JPS6346983Y2 - - Google Patents

Info

Publication number
JPS6346983Y2
JPS6346983Y2 JP1981001179U JP117981U JPS6346983Y2 JP S6346983 Y2 JPS6346983 Y2 JP S6346983Y2 JP 1981001179 U JP1981001179 U JP 1981001179U JP 117981 U JP117981 U JP 117981U JP S6346983 Y2 JPS6346983 Y2 JP S6346983Y2
Authority
JP
Japan
Prior art keywords
heat
cable
conductor
working fluid
heat dissipating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981001179U
Other languages
Japanese (ja)
Other versions
JPS57115120U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981001179U priority Critical patent/JPS6346983Y2/ja
Publication of JPS57115120U publication Critical patent/JPS57115120U/ja
Application granted granted Critical
Publication of JPS6346983Y2 publication Critical patent/JPS6346983Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【考案の詳細な説明】 この考案は電力ケーブルに関するものである。[Detailed explanation of the idea] This invention relates to power cables.

周知のように電力ケーブルの送電容量は絶縁特
性によつて大きく左右され、また送電電力を高め
た場合、ケーブルの発熱による絶縁特性の低下や
ケーブル自体の損傷の危険があり、したがつて電
力ケーブルの送電容量を高めるためには、絶縁特
性を高めるとともに耐熱性を向上させ、あるいは
ケーブル自体を冷却することが必要となる。従
来、積極的に冷却し得る構造の電力ケーブルとし
てパイプ形ケーブルやガス絶縁ケーブルが知られ
ているが、前者のパイプ形ケーブルにあつては、
積極的な冷却をを行なうために圧力媒体の油を循
環させる必要があるから、ポンプや油タンク等か
らなるポンピングプラントを設けなければなら
ず、装置が複雑高価なものとなり、しかもランニ
ングコストが嵩むなどの問題がある。また後者の
ガス絶縁ケーブルは、絶縁体の大部分を占める例
えばSF6ガスの熱伝導および対流によつて導体損
による温度上昇を抑えるものであるが、必ずしも
十分な冷却効果を得ることができず、しかも前者
のパイプ形ケーブルおよび後者のガス絶縁ケーブ
ルのいずれにおいても、絶縁体である油あるいは
ガスの顕熱として熱の移動を行なわせるものであ
るため、冷却効果が低く、発熱による絶縁特性の
低下を防ぐという面から送電容量を高めることは
困難であつた。
As is well known, the power transmission capacity of a power cable is greatly influenced by its insulation properties, and when the transmission power is increased, there is a risk that the insulation properties will deteriorate due to heat generation in the cable and that the cable itself will be damaged. In order to increase the power transmission capacity of a cable, it is necessary to improve its insulation properties and heat resistance, or to cool the cable itself. Conventionally, pipe-shaped cables and gas-insulated cables have been known as power cables with structures that can be actively cooled.
In order to perform active cooling, it is necessary to circulate oil as a pressure medium, so a pumping plant consisting of a pump, oil tank, etc. must be installed, making the equipment complicated and expensive, and running costs increase. There are other problems. The latter type of gas-insulated cable suppresses the temperature rise due to conductor loss through heat conduction and convection of SF 6 gas, which makes up most of the insulator, but it is not always possible to obtain a sufficient cooling effect. Moreover, in both the former pipe type cable and the latter gas insulated cable, heat is transferred as sensible heat from the oil or gas insulator, so the cooling effect is low and the insulation properties deteriorate due to heat generation. It has been difficult to increase power transmission capacity from the perspective of preventing power decline.

この考案は上記の問題を有効に解決することの
できる電力ケーブルを提供することを目的とする
もので、導体を密閉中空構造とするとともに、そ
の内部に、熱が与えられることにより蒸発しかつ
放熱することにより凝縮し、潜熱として熱輸送を
行なう作動流体を封入し、さらに液相作動流体を
毛細管作用にて還流させるためのウイツクを導体
内に設けるとともに、この導体の端部の外周に密
着させて放熱部を設けるとともに、この放熱部の
端部から前記導体の端部が、所定の長さ突出する
ように設けたことを特徴とするものである。
The purpose of this invention is to provide a power cable that can effectively solve the above problems.The conductor has a sealed hollow structure, and when heat is applied to the inside, it evaporates and radiates heat. A working fluid that condenses and transports heat as latent heat is sealed in the conductor, and a wick is provided inside the conductor to allow the liquid-phase working fluid to flow back through capillary action, and is tightly attached to the outer periphery of the end of the conductor. The present invention is characterized in that a heat dissipation section is provided, and an end of the conductor is provided so as to protrude a predetermined length from an end of the heat dissipation section.

以下この考案の実施例を図面を参照して説明す
ると、第1図はこの考案の一実施例を示す部分縦
断面図、第2図はその−線矢視断面図であつ
て、導体1は銅あるいはアルミニウム等の金属か
らなるものであつて、両端部が密閉された中空状
に形成されており、その導体1の内周面に軸線方
向に沿う細溝あるいは金属網等毛細管作用をなす
ウイツク2が設けられ、さらに前記導体1の内部
には、空気等常温下で凝縮しない非凝縮性気体を
真空吸引して排気した後に凝縮性作動流体が封入
されている。その作動流体は後述するように蒸発
して流動した後放熱凝縮することにより、その潜
熱として熱輸送を行なうものであつて、室温ある
いはそれよりも若干高い40〜60℃程度の温度で蒸
発するものが好ましく、例えばメタノールあるい
は前記導体1内が減圧状態であれば水を用いるこ
とができる。
An embodiment of this invention will be described below with reference to the drawings. FIG. 1 is a partial longitudinal cross-sectional view showing an embodiment of this invention, and FIG. 2 is a cross-sectional view taken along the line -. A conductor made of metal such as copper or aluminum, which is formed in a hollow shape with both ends sealed, and which has a capillary action such as a thin groove or metal mesh running along the axial direction on the inner peripheral surface of the conductor 1. Further, a condensable working fluid is sealed inside the conductor 1 after a non-condensable gas that does not condense at room temperature, such as air, is vacuum-suctioned and exhausted. As described below, the working fluid evaporates and flows, then radiates heat and condenses, thereby transporting heat as latent heat, and evaporates at room temperature or a slightly higher temperature of 40 to 60 degrees Celsius. is preferable, and for example, methanol or water can be used if the inside of the conductor 1 is under reduced pressure.

そして、前記導体1の端部(第1図において左
端)を除く部分の外周面に絶縁紙あるいはゴム等
からなる絶縁層3が形成されるとともに、その外
周面にクロロプレン等からなる保護層4が形成さ
れている。さらに、前記導体1の端部には放熱部
5が、端部の外周面に密着するとともに、前記端
部が所定の長さだけ突出するように設けられてい
る。その放熱部5は、前記ケーブルの半径方向に
沿う多数のフイン5aを設け、送電に伴つて生じ
る熱を外気に熱伝達する構成とされている。な
お、そのフイン5aは熱伝導性を良くするため金
属製とすることが好ましいが、それに伴つてアー
クを生じるおそれがある場合には、例えばアーク
リングを設ければよい。
Then, an insulating layer 3 made of insulating paper or rubber is formed on the outer peripheral surface of the conductor 1 except for the end (the left end in FIG. 1), and a protective layer 4 made of chloroprene or the like is formed on the outer peripheral surface. It is formed. Further, a heat dissipating portion 5 is provided at the end of the conductor 1 so as to be in close contact with the outer circumferential surface of the end and to protrude by a predetermined length. The heat dissipation section 5 is provided with a large number of fins 5a along the radial direction of the cable, and is configured to transfer heat generated during power transmission to the outside air. The fins 5a are preferably made of metal in order to improve thermal conductivity, but if there is a risk of arcing, an arc ring may be provided, for example.

しかして、上記構成の電力ケーブルにて送電し
導体損により発熱した場合、導体1の内部に封入
された作動流体が熱を受けて蒸発し、その蒸気が
導体1内の圧力の低い箇所すなわち前記放熱部5
を設けた箇所に流動する。放熱部5からはケーブ
ル内の熱を大気あるいは冷却液等に放出するの
で、放熱部5を設けた箇所に到達した気相作動流
体はその箇所のウイツク2に熱を伝達して凝縮す
る。すなわち、作動流体は導体損によつて生じる
熱を作動流体の潜熱として放熱部5を設けた箇所
まで輸送する。作動流体が蒸発する箇所では液相
作動流体の蒸発により毛細管圧力が生じ、その結
果放熱部5を設けた箇所で凝縮液化した作動流体
がその毛細管圧力によつてウイツク2内を還流す
る。そして、還流した液相作動流体は再度熱を受
けて蒸発し、上述した動作を繰返し行ない、した
がつて作動流体が上述のように蒸発・凝縮を繰返
し行なつて循環流動することにより、送電に伴つ
て生じる熱が継続して大気あるいは冷却液等に対
して放出され、その結果ケーブルの温度上昇が抑
制される。
However, when power is transmitted through the power cable having the above configuration and heat is generated due to conductor loss, the working fluid sealed inside the conductor 1 receives heat and evaporates, and the vapor is released into the low pressure areas within the conductor 1, i.e. Heat radiation part 5
Flows to the place where the water is placed. Since the heat inside the cable is released from the heat radiating section 5 to the atmosphere or to the coolant, the gas phase working fluid that reaches the location where the heat radiating section 5 is provided transfers heat to the wick 2 at that location and condenses. That is, the working fluid transports heat generated by conductor loss as latent heat of the working fluid to the location where the heat radiating section 5 is provided. At the location where the working fluid evaporates, capillary pressure is generated due to the evaporation of the liquid-phase working fluid, and as a result, the working fluid condensed and liquefied at the location where the heat dissipation section 5 is provided flows back inside the wick 2 due to the capillary pressure. Then, the refluxed liquid-phase working fluid receives heat again and evaporates, repeating the above-mentioned operation, and the working fluid repeats evaporation and condensation as described above and circulates, thereby being used for power transmission. The accompanying heat is continuously released to the atmosphere, cooling fluid, etc., and as a result, the rise in temperature of the cable is suppressed.

なお、凝縮液化した作動流体がウイツク2内を
還流することにより熱輸送が繰返し行なわれるの
であるから、放熱部5を設けた箇所を他の部分よ
りも高い位置に設定すれば、凝縮液化した作動流
体が毛細管圧力および重力によつて蒸発の生じて
いる箇所に還流するので、還流距離換言すれば熱
輸送を行なうことのできる距離をより長くするこ
とができる。また、導体1の内部を単一の密閉室
とした場合、その密閉室の長さは、ウイツク2の
流動抵抗等により液相作動流体が還流し得る距離
が制約される関係上一定長さに制限され、それに
伴つて導体1の長さすなわちケーブルの長さが制
限され、ケーブルを所望の長さにすることができ
ない場合が生じるが、導体1の内部にその軸線方
向に多数の密閉室を連設し、各密閉室内に前記ウ
イツクを設けるとともにそれぞれの密閉室内に作
動流体を封入し、かつ各密閉室を液相作動流体が
還流し得る長さに設定すれば、各密閉室内におい
て作動流体が蒸発・凝縮を繰返して循環流動する
ことにより熱輸送が行なわれ、また各密閉室間で
はその隔壁を介して熱伝導が行なわれるので、全
長に亘つて熱輸送を行なうことができ、したがつ
て液相作動流体の還流距離に特に制約されること
なく導体1すなわちケーブルの長さを長く設定す
ることができる。
Note that heat transfer is performed repeatedly as the condensed and liquefied working fluid circulates inside the wick 2, so if the heat dissipation section 5 is set at a higher position than the other parts, the condensed and liquefied working fluid will be removed. Since the fluid is refluxed by capillary pressure and gravity to the point where evaporation is occurring, the reflux distance, in other words the distance over which heat transport can take place, can be made longer. In addition, when the inside of the conductor 1 is a single sealed chamber, the length of the sealed chamber is limited to a certain length because the distance over which the liquid phase working fluid can circulate is restricted due to the flow resistance of the conductor 2. Therefore, the length of the conductor 1, that is, the length of the cable, is limited, and there are cases where it is not possible to make the cable the desired length. If the wick is installed in each sealed chamber, a working fluid is sealed in each sealed chamber, and each sealed chamber is set to a length that allows the liquid-phase working fluid to flow back, the working fluid will flow in each sealed chamber. Heat transport is carried out by the circulating flow through repeated evaporation and condensation, and heat conduction occurs between each sealed chamber through the partition walls, so heat transport can be carried out over the entire length. Therefore, the length of the conductor 1, that is, the cable, can be set to be long without being particularly restricted by the return distance of the liquid phase working fluid.

さらに、ケーブルを接続する際には、絶縁層3
および保護層4の形成されていない導体1の端部
を互いに突き合せて軸線方向に接続することによ
り、電気的に接続すると同時に、熱伝達可能に接
続することができ、しかも、各導体1の接続した
端部には放熱部5がそれぞれ設けられているた
め、放熱性能を低下させることなく容易に接続す
ることができる。また、放熱部5の取付けおよび
ケーブルの接続が容易なことから、ケーブルのプ
レハブ架設工法にも適している。
Furthermore, when connecting cables, insulating layer 3
By abutting the ends of the conductors 1 on which the protective layer 4 is not formed and connecting them in the axial direction, it is possible to connect electrically and at the same time to enable heat transfer. Since the heat dissipation portions 5 are provided at the connected ends, the connection can be easily made without deteriorating the heat dissipation performance. Furthermore, since it is easy to attach the heat dissipating section 5 and connect the cable, it is suitable for a prefabricated cable construction method.

なお、上記実施例では単心ケーブルの例につい
て説明したが、この考案は単心ケーブルに限定さ
れるものではなく、3心ケーブルにも適用するこ
とができ、その場合絶縁層3を設けた3本の導体
1をジユート等の介在と共に保護層にて結束すれ
ばよい。またこの考案においては、放熱部5とし
て導体1の終端外周に冷却油を収容した容器を取
付けるとともに、その冷却油を適宜の冷却装置と
の間で循環させる構成としてもよい。
In the above embodiment, an example of a single-core cable was explained, but this invention is not limited to a single-core cable, but can also be applied to a three-core cable, in which case a three-core cable provided with an insulating layer 3 The book conductors 1 may be bound together with a protective layer with a jute or the like interposed therebetween. Further, in this invention, a container containing cooling oil may be attached to the outer periphery of the terminal end of the conductor 1 as the heat radiating portion 5, and the cooling oil may be circulated between an appropriate cooling device and the like.

以上の説明で明らかなようにこの考案の電力ケ
ーブルによれば、送電に伴つて生じる熱を、導体
の内部に封入した作動流体の潜熱として放熱部に
輸送し、ケーブルの外部に放出することができる
ので、ケーブルの温度上昇を抑えることができ、
したがつて送電電力を高くしても温度上昇やそれ
に伴う絶縁特性の低下が起きないので、送電容量
を従来になく高くすることができる。また、放熱
させるにあたつて特に動力を要せず、あるいは強
制冷却する場合、ケーブルの一部を冷却すればよ
いのであるから、装置が極めて簡単で、しかもラ
ンニングコストを低く抑えることができる。ま
た、ケーブル接続においては、電気的な接続と熱
伝達のための接続とが、同時かつ容易に達成でき
る等の効果を有する。
As is clear from the above explanation, according to the power cable of this invention, the heat generated during power transmission can be transported to the heat dissipation part as latent heat of the working fluid sealed inside the conductor and released to the outside of the cable. This allows you to suppress the temperature rise of the cable.
Therefore, even if the transmitted power is increased, the temperature will not rise and the insulation properties will not deteriorate accordingly, so the power transmission capacity can be increased more than ever before. Furthermore, no particular power is required to dissipate the heat, or in the case of forced cooling, only a portion of the cable needs to be cooled, so the device is extremely simple and running costs can be kept low. Furthermore, the cable connection has the advantage that electrical connection and connection for heat transfer can be simultaneously and easily achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例を示す部分縦断面
図、第2図は第1図の−線矢視断面図であ
る。 1……導体、2……ウイツク、3……絶縁層、
4……保護層、5……放熱部。
FIG. 1 is a partial longitudinal cross-sectional view showing an embodiment of this invention, and FIG. 2 is a cross-sectional view taken along the - line in FIG. 1. 1... Conductor, 2... Width, 3... Insulating layer,
4...protective layer, 5...heat dissipation section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 毛細管作用をなすウイツクを内周面に備えかつ
その内部に凝縮性作動流体が封入された密閉中空
導体の外周に、該密閉中空導体の端部を除いた部
分に絶縁層および保護層が順次形成され、さらに
絶縁層および保護層が形成されていない前記端部
には、放熱部がその外周に密着するとともにこの
端部が前記放熱部の端部から所定の長さ突出する
ように設けられてなることを特徴とする電力ケー
ブル。
An insulating layer and a protective layer are sequentially formed on the outer periphery of a sealed hollow conductor, which has a capillary action capillary on its inner peripheral surface and a condensable working fluid sealed inside, except for the ends of the sealed hollow conductor. Further, a heat dissipating section is provided at the end portion on which the insulating layer and the protective layer are not formed so that the heat dissipating section is in close contact with the outer periphery of the heat dissipating section and protruding from the end portion of the heat dissipating section by a predetermined length. A power cable characterized by:
JP1981001179U 1981-01-08 1981-01-08 Expired JPS6346983Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981001179U JPS6346983Y2 (en) 1981-01-08 1981-01-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981001179U JPS6346983Y2 (en) 1981-01-08 1981-01-08

Publications (2)

Publication Number Publication Date
JPS57115120U JPS57115120U (en) 1982-07-16
JPS6346983Y2 true JPS6346983Y2 (en) 1988-12-05

Family

ID=29799676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981001179U Expired JPS6346983Y2 (en) 1981-01-08 1981-01-08

Country Status (1)

Country Link
JP (1) JPS6346983Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875848B2 (en) * 2005-01-24 2012-02-15 株式会社五洋電子 coaxial cable
JP2007048741A (en) * 2005-07-14 2007-02-22 Auto Network Gijutsu Kenkyusho:Kk Conductor and heat radiating structure of conductor
GB2608431A (en) * 2021-07-01 2023-01-04 Aptiv Tech Ltd Power conductor and vehicle power distribution circuit incorporating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229428A (en) * 1975-09-01 1977-03-05 Kubota Ltd Method of forming mold
JPS5344035A (en) * 1976-10-04 1978-04-20 Mita Industrial Co Ltd Roller applicator developing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771759U (en) * 1980-10-20 1982-05-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229428A (en) * 1975-09-01 1977-03-05 Kubota Ltd Method of forming mold
JPS5344035A (en) * 1976-10-04 1978-04-20 Mita Industrial Co Ltd Roller applicator developing device

Also Published As

Publication number Publication date
JPS57115120U (en) 1982-07-16

Similar Documents

Publication Publication Date Title
US2815472A (en) Rectifier unit
US2886746A (en) Evaporative cooling system for electrical devices
US3609206A (en) Evaporative cooling system for insulated bus
US3543841A (en) Heat exchanger for high voltage electronic devices
JP4345205B2 (en) Cooling of fuel cell considering insulation
JPS6346983Y2 (en)
JPS6248444B2 (en)
JP2001167938A (en) Static induction device
JPH06268285A (en) Gas laser tube device
RU2075150C1 (en) Electric machine
JPH0211727Y2 (en)
CN111613440A (en) Automatic heat dissipation capacitor capable of preventing welding heat damage
JPH04196154A (en) Semiconductor cooling device
US3537049A (en) Electrical induction apparatus
KR0158468B1 (en) Semiconductor cooling apparatus with heat pipe
JP3356618B2 (en) heatsink
JPS59805Y2 (en) High frequency dummy load using steam heat exchanger
JPH0242019Y2 (en)
JPH017940Y2 (en)
JPH06120383A (en) Semiconductor cooling device
JPS6022727Y2 (en) closed switchboard
JPS6223213Y2 (en)
JPH0364950A (en) Electrically insulated heat pipe
JPS631012A (en) Directly buried type transformer
SU689003A1 (en) Heating pipe