JPH0249501Y2 - - Google Patents

Info

Publication number
JPH0249501Y2
JPH0249501Y2 JP12048485U JP12048485U JPH0249501Y2 JP H0249501 Y2 JPH0249501 Y2 JP H0249501Y2 JP 12048485 U JP12048485 U JP 12048485U JP 12048485 U JP12048485 U JP 12048485U JP H0249501 Y2 JPH0249501 Y2 JP H0249501Y2
Authority
JP
Japan
Prior art keywords
medium
heat
diameter pipe
large diameter
small diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12048485U
Other languages
Japanese (ja)
Other versions
JPS6229560U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12048485U priority Critical patent/JPH0249501Y2/ja
Publication of JPS6229560U publication Critical patent/JPS6229560U/ja
Application granted granted Critical
Publication of JPH0249501Y2 publication Critical patent/JPH0249501Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 A 産業上の利用分野 本考案は、一方の媒体が漏れても他方へ混入す
ることがなく、かつ熱交換効率の大きい熱交換器
に関する。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a heat exchanger that prevents leakage of one medium from contaminating the other and has high heat exchange efficiency.

B 考案の概要 この考案は、大径管と小径管とからなる二重管
を介して一方の媒体から他方の媒体へ熱を伝達す
る熱交換器において、 大径管に切欠部を形成して該切欠部を集熱板で
塞ぐとともに該集熱板に小径管を固着することに
より、 一方の媒体が漏れても他方の媒体中へ混入する
ことがなくかつ熱の伝達も効率良く行なわれるよ
うにしたものである。
B. Summary of the invention This invention is a heat exchanger that transfers heat from one medium to another via a double pipe consisting of a large diameter pipe and a small diameter pipe, in which a notch is formed in the large diameter pipe. By closing the notch with a heat collecting plate and fixing a small diameter pipe to the heat collecting plate, even if one medium leaks, it will not mix into the other medium and heat will be transferred efficiently. This is what I did.

C 従来の技術 変圧器やリアクトルなどの静止形電気機器で
は、絶縁性能を向上させて電気機器の小型軽量化
を図るために、機器本体を密閉した筐体内に収納
して筐体の内部に絶縁媒体を充填している。絶縁
媒体としては鉱物性絶縁油が最も多く使用される
が、最近では難燃化不燃化を目的としたシリコン
系合成絶縁油や六弗化硫黄系絶縁ガスも使用され
ている。
C. Conventional technology In stationary electrical equipment such as transformers and reactors, in order to improve insulation performance and reduce the size and weight of electrical equipment, the main body of the equipment is housed in a sealed casing and insulation is provided inside the casing. Filling with media. Mineral insulating oil is most often used as an insulating medium, but recently silicone-based synthetic insulating oil and sulfur hexafluoride-based insulating gas have also been used for the purpose of flame retardant and noncombustible properties.

これらの絶縁媒体は、電気機器を絶縁する作用
と電気機器の内部損失熱を大気(二次冷却媒体)
中へ放出するための一次冷却媒体としての作用を
果している。即ち、電気機器の内部損失熱は絶縁
媒体から筐体を介して大気中へ放出される。
These insulating media have the effect of insulating electrical equipment and transferring the internal heat loss of electrical equipment to the atmosphere (secondary cooling medium).
It acts as a primary cooling medium for discharge into the air. That is, the internal heat loss of the electrical equipment is released into the atmosphere from the insulating medium through the casing.

しかし、内部損失が1KW以上になると、筐体
の外周面のみから大気中へ放熱する自然冷却方式
では冷却効率が不十分であり、そのために専用放
熱器を具えている。静止形電気機器ではメンテナ
ンスフリーにした方が好ましく、専用放熱器とし
ても絶縁媒体を循環させることによつて大気中へ
自然放熱する自然冷却方式とすることが多い。斯
かる専用放熱器では、大気の定圧比熱が約
0.28Kcal/m℃と非常に小さいため、冷却効率を
十分なものにするには電気機器全体に対する専用
放熱器の占める割合を1MVA級で30〜50%、
10MVA級では40〜70%という大きな値にしなけ
ればならず、広いスペースが必要になる。
However, when the internal loss exceeds 1KW, the cooling efficiency of the natural cooling method, which radiates heat only from the outer circumferential surface of the case to the atmosphere, is insufficient, so a dedicated radiator is provided for this purpose. It is preferable for stationary electric equipment to be maintenance-free, and as a dedicated heat radiator, it often uses a natural cooling method that naturally radiates heat into the atmosphere by circulating an insulating medium. In such a dedicated heat sink, the constant pressure specific heat of the atmosphere is approximately
Since it is extremely small at 0.28Kcal/m℃, in order to achieve sufficient cooling efficiency, the proportion of dedicated heatsinks in the entire electrical equipment must be 30-50% at 1MVA class.
In the 10MVA class, a large value of 40 to 70% is required, which requires a large space.

しかし、地下変電所等では十分なスペースがな
く、自然冷却方式の専用放熱器の設置は困難であ
る。そこで、水冷方式の専用放熱器を具えて占有
面積の削減を図つている。斯かる水冷方式の専用
放熱器として用いられるシエルアンドチユーブ形
熱交換器を従来例1(単管式)及び従来例2(二重
管式)に示す。
However, in underground substations, etc., there is not enough space, and it is difficult to install a dedicated radiator for natural cooling. Therefore, we have installed a dedicated water-cooled radiator to reduce the area occupied. Conventional Example 1 (single tube type) and Conventional Example 2 (double tube type) show shell-and-tube heat exchangers used as dedicated radiators for such water cooling systems.

第2図に示すのは従来例1としての単管式の熱
交換器の構造図である。絶縁油等の一次冷却媒体
は、供給口1aからシエル2の内部へ流入し、排
出口1bから流出する。一方、水等の二次冷却媒
体は、供給口3aからヘツダ4a内へ流入したあ
と冷却管5a,5b等の内部を通つてヘツダ4b
へと至り、排出口3bから流出する。排出口管5
a及び5bを挾んで外側には一次冷却媒体が流
れ、内側には二次冷却媒体が流れるので、冷却管
5a及び5bを介して一次冷却媒体から二次冷却
媒体へと熱が移動する。つまり、一次冷却媒体が
二次冷却媒体によつて冷却される。
FIG. 2 is a structural diagram of a single-tube heat exchanger as conventional example 1. A primary cooling medium such as insulating oil flows into the shell 2 from the supply port 1a and flows out from the discharge port 1b. On the other hand, the secondary cooling medium such as water flows into the header 4a from the supply port 3a and then passes through the inside of the cooling pipes 5a, 5b, etc. to the header 4b.
and flows out from the outlet 3b. Outlet pipe 5
Since the primary cooling medium flows on the outside and the secondary cooling medium flows on the inside sandwiching a and 5b, heat is transferred from the primary cooling medium to the secondary cooling medium via the cooling pipes 5a and 5b. That is, the primary cooling medium is cooled by the secondary cooling medium.

第3図に示すのは、従来例2としての二重管式
の熱交換器の構造図である。第2図の単管式の熱
交換器ではシエル2のフランジ部6a,6bと冷
却管5a,5bとの結合部7からシエル2内へ二
次冷却媒体が漏れた場合、一次冷却媒体に二次冷
却媒体が混入して一次冷却媒体の性能が低下する
ので、このようなことが起こらないような構成に
したものである。ちなみに、一次冷却媒体として
の鉱物性絶縁油に二次冷却媒体としての水が0.05
%混入した場合、絶縁耐力が50%も低下する。図
中、一次冷却媒体は供給口8aからシエル9の内
部へ流入し、排出口8bから流出する。一方、二
次冷却媒体は供給口10aからヘツダ11a内へ
流入したあと、冷却管12a,12b等の内部を
通つてヘツダ11bへと至り、排出口10bから
流出する。補助ヘツダ14aと14bとの内部が
冷却管13a,13bによつて連通されており、
この冷却管13a,13bの内部に前記冷却管1
2a,12bが挿通されている。補助ヘツダ14
a,14b、冷却管13a,13bの内部は空間
であり、この空間を挾んで一次冷却媒体から二次
冷却媒体へ熱が移動するので、フランジ部15
a,15bと冷却管13a,13bとの結合部1
7から一次冷却媒体が漏れたりフランジ部16
a,16bと冷却管12a,12bとの結合部1
8から二次冷却媒体が漏れても、いずれの媒体も
補助ヘツダ14a内の排出口19a又は補助ヘツ
ダ14b内の排出口19bから流出する。つま
り、一次冷却媒体に二次冷却媒体が混入したりす
ることなく熱交換が行なわれる。
FIG. 3 is a structural diagram of a double-tube heat exchanger as a second conventional example. In the single-tube heat exchanger shown in Fig. 2, if the secondary cooling medium leaks into the shell 2 from the joint 7 between the flanges 6a, 6b of the shell 2 and the cooling pipes 5a, 5b, the secondary cooling medium will leak into the primary cooling medium. Since the performance of the primary cooling medium deteriorates due to mixing of the secondary cooling medium, the structure is designed to prevent this from occurring. By the way, water as a secondary cooling medium is 0.05% of mineral insulating oil as a primary cooling medium.
%, the dielectric strength will decrease by as much as 50%. In the figure, the primary cooling medium flows into the shell 9 from the supply port 8a and flows out from the discharge port 8b. On the other hand, the secondary cooling medium flows into the header 11a from the supply port 10a, passes through the inside of the cooling pipes 12a, 12b, etc., reaches the header 11b, and flows out from the discharge port 10b. The interiors of the auxiliary headers 14a and 14b are communicated through cooling pipes 13a and 13b,
The cooling pipe 1 is provided inside the cooling pipes 13a and 13b.
2a and 12b are inserted. Auxiliary header 14
a, 14b, and the inside of the cooling pipes 13a, 13b is a space, and heat moves from the primary cooling medium to the secondary cooling medium across this space, so the flange portion 15
Joint part 1 between a, 15b and cooling pipes 13a, 13b
If the primary cooling medium leaks from the flange 16
Joint part 1 between a, 16b and cooling pipes 12a, 12b
Even if the secondary cooling medium leaks from the auxiliary header 8, either medium will flow out from the outlet 19a in the auxiliary header 14a or the outlet 19b in the auxiliary header 14b. In other words, heat exchange is performed without the secondary cooling medium mixing with the primary cooling medium.

D 考案が解決しようとする問題点 ところが、前述のように空間を挾んで一次冷却
媒体から二次冷却媒体へ熱が移動するため、二次
冷却媒体として大きな定圧比熱(990〜
1000Kcal/m℃)を有する水を使用しても自然
冷却方式のものと同程度しか冷却効果がなく、し
かも構造が複雑でコスト高になるという欠点があ
る。
D Problems to be solved by the invention However, as mentioned above, heat transfers from the primary cooling medium to the secondary cooling medium across a space, so the secondary cooling medium has a large constant pressure specific heat (990 ~
Even if water with a temperature of 1000 Kcal/m°C is used, the cooling effect is only as good as that of a natural cooling method, and the structure is complicated and the cost is high.

そこで本考案は、斯かる欠点を解消した熱交換
器を提供することを目的とする。
Therefore, an object of the present invention is to provide a heat exchanger that eliminates such drawbacks.

E 問題点を解決するための手段 斯かる目的を達成するための本考案の構成は、
一方の媒体を循環させるシエル内に気密に大径管
を貫通させるとともに前記大径管内に他方の媒体
を循環させる小径管を挿通させて前記大径管と前
記小径管との間に間隙を形成した熱交換器におい
て、前記シエル内に位置する前記大径管に切欠部
を形成するとともに該切欠部を集熱板で塞ぎ、該
集熱板に小径管を固着したことを特徴とする。
E Means for solving the problem The structure of the present invention to achieve this purpose is as follows:
A large diameter pipe is airtightly passed through a shell that circulates one medium, and a small diameter pipe that circulates the other medium is inserted into the large diameter pipe to form a gap between the large diameter pipe and the small diameter pipe. The heat exchanger is characterized in that a notch is formed in the large diameter tube located in the shell, the notch is closed with a heat collecting plate, and the small diameter pipe is fixed to the heat collecting plate.

F 作用 大径管と小径管との間に間隙を有する二重管を
介して一方の媒体から他方の媒体へ熱が伝達する
ので、いずれの媒体が漏れても大径管と小径管と
の間隙へと流れ、相互に混入することはない。一
方、熱伝達効率についてみると、集熱板を大きく
して一方の媒体中へ延長することにより、一方の
媒体から集熱板及び大径管への熱が伝わつてこの
熱が集熱板と小径管との結合部から小径管へと伝
わり他方の媒体へと伝わる。本考案による熱交換
器は二重管式の構造であるが、従来のように間隙
を介してのみ熱が伝わるのではなく結合部を介し
て熱が伝わるので、熱伝達率が従来の二重管式の
ものよりはるかに大きい。
F Effect Heat is transferred from one medium to the other through the double pipe with a gap between the large diameter pipe and the small diameter pipe, so even if either medium leaks, the difference between the large diameter pipe and the small diameter pipe They flow into the gaps and do not mix with each other. On the other hand, regarding heat transfer efficiency, by making the heat collecting plate larger and extending it into one medium, heat is transferred from one medium to the heat collecting plate and large diameter pipe, and this heat is transferred to the heat collecting plate and the large diameter pipe. It is transmitted from the joint with the small diameter pipe to the small diameter pipe and then to the other medium. The heat exchanger according to the present invention has a double-pipe structure, but heat is not transmitted only through the gap as in the conventional method, but through the joints, so the heat transfer coefficient is lower than that of the conventional double-pipe structure. Much larger than the tube type.

G 実施例 以下、本考案を図面に示す実施例に基づいて詳
細に説明する。
G. Embodiments Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図aは熱交換器の実施例を示す断面図であ
り、第1図bは第1図aの−矢視図である。
図のように、一方の媒体(一次冷却媒体)として
の絶縁油を循環させるためにシエル20に供給口
21と排出口22とが形成されており、供給口2
1及び排出口22は図示しないポンプ等を介して
電気機器が収納されかつ絶縁油が充填された筐体
等に接続されている。シエル20の内部には大径
管23a,23bが本実施例では二列となつて貫
通しており、夫々の両端はろう付け又は溶接によ
つて気密にシエル20に結合されている。そし
て、シエル20内に位置する夫々の大径管23
a,23bの片側には夫々切欠部24が形成され
(第1図c参照)、大径管23aの夫々の切欠部2
4は一枚の集熱板26aで塞がれ、大径管23b
の夫々の切欠部24は1枚の集熱板26bで塞が
れている。これらの切欠部での大径管と集熱板と
の結合はろう付け又は溶接により気密に行なわれ
ている。大径管23a,23bの内部には小径管
27a,27bがジグザグ状に形成して挿通され
ている。小径管27a,27bと大径管23a,
23bとの間には間隙28が形成され、小径管2
7a,27bは大径管23a,23bの内部で集
熱板26a,26bにろう付け又は溶接によつて
固着されている。小径管27a,27bは、他方
の媒体(二次冷却媒体)としての冷却水を供給す
る供給手段(図示せず)に接続されている。この
ほか、より熱伝達効率を高めるために本実施例で
はシエル20の外周面にも冷却管29a,29b
を固着し、冷却水を流すようにしている。集熱板
26a,26bにフイン等を取り付ければ、更に
熱伝達効率は大きくなる。
FIG. 1a is a sectional view showing an embodiment of the heat exchanger, and FIG. 1b is a view taken along the - arrow in FIG. 1a.
As shown in the figure, a supply port 21 and a discharge port 22 are formed in the shell 20 to circulate insulating oil as one medium (primary cooling medium).
1 and the discharge port 22 are connected to a housing or the like in which electrical equipment is housed and filled with insulating oil via a pump or the like (not shown). In this embodiment, large-diameter pipes 23a and 23b pass through the interior of the shell 20 in two rows, and both ends of each are hermetically coupled to the shell 20 by brazing or welding. Each large diameter pipe 23 located within the shell 20
A notch 24 is formed on one side of each of the large diameter pipes 23a and 23b (see FIG. 1c).
4 is closed with a single heat collecting plate 26a, and a large diameter pipe 23b
Each notch 24 is closed with one heat collecting plate 26b. The large-diameter tube and the heat collecting plate are airtightly connected at these notches by brazing or welding. Small diameter tubes 27a and 27b are formed in a zigzag shape and inserted into the insides of the large diameter tubes 23a and 23b. Small diameter pipes 27a, 27b and large diameter pipe 23a,
23b, a gap 28 is formed between the small diameter pipe 2
7a, 27b are fixed to the heat collecting plates 26a, 26b by brazing or welding inside the large diameter pipes 23a, 23b. The small diameter pipes 27a and 27b are connected to a supply means (not shown) that supplies cooling water as the other medium (secondary cooling medium). In addition, in this embodiment, cooling pipes 29a and 29b are also provided on the outer peripheral surface of the shell 20 in order to further increase heat transfer efficiency.
is fixed to allow cooling water to flow through it. If fins or the like are attached to the heat collecting plates 26a and 26b, the heat transfer efficiency will be further increased.

次に、斯かる熱交換器の作用を説明する。図示
しないポンプにより、絶縁油を筐体とシエル20
との間で循環させるとともに小径管27a,27
bの内部及び冷却管29a,29bに冷却水を流
すと、絶縁油の熱は集熱板26a,26b及び大
径管23a,23bの外表面から集熱板26a,
26bと小径管27a,27bとの結合部を介し
て小径管27a,27bへ伝わり、小径管27
a,27bから冷却水へと伝わる。また、シエル
20及び冷却管29a,29bを介しても冷却水
へ伝わる。万が一、大径管23a,23bの結合
部から絶縁油が漏れたりあるいは小径管27a,
27bから冷却水が漏れても、これらは間隙28
へと流出するので、いずれかの冷却媒体が他方へ
混入するというようなことはない。シエル20等
をタンク30内に収納するとともにタンク30の
下部に漏れ検出口31を設ければ、検出口31か
らの冷却媒体の流出を検知して漏れを検出するこ
とができる。
Next, the operation of such a heat exchanger will be explained. A pump (not shown) pumps insulating oil between the casing and the shell 20.
and the small diameter pipes 27a, 27.
When cooling water is flowed into the inside of b and the cooling pipes 29a, 29b, the heat of the insulating oil is transferred from the heat collecting plates 26a, 26b and the outer surfaces of the large diameter pipes 23a, 23b to the heat collecting plates 26a, 29b.
26b and the small diameter pipes 27a, 27b to the small diameter pipes 27a, 27b, and the small diameter pipe 27
a, 27b to the cooling water. It is also transmitted to the cooling water via the shell 20 and the cooling pipes 29a and 29b. In the unlikely event that insulating oil leaks from the joint between the large diameter pipes 23a and 23b, or the small diameter pipe 27a,
Even if cooling water leaks from the gap 27b, these
There is no possibility that one cooling medium will mix with the other. If the shell 20 and the like are housed in the tank 30 and a leak detection port 31 is provided at the bottom of the tank 30, leakage can be detected by detecting the outflow of the cooling medium from the detection port 31.

本考案は、いずれかの媒体が他方の媒体へ混入
するのを防止する二重管としての機能を具えると
ともに、間隙を介して一方の媒体から他方の媒体
へ熱を伝えるために熱伝達率が小さいという二重
管の欠点を解消したものである。空気の熱伝達率
が0.02〜0.024Kcal/mh℃であるのに対し、純鉄
では58Kcal/mh℃、銅では315〜330Kcal/mh
℃なので、従来例2で示した従来の二重管式のも
のに比べて熱伝達率がはるかに大きいことが理解
できる。大径管、小径管、集熱板としては熱伝達
率の大きい銅や銅系合金を用いるとよい。
This invention has the function of a double pipe to prevent one medium from mixing with the other medium, and also increases the heat transfer coefficient to transfer heat from one medium to the other through the gap. This eliminates the drawback of double pipes, which is the small amount of water. The heat transfer coefficient of air is 0.02 to 0.024Kcal/mh℃, while that of pure iron is 58Kcal/mh℃ and that of copper is 315 to 330Kcal/mh.
℃, it can be seen that the heat transfer coefficient is much higher than that of the conventional double pipe type shown in Conventional Example 2. For the large diameter pipe, small diameter pipe, and heat collecting plate, it is preferable to use copper or a copper-based alloy, which has a high heat transfer coefficient.

なお本実施例では、媒体として冷却を目的とす
る冷却媒体を用いた場合について示したが、加熱
を目的とする加熱媒体を用いることもできる。ま
た、媒体としては液体に限るものではなく、気体
でもよい。このほか、本実施例では一列の大径管
の夫々に一本の小径管が挿通されて直列的となつ
ているが、小径管を分岐させて並列的に夫々の大
径管内へ挿通するようにしてもよい。
In this embodiment, a case is shown in which a cooling medium for the purpose of cooling is used as the medium, but a heating medium for the purpose of heating may also be used. Further, the medium is not limited to liquid, but may be gas. In addition, in this embodiment, one small-diameter tube is inserted into each of the large-diameter tubes in a row in series, but the small-diameter tubes are branched and inserted into the large-diameter tubes in parallel. You may also do so.

H 考案の効果 以上説明したように本考案によれば、大径管内
に小径管を挿通した二重管において大径管に切欠
部を形成するとともに該切欠部を集熱板で塞ぎ、
集熱板に小径管を固着したので、いずれかの媒体
が漏れても他方の媒体へ混入しないだけでなく、
空間を介在させないで集熱板から直接に小径管へ
熱が伝わり熱伝達率が大きい。また、このように
熱伝達率が大きいので、従来の二重管式のものに
比べて小形軽量化でき、コストも安くなる。
H Effect of the invention As explained above, according to the invention, in a double pipe in which a small diameter pipe is inserted into a large diameter pipe, a notch is formed in the large diameter pipe, and the notch is closed with a heat collecting plate.
Since the small diameter pipe is fixed to the heat collecting plate, even if one of the media leaks, it will not only not mix into the other medium, but also
Heat is transferred directly from the heat collecting plate to the small diameter pipe without any intervening space, resulting in a high heat transfer coefficient. Furthermore, since the heat transfer coefficient is high, it can be made smaller and lighter than the conventional double-tube type, and the cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜cは本考案による熱交換器の実施例
に係り、第1図aは断面図、第1図bは第1図a
の〜矢視断面図、第1図cは構造を説明する
ための説明図、第2図、第3図は従来の熱交換器
に係り、第2図は従来例1を示す構造図、第3図
は従来例2を示す構造図である。 20……シエル、23a,23b……大径管、
24……切欠部、26a,26b……集熱板、2
7a,27b……小径管、28……間隙。
1a to 1c relate to an embodiment of the heat exchanger according to the present invention, FIG. 1a is a sectional view, and FIG. 1b is a sectional view of FIG. 1a.
Fig. 1c is an explanatory diagram for explaining the structure, Figs. 2 and 3 relate to a conventional heat exchanger, Fig. 2 is a structural diagram showing conventional example 1, FIG. 3 is a structural diagram showing conventional example 2. 20...Ciel, 23a, 23b...Large diameter pipe,
24... Notch, 26a, 26b... Heat collecting plate, 2
7a, 27b...Small diameter pipe, 28...Gap.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一方の媒体を循環させるシエル内に気密に大径
管を貫通させるとともに前記大径管内に他方の媒
体を循環させる小径管を挿通させて前記大径管と
前記小径管との間に間隙を形成した熱交換器にお
いて、前記シエル内に位置する前記大径管に切欠
部を形成するとともに該切欠部を集熱板で塞ぎ、
該集熱板に小径管を固着したことを特徴とする熱
交換器。
A large diameter pipe is airtightly passed through a shell that circulates one medium, and a small diameter pipe that circulates the other medium is inserted into the large diameter pipe to form a gap between the large diameter pipe and the small diameter pipe. In the heat exchanger, a notch is formed in the large diameter pipe located in the shell, and the notch is closed with a heat collecting plate,
A heat exchanger characterized in that a small diameter tube is fixed to the heat collecting plate.
JP12048485U 1985-08-06 1985-08-06 Expired JPH0249501Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12048485U JPH0249501Y2 (en) 1985-08-06 1985-08-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12048485U JPH0249501Y2 (en) 1985-08-06 1985-08-06

Publications (2)

Publication Number Publication Date
JPS6229560U JPS6229560U (en) 1987-02-23
JPH0249501Y2 true JPH0249501Y2 (en) 1990-12-26

Family

ID=31008838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12048485U Expired JPH0249501Y2 (en) 1985-08-06 1985-08-06

Country Status (1)

Country Link
JP (1) JPH0249501Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101239303B1 (en) * 2013-01-16 2013-03-06 갑 동 김 Heat exchange type cooling system for transformer

Also Published As

Publication number Publication date
JPS6229560U (en) 1987-02-23

Similar Documents

Publication Publication Date Title
ES2207742T3 (en) FUEL BATTERY SYSTEM FOR THE PRODUCTION OF ELECTRICITY, HEATING, COOLING AND VENTILATION.
US4228848A (en) Leak detection for coaxial heat exchange system
CN101245971B (en) Enclosed cavity type heat exchanger
CN105806100A (en) Coaxial fin type heat exchanger
JPH0249501Y2 (en)
JP2005049135A (en) Liquid metal-cooled nuclear power plant
CN215982881U (en) Efficient finned heat exchanger for air conditioning unit
CN212931081U (en) U-shaped pipe heat exchanger
CN210892797U (en) U-shaped tubular heat exchanger tube box structure
CN209246754U (en) A kind of safe and efficient parallel heat exchange device
US3173477A (en) Leak detector for heat exchangers in gas insulated electric apparatus
CN208398684U (en) A kind of anti-leak double tube plate heat exchanger
CN113309684A (en) Variable-heat-conductivity-coefficient liquid metal cooler in vacuum environment
CN218270348U (en) Double-cylinder shell-and-tube heat exchanger
CN110145950A (en) A kind of heat exchanger
CN216977615U (en) Plate type tube bundle heat exchanger
CN218329415U (en) Lithium bromide solution heat exchanger
CN213178909U (en) Multistage shell and tube condenser
CN210268305U (en) Heat exchanger for chemical equipment
CN211451965U (en) Efficient heat exchanger
CN111472872B (en) Heat exchange tube cooling type engine exhaust device
CN216815133U (en) Plate heat exchanger
CN220912071U (en) Novel inner fin type intercooler radiating tube
CN214371925U (en) Novel oil cooler based on oil-water complete separation design of heat pipe technology
CN217058448U (en) High-efficiency heat exchanger capable of improving heat exchange safety