2, the pulse responsiveness was expressed as the voltage rise ratio R. The curve shown in Figure 3 is obtained by adding 1×10 -3 mol% of Al 2 O 3 to the basic composition.
The lead borosilicate glass, Bi 2 O 3 and ZrO 2 contained in the electrode are 1% by weight, 1% by weight and 5% by weight, respectively. It can be seen that the pulse response is significantly improved when the electrode baking conditions are 650 to 900°C. FIG. 4 similarly shows the relationship between the amounts of In 2 O 3 and Ga 2 O 3 added and the pulse response. In Figure 4, curve 5 is In 2 O 3
Curve 6 is the case of addition of Ga 2 O 3 and is shown by a solid line. In addition, the state of change in voltage nonlinearity V 1A /V 1nA is shown by a broken line. FIG. 5 similarly shows the relationship between the amount of the mixture of Al 2 O 3 , In 2 O 3 , and Ga 2 O 3 added and the pulse response and voltage nonlinearity. Curve 7 shows the mixture of Al 2 O 3 and Ga 2 O 3 in their respective proportions, and curve 8 shows the mixture of Al 2 O 3 and Ga 2 O 3 .
When In 2 O 3 are mixed in equimolar proportions,
Curve 9 is obtained when Al 2 O 3 , In 2 O 3 , and Ga 2 O 3 are mixed in equimolar proportions. Fourth
The conditions for forming the electrodes in FIGS. 5 and 5 are exactly the same as in FIG. 2. As is clear from Figures 2, 4, and 5, when Al 2 O 3 , In 2 O 3 , and Ga 2 O 3 are added to the basic composition, or when they are added in combination, , the pulse response is significantly improved, and the nonlinearity is also improved. In the present invention, the reason for limiting the range of addition amounts of Al 2 O 3 , In 2 O 3 , and Ga 2 O 3 is that these additives or a combination of these additives are
At less than 10 -4 mol%, the improvement in pulse response is 3×
This is because if the amount exceeds 10 -2 mol %, satisfactory nonlinearity cannot be obtained. FIG. 6 similarly shows the relationship between the amount of ZrO 2 added among the electrode components and the pulse response. Figure 6 shows that among the sintered body components, the amount of Al 2 O 3 added is 1 × 10 -3 wt%, and among the electrode components, borosilicate lead glass and Bi 2 O 3 are 1% by weight and 1% by weight, respectively. This is when the electrode baking temperature is 800℃. As is clear from FIG. 6, by containing 1% by weight or more of ZrO 2 in the electrode component, the pulse response is significantly improved. In addition
If the ZrO 2 content exceeds 20%, nonlinearity and solderability of the electrode will deteriorate, making it impossible to obtain a product sufficient for practical use. Next, to explain Example (2), ZnO
0.05 to 2 mol%, 0.05 to 2 mol%, 0.05 to 2 mol% of Bi 2 O 3 , Co 2 O 3 , and MnO, respectively, and 0.1 to 3 mol of Sb 2 O 3 , MgO, and NiO each as necessary. ,
To the basic composition of 0.1 to 15 mol and 0.05 to 2 mol %, at least one of Al 2 O 3 , In 2 O 3 , and Ga 2 O 3 is added in 1 x 10 -3 mol %, and fired. The composition after baking of the sintered body obtained by
An electrode material containing lead borosilicate glass, Bi 2 O 3 , and ZrO 2 as subcomponents of 1% by weight, 1% by weight, and 5% by weight, respectively, was applied by printing and baked in air at a temperature of 800°C. Example (1) An experiment was conducted under the same conditions as in the case of , and the characteristic data of the voltage nonlinear resistor as shown in Table 1, including the reference example, was obtained.

【表】【table】

【表】 第1表から明らかなように実施例(2)においても
電圧上昇比Rで表わされるパルス応答性やV1A
V1nで表わされる非直線性は、既に説明したよう
に第1図〜第5図に示す実施例(1)の結果と同様の
効果を発揮していることが判る。 本発明によれば、基本組成をZnOを主成分とし
Bi2O3,Co2O3,MnOをそれぞれ0.05〜2モル%、
0.05〜2モル%と変化した場合でも、Bi2O3
In2O3,Ga2O3の少くとも1種を添加配合し、得
られた焼結体にAgを主成分とし、副成分として
硼珪酸鉛ガラス、Bi2O3を含む電極組成に対し、
ZrO2を1〜20重量%含む電極を650〜900℃の温
度で形成することにより、本発明の効果は常に期
待できるものである。なお基本組成にはSb2O3
MgO,MiOなどの添加物を必要に応じて配合し
ても、本発明の効果が常に発揮されることは実施
例(1),(2)より明らかである。 なお、本発明の原理を補足して説明するなら
ば、本発明の要点は、電圧―電流非直線性を示す
ZnO焼結体に、Al2O3,In2O3,Ga2O3などを添加
し、得られた焼結体にZrO2を含む電極を650〜
900℃の温度で焼付けることにある。Al2O3
In2O3,Ga2O3の添加は、ZnO粒子内に固溶し、
多量のドナーを形成する。さらに上記温度範囲で
電極を焼付けることは電極を形成することと同時
に焼結体を再加熱することに相当する。このよう
な再加熱は、ZnO粒子にはさまれたBi2O3層の結
晶構造をαあるいはβ型からγ型に転移させるの
に他ならない。発明者らはこれらの事実をふま
え、鋭意実験、解析を行うことにより、電圧非直
線抵抗体のパルス応答特性がこれらの事実と密接
な関連があることを見出した。すなわち、パルス
応答性は、ZnOグレインの電子状態と、粒界相の
Bi2O3の電子状態とにより決まるものであり、こ
れらの電子状態がパルス応答性に好ましい状態
に、に、同時になつたときにのみ、パルス応答性
の大幅な改善がなされるものである。 従つて本発明でAl2O3,In2O3,Ga2O3の添加
は、ZnO粒子の電子状態を、電極を650℃〜900℃
で焼付けることはBi2O3相の電子状態をそれぞれ
パルス応答性に好ましい状態にすることに相当す
るもので、本発明によれば、これら好ましい状態
を同時に満足するものである。さらに本発明で、
電極に含ませるZrO2の効果に言及するならば、
一般にAgを主成分とする電極組成には、電極と
焼結体との接着を強固にするために比較的低温度
の軟化点を有する硼珪酸鉛ガラスが、さらに電極
のハンダ付け性を改良するために、Bi2O3がそれ
ぞれフリツト成分として数重量%程度含有されて
いる。この種電極を用いた場合、電極焼付時にお
いて、これらのフリツト成分が焼結体内部に拡散
し、応答性に好ましい電子状態に対して悪影響を
及ぼし、本発明の目的が達せられない。これらを
解決するために、例えばフリツト成分を含有しな
いAgのみの電極を前記温度範囲で焼付けること
が考えられる。第2表は上記方法によるパルス応
答性と電極の性能を本発明と比較するもので、1
はAgのみの電極を、2はAgを主成分とし、硼珪
酸鉛ガラス、Bi2O3をそれぞれ1重量%含有する
電極を、3は本発明実施例(1)と同一条件の電極を
それぞれ800℃で焼付けたものである。なお、焼
結体は実施例(1)でAl2O3を1×10-3モル%添加し
たものを使用した。
[Table] As is clear from Table 1, in Example (2), the pulse response expressed by the voltage rise ratio R and V 1A /
It can be seen that the nonlinearity represented by V 1n exhibits the same effect as the results of Example (1) shown in FIGS. 1 to 5, as already explained. According to the present invention, the basic composition is ZnO as the main component.
Bi 2 O 3 , Co 2 O 3 , MnO each 0.05 to 2 mol%,
Even when it changes from 0.05 to 2 mol%, Bi 2 O 3 ,
At least one of In 2 O 3 and Ga 2 O 3 is added and blended, and the resulting sintered body has an electrode composition containing Ag as the main component and borosilicate lead glass and Bi 2 O 3 as secondary components. ,
By forming an electrode containing 1 to 20% by weight of ZrO 2 at a temperature of 650 to 900°C, the effects of the present invention can always be expected. The basic composition includes Sb 2 O 3 ,
It is clear from Examples (1) and (2) that even if additives such as MgO and MiO are added as necessary, the effects of the present invention are always exhibited. To supplement and explain the principle of the present invention, the main point of the present invention is to demonstrate voltage-current nonlinearity.
Al 2 O 3 , In 2 O 3 , Ga 2 O 3 , etc. are added to the ZnO sintered body, and an electrode containing ZrO 2 is added to the obtained sintered body at 650 to
It is baked at a temperature of 900℃. Al 2 O 3 ,
When In 2 O 3 and Ga 2 O 3 are added, they form a solid solution within the ZnO particles.
Forms a large amount of donors. Furthermore, baking the electrode in the above temperature range corresponds to forming the electrode and reheating the sintered body at the same time. Such reheating is nothing but a transition of the crystal structure of the Bi 2 O 3 layer sandwiched between ZnO particles from α or β type to γ type. Based on these facts, the inventors conducted extensive experiments and analyzes and found that the pulse response characteristics of the voltage nonlinear resistor are closely related to these facts. In other words, the pulse response depends on the electronic state of ZnO grains and the grain boundary phase.
This is determined by the electronic states of Bi 2 O 3 , and only when these electronic states simultaneously become favorable for pulse responsiveness can a significant improvement in pulse responsiveness be achieved. Therefore, in the present invention, the addition of Al 2 O 3 , In 2 O 3 , and Ga 2 O 3 changes the electronic state of ZnO particles and changes the electrode temperature between 650°C and 900°C.
Baking corresponds to making the electronic states of the three Bi 2 O phases favorable for pulse responsiveness, and according to the present invention, these favorable states are simultaneously satisfied. Furthermore, in the present invention,
If we refer to the effect of ZrO 2 included in the electrode,
In general, for electrode compositions mainly composed of Ag, lead borosilicate glass, which has a relatively low softening point, is used to strengthen the bond between the electrode and the sintered body, which further improves the solderability of the electrode. Therefore, Bi 2 O 3 is contained as a frit component in an amount of about several percent by weight. When this type of electrode is used, these frit components diffuse into the interior of the sintered body during electrode baking, and have an adverse effect on the electronic state favorable for responsiveness, making it impossible to achieve the object of the present invention. In order to solve these problems, it is conceivable to bake an electrode made only of Ag, which does not contain a frit component, in the above temperature range, for example. Table 2 compares the pulse response and electrode performance obtained by the above method with that of the present invention.
2 is an electrode made only of Ag, 2 is an electrode mainly composed of Ag and contains 1% by weight of lead borosilicate glass and Bi 2 O 3 , and 3 is an electrode under the same conditions as Example (1) of the present invention. It is baked at 800℃. The sintered body used in Example (1) was the one in which 1×10 −3 mol % of Al 2 O 3 was added.

【表】 第2表から明らかなように、Agのみの電極で
は、電極性能が、Agを主成分とし、硼珪酸鉛ガ
ラス、Bi2O3を添加した電極では、パルス応答性
がそれぞれ十分ではない。Agを主成分とし、硼
珪酸鉛ガラス、Bi2O3を含む電極にZrO2を添加す
ることは、前記電極焼付温度範囲においてフリツ
ト成分が焼結体に拡散することを著しく抑制し、
焼結体自体の優れたパルス応答性を損なうことな
く接着強度ならびに、半田付性の優れた電極を実
現するものである。 以上説明したように、本発明によれば、立上が
り時間が短いパルスに対して使用できる優れたパ
ルス応答性を有し、さらに非直線性にも優れた酸
化物電圧非直線抵抗体を提供するものである。
[Table] As is clear from Table 2, electrodes made of Ag only have insufficient electrode performance, while electrodes containing lead borosilicate glass and Bi 2 O 3 do not have sufficient pulse response. do not have. Adding ZrO 2 to an electrode containing Ag as a main component, lead borosilicate glass, and Bi 2 O 3 significantly suppresses the diffusion of frit components into the sintered body in the electrode baking temperature range.
This provides an electrode with excellent adhesive strength and solderability without impairing the excellent pulse response of the sintered body itself. As explained above, according to the present invention, there is provided an oxide voltage nonlinear resistor that has excellent pulse responsiveness that can be used for pulses with short rise times and also has excellent nonlinearity. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来例及び参考例と、本発明による
酸化物電圧非直線抵抗体のパルス立ち上がり時間
と電圧を示す曲線図、第2図は本発明による酸化
物電圧非直線抵抗体のAl2O3添加量と電圧上昇比
及び非直線性を示す曲線図、第3図は同じく再加
熱温度と電圧上昇比を示す曲線図、第4図は同じ
くIn2O3,Ga2O3の添加量と電圧上昇比及び非直
線性を示す曲線図、第5図は同じくAl2O3
In2O3,Ga2O3の混合物の添加量と、電圧上昇比
及び非直線性を示す曲線図。第6図は電極に含ま
れるZrO2の含有量と電圧上昇比及び非直線性を
示す曲線図。
FIG. 1 is a curve diagram showing the pulse rise time and voltage of the conventional example, the reference example, and the oxide voltage nonlinear resistor according to the present invention. FIG. 2 is a curve diagram showing the pulse rise time and voltage of the oxide voltage nonlinear resistor according to the present invention. A curve diagram showing the amount of O 3 added, voltage increase ratio, and nonlinearity. Figure 3 is a curve diagram showing the reheating temperature and voltage increase ratio. Figure 4 is a curve diagram showing the addition of In 2 O 3 and Ga 2 O 3 . Figure 5 is a curve diagram showing the amount, voltage rise ratio, and nonlinearity of Al 2 O 3 ,
A curve diagram showing the amount of a mixture of In 2 O 3 and Ga 2 O 3 added, voltage increase ratio, and nonlinearity. FIG. 6 is a curve diagram showing the content of ZrO 2 contained in the electrode, voltage increase ratio, and nonlinearity.

Claims (1)

【特許請求の範囲】[Claims] 1 ZnOを主成分とし、副成分として少くとも
Bi,Co,MnをそれぞれBi2O3,Co2O3,MnOに
換算して、それぞれ0.05〜2モル%、0.05〜2モ
ル%、0.05〜2モル%配合した原料に対して、
Al,In,Gaから選ばれた少なくとも一種をそれ
ぞれAl2O3,In2O3,Ga2O3に換算して、1×10-4
〜3×10-2モル%添加配合して得られる焼結体
と、前記焼結体に、Agを主成分とし、副成分と
して硼珪酸鉛ガラス、Bi2O3を含む電極組成に対
し、ZrO2を1〜20重量%含む電極を650〜900℃
の温度で形成してなることを特徴とする酸化物電
圧非直線抵抗体。
1 ZnO as the main component and at least as a subcomponent
For raw materials containing 0.05 to 2 mol%, 0.05 to 2 mol%, and 0.05 to 2 mol% of Bi, Co, and Mn in terms of Bi 2 O 3 , Co 2 O 3 , and MnO, respectively,
At least one selected from Al, In, and Ga is converted into Al 2 O 3 , In 2 O 3 , and Ga 2 O 3 and is 1×10 -4
A sintered body obtained by adding ~3 × 10 -2 mol% and an electrode composition containing Ag as a main component and borosilicate lead glass and Bi 2 O 3 as subcomponents in the sintered body, Electrode containing 1-20% by weight of ZrO 2 at 650-900℃
An oxide voltage nonlinear resistor characterized by being formed at a temperature of .
JP56110027A 1981-07-16 1981-07-16 Oxide voltage nonlinear resistor Granted JPS5812305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56110027A JPS5812305A (en) 1981-07-16 1981-07-16 Oxide voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56110027A JPS5812305A (en) 1981-07-16 1981-07-16 Oxide voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS5812305A JPS5812305A (en) 1983-01-24
JPS6347125B2 true JPS6347125B2 (en) 1988-09-20

Family

ID=14525250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56110027A Granted JPS5812305A (en) 1981-07-16 1981-07-16 Oxide voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS5812305A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210702A (en) * 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide varister
JPH06342702A (en) * 1993-06-01 1994-12-13 Tdk Corp Voltage dependent nonlinear resistor element and its manufacture

Also Published As

Publication number Publication date
JPS5812305A (en) 1983-01-24

Similar Documents

Publication Publication Date Title
US4045374A (en) Zinc oxide voltage-nonlinear resistor
JPS6243326B2 (en)
JPS6347125B2 (en)
US4060661A (en) Voltage-dependent resistor
JPH0136684B2 (en)
JPS6221242B2 (en)
JPH0425681B2 (en)
JPS6329804B2 (en)
JPH04139702A (en) Voltage-dependent nonlinear resistor
JP3317015B2 (en) Zinc oxide varistor
JPH03211705A (en) Manufacture of voltage non-linear resistor
JP2962056B2 (en) Voltage non-linear resistor
JPH0578924B2 (en)
JPS6197905A (en) Voltage non-linear resistor
JPS626325B2 (en)
JPS62282407A (en) Manufacture of voltage nonlinear resistance element
JPS602764B2 (en) oxide voltage nonlinear resistor
JPH0249522B2 (en)
JPS62282410A (en) Manufacture of voltage nonlinear resistance element
JPS61259502A (en) Manufacture of voltage non-linear resistor
JPS6329801B2 (en)
JPS5821804B2 (en) Atsumakubarista youdenkiyokuzairiyo
JPH09320815A (en) Manufacture of zno varistor
JPH0513361B2 (en)
JPS5831721B2 (en) Voltage nonlinear resistance element and its manufacturing method