JPS6223213Y2 - - Google Patents

Info

Publication number
JPS6223213Y2
JPS6223213Y2 JP13547081U JP13547081U JPS6223213Y2 JP S6223213 Y2 JPS6223213 Y2 JP S6223213Y2 JP 13547081 U JP13547081 U JP 13547081U JP 13547081 U JP13547081 U JP 13547081U JP S6223213 Y2 JPS6223213 Y2 JP S6223213Y2
Authority
JP
Japan
Prior art keywords
pipe
cooling
cooled
water
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13547081U
Other languages
Japanese (ja)
Other versions
JPS5841019U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13547081U priority Critical patent/JPS5841019U/en
Publication of JPS5841019U publication Critical patent/JPS5841019U/en
Application granted granted Critical
Publication of JPS6223213Y2 publication Critical patent/JPS6223213Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、冷却式電力ケーブル接続部に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooled power cable connection.

電力ケーブル線路の大容量化に伴ない、種々の
冷却方式が検討され、且つ実施されている。
As the capacity of power cable lines increases, various cooling methods are being studied and implemented.

例えば、第1図に示すように洞道内に大口径の
水冷管1を布設し、この水冷管1内に電力ケーブ
ル2を布設し、水冷管1内に冷却水3を流して電
力ケーブル2を冷却する、いわゆる洞道内布設直
接冷却方式は、その冷却効果が最も著しいものの
1つである。
For example, as shown in Fig. 1, a large-diameter water-cooled pipe 1 is installed in a tunnel, a power cable 2 is installed inside the water-cooled pipe 1, and a cooling water 3 is flowed through the water-cooled pipe 1 to connect the power cable 2. The so-called direct cooling method installed in a tunnel is one of the most effective cooling methods.

一般に、ケーブル線路は輸送上や布設工法上の
制約から必らず多数の接続部4を有するが、保守
上の問題、特にケーブルシース2Aと接続箱5と
の鉛工部6を露出させるため、この接続部4は水
没させることができず、このため電力ケーブル2
と同等の冷却効果を接続部4に与えることは困難
であつた。
In general, a cable line necessarily has a large number of connections 4 due to transportation and installation method constraints, but there are maintenance problems, especially since the leadwork 6 between the cable sheath 2A and the connection box 5 is exposed. This connection 4 cannot be submerged in water, and therefore the power cable 2
It has been difficult to provide the connecting portion 4 with a cooling effect equivalent to that of the above.

従来の水冷型電力ケーブル線路においては、図
示のように接続部4のきわまで電力ケーブル2に
水冷管1を被せて冷却を行い、接続部4は導体の
長手方向の熱流を期待することにより冷却し、電
流容量を確保するという対策をとつていた。な
お、7は接続部4の片側の水冷管1内の冷却水3
を接続部4の反対側の図示しない水冷管にこの接
続部4を迂回して送り込むためのバイパス管であ
る。
In a conventional water-cooled power cable line, cooling is performed by covering the power cable 2 with a water-cooled tube 1 up to the edge of the connection part 4 as shown in the figure, and the connection part 4 is cooled by expecting heat flow in the longitudinal direction of the conductor. However, measures were taken to ensure sufficient current capacity. In addition, 7 is the cooling water 3 in the water cooling pipe 1 on one side of the connection part 4.
This is a bypass pipe for feeding the liquid to a water-cooled pipe (not shown) on the opposite side of the connecting part 4, bypassing this connecting part 4.

しかしながら、このような構造では、接続部4
の熱抵抗が電力ケーブル2より高いこと、長手方
向の熱流に限りがあることなどから、電力ケーブ
ル2を過冷却にしても接続部4がネツクとなつて
所要の送電容量がとれない欠点があつた。
However, in such a structure, the connection part 4
Since the thermal resistance of the power cable 2 is higher than that of the power cable 2, and the heat flow in the longitudinal direction is limited, even if the power cable 2 is supercooled, the connection part 4 becomes a link and the required power transmission capacity cannot be obtained. Ta.

これを改善するものとして、第2図に示すよう
に接続箱5の外周に複数本の水冷細管8を沿わせ
て接触させたり、或は巻きつけて接触させたりし
て、各水冷細管8内に通水して接続部4を冷却す
る冷却式電力ケーブル接続部9が提案されてい
る。なお、図において、10はケーブル導体、1
1は補強絶縁層、12は絶縁油である。この場
合、ケーブル導体10より発生する熱流は、一部
導体10の長手方向に流れるが、そのほとんどは
径方向の熱流となり、補強絶縁層11及び絶縁油
12の熱抵抗を介して水冷細管8内の冷却水3中
に流れ込む。
To improve this, as shown in FIG. A cooled power cable connection section 9 has been proposed in which the connection section 4 is cooled by passing water therethrough. In addition, in the figure, 10 is a cable conductor, 1
1 is a reinforcing insulating layer, and 12 is an insulating oil. In this case, a part of the heat flow generated from the cable conductor 10 flows in the longitudinal direction of the conductor 10, but most of it becomes a radial heat flow, and flows into the water-cooled thin tube 8 through the thermal resistance of the reinforcing insulating layer 11 and the insulating oil 12. into the cooling water 3.

しかしながら、このような構造では、水冷管1
より各水冷細管8に分岐して通水しなければなら
ず、配管が複雑になる欠点がある。また、太い水
冷管1より細い水冷細管8に給水しなければなら
ないので、圧力損失が大きい欠点がある。更に、
冷却水が例えば接続箱5の溶接部等に生じたピン
ホールより絶縁油12中に侵入するおそれがあ
り、このような事態が生ずると、接続部9の絶縁
性能が低下してしまうことになる。かつまた、絶
縁接続部の場合には、接続箱5に沿わせる水冷細
管8を途中で縁切りする必要があり、配管をコン
パクトにまとめることは極めてむずかしい欠点が
ある。
However, in such a structure, the water cooling pipe 1
Therefore, the water has to be branched to each water-cooled thin tube 8, which has the disadvantage of complicating the piping. Furthermore, since water must be supplied to the thin water-cooled tube 8 rather than the thick water-cooled tube 1, there is a drawback that pressure loss is large. Furthermore,
There is a risk that cooling water may enter the insulating oil 12 through pinholes formed in, for example, welded parts of the connection box 5, and if such a situation occurs, the insulation performance of the connection part 9 will deteriorate. . Furthermore, in the case of an insulated connection part, it is necessary to cut the water-cooled thin tube 8 along the connection box 5 in the middle, which has the disadvantage that it is extremely difficult to organize the piping compactly.

本考案の目的は、簡単な構造で接続箱の外周を
一様に冷却できる冷却式電力ケーブル接続部を提
供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cooled power cable connection part that has a simple structure and can uniformly cool the outer periphery of a connection box.

本考案に係る冷却式電力ケーブル接続部は、接
続箱を内管と外管とからなる二重管構造としてそ
の内外管の間に冷却室を設け、前記接続箱の外に
放熱部を設け、前記放熱部内と前記冷却室内とを
接続管で連通接続し、前記冷却室内に沸騰性冷媒
を封入し、この冷媒を接続箱内の熱で沸騰蒸発さ
せ、発生した蒸気で熱を放熱部に導き放熱させて
液体に戻し、液体に戻つた冷媒を冷却室に帰すサ
イクルを繰り返して接続部を冷却させるものであ
る。
The cooled power cable connection part according to the present invention has a connection box with a double pipe structure consisting of an inner tube and an outer tube, a cooling chamber is provided between the inner and outer tubes, a heat radiation part is provided outside the connection box, The inside of the heat radiating section and the cooling chamber are connected through a connecting pipe, a boiling refrigerant is sealed in the cooling chamber, the refrigerant is boiled and evaporated by the heat in the connection box, and the generated steam leads the heat to the heat radiating section. The connection part is cooled by repeating the cycle of radiating heat, returning the refrigerant to liquid, and returning the refrigerant to the cooling chamber.

以下、本考案の実施例を図面を参照して詳細に
説明する。第3図に示すように本実施例の冷却式
電力ケーブル接続部9は、接続箱5を内管5Aと
外管5Bとからなる二重管構造とし、その内外管
5A,5Bの間に冷却室13を形成している。接
続箱5の外にはフイン等を有する放熱部14を設
け、この放熱部14内と冷却室13内とを接続管
15で連通接続している。接続管15の途中には
絶縁継手16及び伸縮継手17を介在させてい
る。冷却室13内には低沸点の沸騰性冷媒18を
封入している。放熱部14を本実施例ではバイパ
ス管7の中に挿入し、バイパス管7を流れる冷却
水3で冷却するようにしている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 3, the cooled power cable connection section 9 of this embodiment has a double pipe structure for the connection box 5 consisting of an inner pipe 5A and an outer pipe 5B, and cooling is performed between the inner and outer pipes 5A and 5B. A chamber 13 is formed. A heat radiating section 14 having fins or the like is provided outside the junction box 5, and the inside of this heat radiating section 14 and the inside of the cooling chamber 13 are connected through a connecting pipe 15. An insulating joint 16 and an expansion joint 17 are interposed in the middle of the connecting pipe 15. A boiling refrigerant 18 having a low boiling point is sealed in the cooling chamber 13 . In this embodiment, the heat radiation section 14 is inserted into the bypass pipe 7 and is cooled by the cooling water 3 flowing through the bypass pipe 7.

このようにすると、ヒートパイプの原理により
接続部9内の径方向の熱流により冷却室13内の
沸騰性冷媒18が沸騰蒸発され、発生した冷媒蒸
気で熱が放熱部14に運ばれ、この放熱部14で
放熱が行われ、冷媒蒸気は液体に戻り接続管15
を経て冷却室13に帰される。このようなサイク
ルが繰り返えされて接続部9の冷却が行われる。
本実施例では、放熱部14をバイパス管7の中に
挿入したので、バイパス管7−接続管15−接続
箱5−ケーブルシース2A−水冷管1−バイパス
管7なる閉ループが形成されるが、接続管15の
途中に絶縁継手16を介在させているので、この
閉ループに循環電流が流れるのを阻止することが
できる。また、接続管15の途中に伸縮継手17
を入れているので、バイパス管7内の水冷水3の
脈動による振動或は地面の振動等をこの伸縮継手
17で吸収し、且つ接続管15等の熱伸縮を吸収
し、このヒートパイプ型冷却装置19の溶接部等
を保護することができる。
In this way, according to the heat pipe principle, the boiling refrigerant 18 in the cooling chamber 13 is boiled and evaporated by the heat flow in the radial direction in the connection part 9, and the generated refrigerant vapor carries heat to the heat radiation part 14. Heat is dissipated in the section 14, and the refrigerant vapor returns to liquid and passes through the connecting pipe 15.
It is returned to the cooling chamber 13 through the. Such a cycle is repeated to cool the connecting portion 9.
In this embodiment, since the heat dissipation part 14 is inserted into the bypass pipe 7, a closed loop consisting of the bypass pipe 7-connection pipe 15-junction box 5-cable sheath 2A-water cooling pipe 1-bypass pipe 7 is formed. Since the insulating joint 16 is interposed in the middle of the connecting pipe 15, it is possible to prevent circulating current from flowing through this closed loop. In addition, an expansion joint 17 is installed in the middle of the connecting pipe 15.
Since the expansion joint 17 absorbs vibrations caused by the pulsation of the cooled water 3 in the bypass pipe 7 or vibrations of the ground, it also absorbs thermal expansion and contraction of the connecting pipe 15, etc., and this heat pipe type cooling The welded parts of the device 19 can be protected.

第4図は接続部を冷却しない場合イと本考案に
より冷却した場合ロとの接続部から長手方向にみ
た温度分布図を示したものである。この場合の条
件は次の通りである。
FIG. 4 shows a temperature distribution diagram as viewed in the longitudinal direction from the connection part (A) when the connection part is not cooled and (B) when the connection part is cooled according to the present invention. The conditions in this case are as follows.

電力ケーブル:275kV OFケーブル、 1×2000mm2 接続部鉛工部と水冷管との 間のケーブル露出部距離 :300mm ケーブル電流容量:2520A 放熱部の水温:20℃ マンホール温度:32℃ 本実施例で示したような絶縁接続部の場合、接
続箱5そのものを絶縁筒20等よりなる絶縁部2
1で電気的に絶縁すれば、左右のヒートパイプ型
冷却装置19は自動的に縁切りされることにな
る。
Power cable: 275kV OF cable, 1 x 2000mm 2 Distance of exposed cable between lead work and water cooling pipe: 300mm Cable current capacity: 2520A Water temperature of heat dissipation section: 20℃ Manhole temperature: 32℃ In this example In the case of an insulated connection part as shown, the connection box 5 itself is an insulating part 2 made of an insulating tube 20, etc.
1, the left and right heat pipe type cooling devices 19 are automatically separated.

沸騰性冷媒18としては、例えば電気絶縁性が
よく低沸点のフロン等が好ましいが、減圧下で使
用すれば沸点が下るので水でもよい。
As the boiling refrigerant 18, for example, Freon having good electrical insulation properties and a low boiling point is preferable, but water may also be used since the boiling point is lowered when used under reduced pressure.

以上説明したように本考案に係る冷却式電力ケ
ーブル接続部では、接続箱を二重管構造にして内
外管の間に冷却室を設け、この冷却管内に沸騰性
冷媒を封入し、また接続箱の外に放熱部を設け、
この放熱部と冷却室とを接続管で連通接続してヒ
ートパイプの原理で冷却を行うようにしたので、
このようなヒートパイプ式の冷却構造によれば接
続部外周の各部の熱でその部分の沸騰性冷媒がそ
の位置で気化して気化熱を奪うことになつて、放
熱部を低温に維持するだけで接続部外周を均一に
冷却することができる。また、本考案によれば、
構造が簡単になる利点がある。更に絶縁接続部に
本考案を適用しても冷却手段をシンプルに且つ可
及的にコンパクトに形成できる利点がある。
As explained above, in the cooled power cable connection part according to the present invention, the connection box has a double pipe structure, a cooling chamber is provided between the inner and outer pipes, a boiling refrigerant is sealed in this cooling pipe, and the connection box A heat dissipation section is provided outside the
This heat dissipation section and the cooling chamber are connected through a connecting pipe to perform cooling using the principle of a heat pipe.
According to such a heat pipe type cooling structure, the boiling refrigerant in that part is vaporized by the heat of each part around the outer periphery of the connection part, and the heat of vaporization is taken away, and the heat dissipation part is simply maintained at a low temperature. The outer periphery of the connection part can be cooled uniformly. Furthermore, according to the present invention,
This has the advantage of simplifying the structure. Furthermore, even if the present invention is applied to an insulated connection part, there is an advantage that the cooling means can be formed simply and as compactly as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電力ケーブルの冷却構造の断面
図、第2図は従来の冷却式電力ケーブル接続部の
横断面図、第3図は本考案に係る冷却式電力ケー
ブル接続部の断面図、第4図は非冷却式接続部と
本考案による冷却式接続部との冷却効果を比較す
る温度分布図である。 1……水冷管、2……電力ケーブル、2A……
ケーブルシース、3……冷却水、5……接続箱、
5A……内管、5B……外管、6……鉛工部、7
……バイパス管、9……冷却式電力ケーブル接続
部、10……ケーブル導体、11……補強絶縁
層、12……絶縁油、13……冷却室、14……
放熱部、15……接続管、18……沸騰性冷媒、
19……冷却装置。
FIG. 1 is a cross-sectional view of a conventional power cable cooling structure, FIG. 2 is a cross-sectional view of a conventional cooled power cable connection, and FIG. 3 is a cross-sectional view of a cooled power cable connection according to the present invention. FIG. 4 is a temperature distribution diagram comparing the cooling effects of the non-cooled connection section and the cooled connection section according to the present invention. 1...Water cooling pipe, 2...Power cable, 2A...
Cable sheath, 3...Cooling water, 5...Connection box,
5A...Inner pipe, 5B...Outer pipe, 6...Plumb work section, 7
... Bypass pipe, 9 ... Cooled power cable connection section, 10 ... Cable conductor, 11 ... Reinforcement insulation layer, 12 ... Insulating oil, 13 ... Cooling room, 14 ...
Heat radiation part, 15... Connection pipe, 18... Boiling refrigerant,
19... Cooling device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 接続箱を内管と外管とからなる二重管構造にし
てその内外管の間に冷却室を設け、前記接続箱の
外に放熱部を設け、前記放熱部と前記冷却室とを
接続管で連通接続し、前記冷却室内に沸騰性冷媒
を封入したことを特徴とする冷却式電力ケーブル
接続部。
The junction box has a double pipe structure consisting of an inner tube and an outer tube, a cooling chamber is provided between the inner and outer tubes, a heat radiation section is provided outside the connection box, and the heat radiation section and the cooling chamber are connected by a connecting tube. 1. A refrigerated power cable connection section, characterized in that the connection section is connected in communication with the cooling chamber, and a boiling refrigerant is sealed in the cooling chamber.
JP13547081U 1981-09-14 1981-09-14 Cooled power cable connection Granted JPS5841019U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13547081U JPS5841019U (en) 1981-09-14 1981-09-14 Cooled power cable connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13547081U JPS5841019U (en) 1981-09-14 1981-09-14 Cooled power cable connection

Publications (2)

Publication Number Publication Date
JPS5841019U JPS5841019U (en) 1983-03-18
JPS6223213Y2 true JPS6223213Y2 (en) 1987-06-13

Family

ID=29928834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13547081U Granted JPS5841019U (en) 1981-09-14 1981-09-14 Cooled power cable connection

Country Status (1)

Country Link
JP (1) JPS5841019U (en)

Also Published As

Publication number Publication date
JPS5841019U (en) 1983-03-18

Similar Documents

Publication Publication Date Title
JP4826996B2 (en) Superconducting cable line
US3681509A (en) Bus bar electric power distribution system with heat pipe heat dissipating means
JP5243154B2 (en) Current leads for superconducting equipment
JPS6223213Y2 (en)
US5319154A (en) Method of cooling a current feed for very low temperature electrical equipment and device for implementing it
JPH0226215A (en) Superconducting cryogenic temperature power cable line
JPS6364130B2 (en)
JPS582121Y2 (en) Insulated internally cooled cable track
CN220171839U (en) Fill electric pile cable
CN104282382B (en) Vacuum evaporation inner cooling single-core cable circulating system
JP3356618B2 (en) heatsink
JP2005243666A (en) Power equipment
KR102003346B1 (en) Cooling device for dry transformer
JPS5850496B2 (en) Cooling device for conductor internal water cooling cable
JPH0249501Y2 (en)
JPH034122Y2 (en)
JPH017940Y2 (en)
JPS6033707Y2 (en) Power cable cooling system
JPH0211727Y2 (en)
JPH0510509Y2 (en)
JPH0472454B2 (en)
JPH01149311A (en) Superconductive transmission line
JPS6120205B2 (en)
JPS5856535Y2 (en) air conditioner
JPS60226713A (en) Method of cooling power cable