JPS6346803Y2 - - Google Patents
Info
- Publication number
- JPS6346803Y2 JPS6346803Y2 JP12510286U JP12510286U JPS6346803Y2 JP S6346803 Y2 JPS6346803 Y2 JP S6346803Y2 JP 12510286 U JP12510286 U JP 12510286U JP 12510286 U JP12510286 U JP 12510286U JP S6346803 Y2 JPS6346803 Y2 JP S6346803Y2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- film
- permanent magnet
- ferromagnetic magnetoresistive
- displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 claims description 114
- 239000010408 film Substances 0.000 claims description 83
- 238000006073 displacement reaction Methods 0.000 claims description 74
- 230000005415 magnetization Effects 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 21
- 230000005294 ferromagnetic effect Effects 0.000 claims description 13
- 239000010409 thin film Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 description 11
- 230000005330 Barkhausen effect Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 230000007257 malfunction Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 244000145845 chattering Species 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【考案の詳細な説明】
本考案は互いに直線的に相対運動をする永久磁
石と強磁性磁気抵抗効果素子とを利用した無接点
変位検出器に関するものである。[Detailed Description of the Invention] The present invention relates to a non-contact displacement detector that utilizes a permanent magnet and a ferromagnetic magnetoresistive element that move linearly relative to each other.
無接点変位検出器としては、永久磁石と感磁素
子とを組合せ、互いの相対的変位を感磁素子に作
用する磁界の変化として検出し、これを駆動検出
回路によつて電気信号に変換し、出力する構造の
ものが知られている。こうした無接点変位検出器
は従来の摺動抵抗器やリードスイツチを利用した
ものに比し、機械的接点を持たないので接点摩耗
やチヤタリングが無く、信頼性が高いという特徴
があり、往復運動をするピストン等の位置検出装
置や、また無接点キースイツチや近接スイツチ等
の無接点スイツチとして応用されている。更に、
単に距離的な変位を検出するだけでなく、圧力や
流量や温度、歪等の各種物理量を一旦直線的変位
に変換してこの無接点変位検出器で検出すること
により、それらの物理量の検出装置やスイツチと
しても広い応用が考えられている。 A non-contact displacement detector combines a permanent magnet and a magnetic sensing element, detects the relative displacement of each other as a change in the magnetic field acting on the magnetic sensing element, and converts this into an electrical signal using a drive detection circuit. , structures that output are known. Compared to conventional displacement detectors that use sliding resistors or reed switches, these non-contact displacement detectors do not have mechanical contacts, so there is no contact wear or chattering, and they are highly reliable. It is applied to position detection devices such as pistons, and non-contact switches such as non-contact key switches and proximity switches. Furthermore,
This non-contact displacement detector not only detects distance displacement, but also converts various physical quantities such as pressure, flow rate, temperature, and strain into linear displacement and detects them with this non-contact displacement detector. It is also considered to have wide applications as a switch.
感磁素子としては、半導体ホール素子、半導体
磁気抵抗効果素子、強磁性磁気抵抗効果素子等が
あるが、このうち、強磁性磁気抵抗効果素子(以
下MR素子と略す)は磁界の強度や方向に応じて
電気抵抗が変化する強磁性磁気抵抗効果薄膜(以
下MR膜と略す)と主要部分として持つ磁束応答
型の感磁素子で、MR膜の膜面と平行な成分の磁
界のみに感応し、しかも感度が高く、その抵抗変
化量は一定の飽和量に達し、また、高抵抗化すれ
ば低消費電力化できる等の特徴を有している。 Magnetic sensing elements include semiconductor Hall elements, semiconductor magnetoresistive elements, ferromagnetic magnetoresistive elements, etc. Among these, ferromagnetic magnetoresistive elements (hereinafter abbreviated as MR elements) are sensitive to the strength and direction of the magnetic field. It is a ferromagnetic magnetoresistive thin film (hereinafter abbreviated as MR film) whose electrical resistance changes according to the electrical resistance, and a magnetic flux-responsive magnetosensitive element as the main part, which is sensitive only to the magnetic field of the component parallel to the film surface of the MR film. In addition, the sensitivity is high, the amount of change in resistance reaches a certain saturation amount, and power consumption can be reduced by increasing the resistance.
従来、永久磁石と感磁素子を用いた無接点変位
検出器では両者が互いに直線的に変化することか
ら、両者が近づいた時に強い磁界がかかり、遠ざ
かつた時に殆んどゼロになる様に、つまり磁界の
強弱の変化を検出する様に構成されていた。しか
し、感磁素子としてMR素子を使用する場合には
磁界強度の強弱の変化を検出する方法よりも、磁
界の方向を検出する方法の方がより適しているこ
とがわかつてきた。すなわち、MR膜の抵抗値を
磁界の強弱によつて変化させる方法では、第1
に、いわゆるバルクハウゼンノイズが生じて抵抗
値が不連続に変化したり、ヒステリシスが現われ
たりして無接点変位検出器としては検出すべき変
位量と出力との対応関数が乱れたり、またチヤタ
リングを生ずることになる。第2に、MR膜が磁
気異方性のない分散的なものの場合や、それに流
す電流の方向が直交する複数のMR膜で差動構成
やブリツジ構成をしたMR素子では、全体として
の抵抗変化の効率が低下していわゆるダイナミツ
クレンジが小さくなるので、駆動検出回路によつ
て電気信号に変換する際のSN比が本来得られる
値よりも低下して誤動作の可能性が増加してしま
う。第3に、MR膜は磁界に対する感度が高いた
め、永久磁石が遠ざかつて磁界強度が弱くなつて
いる状態の時に外部からの雑音磁界が加わると抵
抗変化をおこしてしまい、無接点変位検出器とし
て誤動作し易い等の欠点がある。 Conventionally, in non-contact displacement detectors that use a permanent magnet and a magnetic sensing element, both change linearly with each other, so a strong magnetic field is applied when the two approach each other, and becomes almost zero when they move away. In other words, it was configured to detect changes in the strength of the magnetic field. However, when using an MR element as a magneto-sensitive element, it has been found that a method of detecting the direction of the magnetic field is more suitable than a method of detecting changes in the strength of the magnetic field. In other words, in the method of changing the resistance value of the MR film by changing the strength of the magnetic field, the first
In addition, so-called Barkhausen noise occurs, causing the resistance value to change discontinuously, or hysteresis appears, which disrupts the correspondence function between the displacement amount and output that should be detected by a non-contact displacement detector, and also causes chattering. will occur. Second, when the MR film is dispersive with no magnetic anisotropy, or when the MR element has a differential or bridge configuration with multiple MR films in which the directions of current flowing through it are orthogonal, the overall resistance changes. Since the efficiency of the drive detection circuit decreases and the so-called dynamic range decreases, the signal-to-noise ratio when converted into an electrical signal by the drive detection circuit becomes lower than the value originally obtained, increasing the possibility of malfunction. Thirdly, since the MR film has high sensitivity to magnetic fields, if an external noise magnetic field is applied when the permanent magnet is moving away and the magnetic field strength is weakening, it will cause a change in resistance, so it cannot be used as a non-contact displacement detector. It has drawbacks such as easy malfunction.
一方、MR素子と永久磁石とを近接対向させて
MR素子にかかる磁界の方向を変化させている例
が実開昭51−18146号公報に示されているが、そ
こでは磁界の方向は永久磁石の対向面に垂直な面
内で回転しているのでMR膜を永久磁石の対向面
と垂直に配置せねばならず、十分な強度の磁界を
作用させることは困難である。すなわち、よく知
られている様に、永久磁石の磁極から離れるに従
い、磁界強度は急激に減少するので十分な磁界強
度を得るためにはMR膜を十分近接させなければ
ならない。しかし、MR素子は基板上にMR膜が
形成されたものであり、MR膜と平行方向の大き
さはMR膜そのものの大きさやその周辺部、外部
と電気的に接続するための電極部等によつてかな
り大きなものとなつてしまい、十分近接させるこ
とが困難である。尚、上に挙げた実開昭51−
18146号公報の第5図cには永久磁石とMR膜と
を平行に配置した例及びその出力特性が示されて
いる。しかし、その例でも磁界の方向はあくまで
も永久磁石の対向面と垂直な面内で回転してお
り、MR膜が感心する磁界の方向は決して回転し
ていない。すなわち、本考案者等が同様の構成、
配置によつて実験を行なつた測定結果は第5図に
示す様に、上記引例公報に示された出力特性と異
なり、x=0付近では十分な出力が得られず、飽
和変化量の1/2以下であり、またヒステリシスの
ために変位量(つまりx)と出力との対応関係が
くずれ、バルクハウゼンノイズも生じて不連続的
変化を示している。(ここで、縦軸はMR素子の
飽和出力値で規格化した値を示す)。これは磁界
の方向の回転を検出しているのではないことによ
るものであり、x=0の付近では磁界方向がMR
膜と垂直になつていてMR膜には全く磁界が加わ
つていないのと同じ状態になつてることによる。
つまり、その構成は単に磁界の強弱の変化を検出
しているのに他ならない。 On the other hand, if the MR element and the permanent magnet are placed close to each other,
An example of changing the direction of the magnetic field applied to the MR element is shown in Japanese Utility Model Application No. 51-18146, in which the direction of the magnetic field rotates within a plane perpendicular to the facing surface of the permanent magnet. Therefore, the MR film must be placed perpendicular to the facing surface of the permanent magnet, and it is difficult to apply a magnetic field of sufficient strength. That is, as is well known, the magnetic field strength rapidly decreases as the distance from the magnetic pole of the permanent magnet increases, so in order to obtain sufficient magnetic field strength, the MR film must be placed sufficiently close to the permanent magnet. However, an MR element has an MR film formed on a substrate, and the size in the direction parallel to the MR film depends on the size of the MR film itself, its surroundings, electrode parts for electrical connection to the outside, etc. As a result, they become quite large, and it is difficult to place them sufficiently close together. In addition, the above-mentioned Jitsukai 51-
FIG. 5c of Publication No. 18146 shows an example in which a permanent magnet and an MR film are arranged in parallel, and its output characteristics. However, even in this example, the direction of the magnetic field rotates within a plane perpendicular to the facing surface of the permanent magnet, and the direction of the magnetic field that the MR film is sensitive to never rotates. That is, the present inventors, etc. have a similar configuration,
As shown in Figure 5, the measurement results obtained by conducting an experiment with different configurations are different from the output characteristics shown in the above-mentioned publication, and sufficient output cannot be obtained near x = 0, and 1 of the saturation change amount /2 or less, and due to hysteresis, the correspondence between the displacement amount (that is, x) and the output breaks down, and Barkhausen noise also occurs, indicating a discontinuous change. (Here, the vertical axis indicates the value normalized by the saturated output value of the MR element). This is because the rotation of the direction of the magnetic field is not detected, and near x = 0, the direction of the magnetic field is MR.
This is because the magnetic field is perpendicular to the MR film and the state is the same as if no magnetic field was applied to the MR film at all.
In other words, its configuration simply detects changes in the strength of the magnetic field.
この様に従来の無接点変位検出器では磁界の強
弱の変化を検出する様に構成されていてMR素子
に適していなかつたり、MR素子に十分な強度の
磁界を加えられなかつたりしてその特性を有効に
使えていなかつたため、本来得ることの出来る信
頼性が低下してしまつていた。 In this way, conventional non-contact displacement detectors are configured to detect changes in the strength of the magnetic field, and are not suitable for MR elements, or cannot apply a magnetic field of sufficient strength to MR elements, resulting in their characteristics. Because the system was not being used effectively, the reliability that could have been obtained had deteriorated.
本考案の目的は上記欠点を解決してMR素子を
利用した信頼性の高い無接点変位検出器を提供す
ることにある。すなわち、本考案は互いに直線的
に相対的変位をする永久磁石とMR素子、及び駆
動検出回路とを含んで構成され、MR膜に作用す
る磁界はその強度をMR膜の磁化回転に要する強
度以上に保ちながら、MR素子と永久磁石との相
対的変位に伴ない前記磁界の方向がMR素子に対
向する永久磁石の対向面と平行な面内で回転して
いく様に、永久磁石の対向面は両者の相対的変位
の方向と平行な辺を持つ矩形で、かつ相対的変位
の方向と平行な境界線によつて2つの領域に分
け、該領域それぞれの全部、又は前記境界線近傍
を除いた部分が互いに反対の磁極とし、更にMR
膜の膜面及び永久磁石の対向面及び相対的変位の
方向がすべてほぼ平行でかつMR膜の中心が境界
線から離れた位置に対向する様に配置したことを
特徴としている。 An object of the present invention is to solve the above drawbacks and provide a highly reliable non-contact displacement detector using an MR element. That is, the present invention includes a permanent magnet, an MR element, and a drive detection circuit that are linearly displaced relative to each other, and the magnetic field acting on the MR film has an intensity greater than the intensity required for magnetization rotation of the MR film. The facing surface of the permanent magnet is maintained such that the direction of the magnetic field rotates in a plane parallel to the facing surface of the permanent magnet facing the MR element as the MR element and the permanent magnet move relative to each other. is a rectangle with sides parallel to the direction of relative displacement between the two, and is divided into two regions by a boundary line parallel to the direction of relative displacement, excluding all of each region or the vicinity of the boundary line. The two parts are made with opposite magnetic poles, and further MR
The MR film is characterized in that the film surface of the film, the facing surface of the permanent magnet, and the direction of relative displacement are all substantially parallel, and the center of the MR film is arranged facing away from the boundary line.
以下本考案を図面に従つて詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.
第1図a及びbは本考案の無接点変位検出器の
基本構成を模式的に示したものである。これは基
本的にはMR素子1と永久磁石2及び駆動検出回
路3とで構成されており、永久磁石2とMR素子
1とが直線的に相対的変位をする時にその変位に
応じた電気信号を出力するものである。MR素子
1と永久磁石2のうち、どちらが変位しても全く
等価であるので、以下MR素子1がx方向に変位
するとして説明する。 FIGS. 1a and 1b schematically show the basic configuration of the non-contact displacement detector of the present invention. This basically consists of an MR element 1, a permanent magnet 2, and a drive detection circuit 3, and when the permanent magnet 2 and MR element 1 are linearly displaced relative to each other, an electric signal is generated according to the displacement. This outputs the following. Since displacement of either the MR element 1 or the permanent magnet 2 is completely equivalent, the following description will be made assuming that the MR element 1 is displaced in the x direction.
MR素子1は基板6上に主要部分をなすMR膜
7と、駆動検出回路3へ接続するための電極端子
8が形成されているものである。MR素子1の抵
抗値、すなわちMR膜7の抵抗値Rはそれを流れ
る電流Iの方向とその磁化Mの方向との間の角度
θによつて変化し、良く知られている様に、
R=Ro−ΔRsSin2θ …(1)
と表わすことができる。ここでRoは電流Iの方
向と磁化Mの方向とが平行になつた時の抵抗値で
あり、ΔRsは抵抗変化量の飽和値である。MR素
子1は永久磁石2と接触せずにx方向に変位線5
上を変化する。永久磁石2は後に述べる様に磁極
を構成することにより、MR素子1に対向する対
向面と平行な面の磁界成分4(以下これを面内成
分磁界ということにする)の方向が変位線5に沿
つて回転する様にしておく。駆動検出回路3は
MR素子1すなわちMR膜7に電流Iを供給し、
その抵抗値Rの変化をそれに応じた電気信号に変
換し、必要であれば更に適当な信号処理を施して
出力する回路である。 The MR element 1 has an MR film 7 forming the main part on a substrate 6 and electrode terminals 8 for connection to the drive detection circuit 3. The resistance value of the MR element 1, that is, the resistance value R of the MR film 7 changes depending on the angle θ between the direction of the current I flowing through it and the direction of its magnetization M, and as is well known, R It can be expressed as = Ro−ΔRsSin 2 θ (1). Here, Ro is the resistance value when the direction of the current I and the direction of the magnetization M become parallel, and ΔRs is the saturation value of the amount of resistance change. The MR element 1 moves along the displacement line 5 in the x direction without contacting the permanent magnet 2.
change above. By configuring the magnetic poles of the permanent magnet 2 as described later, the direction of the magnetic field component 4 (hereinafter referred to as the in-plane component magnetic field) in a plane parallel to the opposing surface facing the MR element 1 is aligned with the displacement line 5. Let it rotate along the The drive detection circuit 3
Supplying a current I to the MR element 1, that is, the MR film 7,
This circuit converts the change in the resistance value R into an electric signal corresponding to the change, performs further appropriate signal processing if necessary, and outputs the signal.
次にこの無接点変位検出器の動作を説明する。 Next, the operation of this non-contact displacement detector will be explained.
永久磁石による磁界の強度は距離の2乗から3
乗に反比例して減衰し、特に微少変位を検出する
様な場合には反対磁極間の距離を小さくしなけれ
ばならないので磁界強度はよけい小さくなつてし
まう。一方MR素子1は図に示す如く、MR膜7
が基板6上に形成されたものであり、永久磁石2
の対向面に対してMR膜7が垂直になる様に配置
するよりも、平行になる様に配置する方がより近
接できることは明らかである。MR膜7と永久磁
石2の対向面とを近接するのに必ずしも両者を完
全に平行にする必要はないのであるが、ここでは
簡単のため、完全に平行としておく。 The strength of the magnetic field from a permanent magnet is calculated from the square of the distance to 3
In particular, when detecting minute displacements, the distance between opposite magnetic poles must be shortened, so the magnetic field strength becomes even smaller. On the other hand, the MR element 1 has an MR film 7 as shown in the figure.
is formed on the substrate 6, and the permanent magnet 2
It is clear that arranging the MR film 7 parallel to the opposite surface allows for closer proximity than arranging the MR film 7 perpendicularly to the opposing surface. Although it is not necessarily necessary to make the MR film 7 and the facing surface of the permanent magnet 2 completely parallel in order to bring them close to each other, for the sake of simplicity, it is assumed here that they are completely parallel.
MR素子1が変位線5上を変位すると、MR膜
7に作用する面内成分磁界4の方向はその変位に
応じて回転する如く変化する。MR膜7の磁化M
を変化させるのはMR膜7と平行な成分の磁界だ
けで、それに垂直な成分は全く寄与しない。この
例では面内成分磁界4はMR膜7と平行になつて
いるので、面内成分磁界4そのものがMR膜7の
磁化Mの変化に寄与する。こうして面内成分磁界
4がMR膜7の磁化Mを回転させるのに要する強
度以上でありさえすれば、磁化Mの方向は面内成
分磁界4の方向の変化に追随する。ここでMR膜
7の磁化Mの回転に要する強度とは磁界の回転に
伴なつて磁化Mがなめらかに回転するために必要
な強度のことであり、MR膜7の材質、膜厚や幅
によつて異なるが、磁界を電流方向にかけた場合
と、電流に直交する方向にかけた場合の抵抗値の
差が飽和変化量ΔRsの70%程度になる強度であれ
ば十分である。MR素子1が変位線5上を動くと
その変位に応じて磁化Mの方向と電流Iの方向と
の間の角度θが変化し、抵抗値Rが角度θについ
て180度を周期として変化する。この時、MR膜
7の磁化Mの方向の変化も磁化回転でおこるた
め、いわゆるバルクハウゼンノイズは発生せず、
抵抗値Rは変位に応じて連続的になめらかに変化
する。またMR素子1の変位に応じて角度θが0
度から90度まで、つまり電流Iの方向と磁化Mの
方向とが平行から垂直まて変化する間に、抵抗値
Rは少くとも飽和変化量ΔRsの70%以上に達し、
しかも磁気異方性の有無によらない。つまり、分
散的なMR膜でも、また互いに電流方向が直交す
る複数のMR膜で差動構成やブリツジ構成をした
MR素子の場合でも、単に磁界の強弱の変化を利
用する場合(この場合には弱い磁界の時、それぞ
れのMR素子内には多くの磁区が出来、そのため
外部からの強い磁場によつて単磁区形にそろつた
状態より抵抗変化が小さい。)よりも大きく抵抗
変化をさせることができる。更に、MR膜7には
常に磁化回転に要する強度以上の磁界がかかつて
いるため、外部から小さな雑音磁界が加わつても
抵抗値Rへの影響は受けにくい。本発明による無
接点変位検出器は相対運動に伴なうこの様なMR
素子1の抵抗値Rの変化の大きさや変化の周期の
回数を駆動検出回路3で検出し、対応する電気信
号に変換して出力するものであるから、従来の同
種変位検出器に比し、MR素子1の抵抗値Rが連
続的になめらかに変化し、かつ変化量を大きく利
用できる構成となつていてダイナミツクレンジが
大きいのでSN比が高く、しかも雑音磁界の影響
を受けにくいので、チヤタリングが無くより誤動
作の少ない無接点変位検出器となつている。これ
はより強い磁界でMR膜の磁化Mをなめらかに回
転させる様に面内成分磁界の方向を回転する如く
変化させているためであり、後述の様に永久磁石
2の磁極を構成し、MR素子1をそれに合わせて
配置することにより実現できるのである。 When the MR element 1 is displaced on the displacement line 5, the direction of the in-plane component magnetic field 4 acting on the MR film 7 changes as if rotating in accordance with the displacement. Magnetization M of MR film 7
It is only the magnetic field component parallel to the MR film 7 that changes the field, and the component perpendicular to it does not contribute at all. In this example, since the in-plane component magnetic field 4 is parallel to the MR film 7, the in-plane component magnetic field 4 itself contributes to a change in the magnetization M of the MR film 7. In this way, as long as the in-plane component magnetic field 4 has an intensity greater than or equal to the strength required to rotate the magnetization M of the MR film 7, the direction of the magnetization M follows the change in the direction of the in-plane component magnetic field 4. Here, the strength required for the rotation of the magnetization M of the MR film 7 is the strength necessary for the magnetization M to rotate smoothly as the magnetic field rotates, and it depends on the material, thickness, and width of the MR film 7. It is sufficient if the strength is such that the difference in resistance value when the magnetic field is applied in the current direction and when the magnetic field is applied in the direction perpendicular to the current is about 70% of the saturation change amount ΔRs, although it varies accordingly. When the MR element 1 moves on the displacement line 5, the angle θ between the direction of the magnetization M and the direction of the current I changes according to the displacement, and the resistance value R changes with a period of 180 degrees with respect to the angle θ. At this time, since the change in the direction of magnetization M of the MR film 7 also occurs due to magnetization rotation, so-called Barkhausen noise does not occur.
The resistance value R changes continuously and smoothly according to the displacement. Also, depending on the displacement of MR element 1, the angle θ becomes 0.
While the direction of current I and the direction of magnetization M change from parallel to perpendicular to 90 degrees, the resistance value R reaches at least 70% of the saturation change amount ΔRs,
Moreover, it does not depend on the presence or absence of magnetic anisotropy. In other words, even if the MR film is distributed, or if multiple MR films whose current directions are orthogonal to each other are used in a differential or bridge configuration,
Even in the case of MR elements, when simply utilizing changes in the strength of the magnetic field (in this case, when the magnetic field is weak, many magnetic domains are created within each MR element, and therefore a single magnetic domain is created by a strong external magnetic field). (The resistance change is smaller than when the shape is aligned.) It is possible to make a larger change in resistance. Furthermore, since the MR film 7 is always subjected to a magnetic field with an intensity higher than that required for magnetization rotation, the resistance value R is hardly affected even if a small noise magnetic field is applied from the outside. The non-contact displacement detector according to the present invention can detect such MR due to relative motion.
The drive detection circuit 3 detects the magnitude of change in the resistance value R of the element 1 and the number of cycles of change, converts it into a corresponding electric signal, and outputs it, so compared to conventional displacement detectors of the same type, The resistance value R of the MR element 1 is configured to change continuously and smoothly, and the amount of change can be utilized to a large extent.The dynamic range is large, so the S/N ratio is high, and it is not easily affected by noise magnetic fields, so there is no chattering. This is a non-contact displacement detector with fewer malfunctions. This is because the direction of the in-plane component magnetic field is changed so as to rotate so that the magnetization M of the MR film is smoothly rotated by a stronger magnetic field. This can be achieved by arranging the elements 1 accordingly.
尚、検出しようとする変位の大きさが比較的小
さい場合には磁化Mと電流Iとの間の角度θが0
度から90度まで変化する様にしておけば変化の量
と抵抗値の変化量とは1対1に対応するので駆動
検出回路での電気信号への変換はより簡単にでき
る。 Note that when the magnitude of the displacement to be detected is relatively small, the angle θ between the magnetization M and the current I is 0.
If the change is made to vary from 90 degrees to 90 degrees, the amount of change and the amount of change in resistance value correspond one-to-one, so conversion into an electrical signal in the drive detection circuit can be made easier.
更に、以上の説明では簡単のためMR膜と対向
面とが完全に平行であるとしてきたが、面内成分
磁界の方向が回転していく様にしていると、両者
が互いにほぼ平行、すなわち±30゜以内程度の傾
きなら磁界強度さえ十分であればMR膜の磁化を
回転させることができる。従つて空間的制約等で
両者を平行に配置できない場合でも、磁界強度は
ある程度減少するのであるが、同様にして誤動作
のより少ない無接点変位検出器を構成することが
できる。もちろんMR膜と永久磁石の対向面とを
平行にした場合に両者を最も近接できてより効果
的であることはいうまでもない。 Furthermore, in the above explanation, it has been assumed that the MR film and the opposing surface are completely parallel for simplicity, but if the direction of the in-plane component magnetic field is rotated, they will become almost parallel to each other, that is, ± If the tilt is within 30 degrees, the magnetization of the MR film can be rotated as long as the magnetic field strength is sufficient. Therefore, even if the two cannot be arranged in parallel due to space constraints, the magnetic field strength will be reduced to some extent, but a non-contact displacement detector with fewer malfunctions can be constructed in the same way. Of course, it goes without saying that it is more effective if the MR film and the facing surfaces of the permanent magnet are made parallel, since they can be brought closest to each other.
次に、面内成分磁界の方向がMR素子の変位線
に沿つて回転する様にするための永久磁石の磁極
の構成について述べる。一般に永久磁石からの磁
界は対向面の辺や、対向面上の反対磁極間の境界
線に直交する方向になつている。従つてMR素子
の変位線の変位線の近傍で対向面の辺や境界線の
方向が90度程度変わる様に磁極を構成し、変位線
を設定することにより、面内成分磁界の方向を回
転させることができる。 Next, we will describe the configuration of the magnetic poles of the permanent magnets so that the direction of the in-plane component magnetic field rotates along the displacement line of the MR element. Generally, the magnetic field from the permanent magnet is in a direction perpendicular to the sides of the opposing surfaces or the boundary line between opposite magnetic poles on the opposing surfaces. Therefore, the direction of the in-plane component magnetic field can be rotated by configuring the magnetic poles so that the directions of the sides and boundary lines of the opposing surfaces change by about 90 degrees near the displacement line of the MR element, and by setting the displacement line. can be done.
第2図は本考案の構成の実施例でaは平面図、
bは斜視図である。やはり面内成分磁界の方向を
90度回転させるものである。MR素子21と永久
磁石22の相対的変位の方向をx軸方向とする。
永久磁石22のMR素子21に対向する対向面は
x軸方向と平行な一辺を持つ矩形で、x軸方向の
境界線27によつて2つの領域25,26に分
け、それぞれの内1方をN極、他方をS極として
いる。MR膜28の中心が変位線23上を変位す
る時、こ変位線23の近傍では永久磁石22の対
向面の辺29、境界線27、対向面の辺30とい
つた様にそれらの方向が90度ずつ変わる様に構成
したものである。この構成によつて面内成分磁界
24は図の様になり、境界線27の近傍で左右に
ずれた位置では面内成分磁界24の方向はx軸に
そつて回転していく。こうしてMR素子21が境
界線27からずれた位置にある変位線23上を変
位するのに伴い、面内成分磁界24の方向は点2
3Aから点23Bまで連続的に回転して90度の変
化をさせることができる。特にMR膜28の電流
方向がx軸方向に対し45度になる様にすれば抵抗
変化量を最も大きく利用できるので効果的であ
る。尚、境界線27に沿つた部分を磁化されてい
ない領域としても磁界分布は同等である。 Figure 2 is an embodiment of the configuration of the present invention, and a is a plan view;
b is a perspective view. Again, the direction of the in-plane component magnetic field is
It rotates 90 degrees. The direction of relative displacement between the MR element 21 and the permanent magnet 22 is defined as the x-axis direction.
The facing surface of the permanent magnet 22 facing the MR element 21 is a rectangle with one side parallel to the x-axis direction, and is divided into two areas 25 and 26 by a boundary line 27 in the x-axis direction, one of which is divided into two areas 25 and 26. The north pole is the north pole, and the other is the south pole. When the center of the MR film 28 is displaced on the displacement line 23, the directions of the side 29 of the opposing surface of the permanent magnet 22, the boundary line 27, and the side 30 of the opposing surface are changed in the vicinity of the displacement line 23. It is configured to change in 90 degree increments. With this configuration, the in-plane component magnetic field 24 becomes as shown in the figure, and at positions shifted left and right near the boundary line 27, the direction of the in-plane component magnetic field 24 rotates along the x-axis. In this way, as the MR element 21 is displaced on the displacement line 23 located at a position deviated from the boundary line 27, the direction of the in-plane component magnetic field 24 changes to point 2.
It can be rotated continuously from 3A to point 23B to make a 90 degree change. In particular, it is effective if the current direction of the MR film 28 is set at 45 degrees with respect to the x-axis direction, since the amount of resistance change can be utilized to the greatest extent. Note that the magnetic field distribution is the same even if the portion along the boundary line 27 is a non-magnetized region.
次にこの実施例について実験によつて得られた
MR素子の出力特性を説明する。実験は第3図に
示したブリツジ型のMR素子を使用して行なつ
た。これは基板91上に電流方向が直交している
4本のMR膜ストライプ92と電極端子93,9
4,95,96が形成されているもので、基板9
1の大きさは1.5mm角であり、またMR膜ストラ
イプ92は1mm角内に位置している。各MR膜ス
トライプ92は厚さの500Å、幅20μmのNi・Fe
合金から成つている。電極端子93と94の間に
電圧を印加して電流を流すと電極端子95と96
の間の電位差Φとして出力が得られる。無接点変
位検出器としてはこの出力を更に駆動検出回路で
増幅したり電気的に処理して出力とするのである
が、前述の様にMR素子の出力が無接点変位検出
器の信頼性を決定する最も大きな要因であり、以
下ではこのMR素子そのものの出力を示す。まず
このMR素子の特性を簡単に述べる。MR膜スト
ライプ92は上記の材料、膜厚、幅になつてい
て、その磁化を回転させるのに要する磁界の強度
は約30エルステツドであつた。磁界Hを角度θの
方向に印加すると各MR膜ストライプ92の抵抗
値は前述の(1)式の様に変化し、MR素子の出力、
つまり電位差Φはよく知られている様に
Φ(θ)=Voa/2cos2θ …(2)
となる。ここでaは(1)式のRoとΔRsを使つて
ΔRs/Roで表わされる抵抗変化率であり、Voは
MR素子に印加する電圧である。また、角度θは
1本のMR膜ストライプの電流方向を基準(以下
では基準方向と略す)としたものである。(2)式か
らもわかる様に電位差Φを最も大きく変化させる
にはθ=0度からθ=90度まで磁界の方向を変化
させればよく、電位差はVoa/2から−Voa/2まで変
化する。尚、磁界Hが全くない場合には電位差Φ
はほぼゼロ(実際にはMR膜のヒステリシスのた
めランダムにゼロから多少ずれている)であり、
従つて磁界の強弱を変化させる場合には電位差Φ
はせいぜいゼロからVoa/2まで、またはゼロから
−Voa/2まで程度しか変化せず、いわゆるダイナ
ミツクレンジは半減してしまうのである。 Next, regarding this example, the results were obtained through experiments.
The output characteristics of the MR element will be explained. The experiment was conducted using a bridge-type MR element shown in FIG. This consists of four MR film stripes 92 whose current directions are perpendicular to each other on a substrate 91 and electrode terminals 93, 9.
4, 95, 96 are formed, and the substrate 9
1 is 1.5 mm square, and the MR film stripe 92 is located within a 1 mm square. Each MR film stripe 92 is made of Ni/Fe with a thickness of 500 Å and a width of 20 μm.
Made of alloy. When a voltage is applied between electrode terminals 93 and 94 and a current flows, electrode terminals 95 and 96
The output is obtained as the potential difference Φ between. As a non-contact displacement detector, this output is further amplified by a drive detection circuit and processed electrically to produce an output, but as mentioned above, the output of the MR element determines the reliability of the non-contact displacement detector. The output of this MR element itself is shown below. First, we will briefly describe the characteristics of this MR element. The MR film stripe 92 had the above material, film thickness, and width, and the strength of the magnetic field required to rotate its magnetization was about 30 oersteds. When the magnetic field H is applied in the direction of the angle θ, the resistance value of each MR film stripe 92 changes as shown in equation (1) above, and the output of the MR element,
In other words, as is well known, the potential difference Φ is Φ(θ)=Voa/2cos2θ...(2). Here, a is the resistance change rate expressed as ΔRs/Ro using Ro and ΔRs in equation (1), and Vo is
This is the voltage applied to the MR element. Further, the angle θ is based on the current direction of one MR film stripe (hereinafter abbreviated as the reference direction). As can be seen from equation (2), in order to change the potential difference Φ the most, it is sufficient to change the direction of the magnetic field from θ = 0 degrees to θ = 90 degrees, and the potential difference changes from Voa/2 to -Voa/2. do. In addition, when there is no magnetic field H at all, the potential difference Φ
is almost zero (actually it deviates somewhat from zero randomly due to the hysteresis of the MR membrane),
Therefore, when changing the strength of the magnetic field, the potential difference Φ
The value changes at most from zero to Voa/2 or from zero to -Voa/2, and the so-called dynamic range is halved.
また、実験に使用した永久磁石は、板厚方向に
磁化したゴム磁石をそれぞれの構成に合わせて裁
断し、配置したもので、板厚は2mmである。更に
MR素子と永久磁石の対向面との間隔は1.5mmに
した。 The permanent magnets used in the experiment were rubber magnets magnetized in the thickness direction and cut and arranged according to each configuration, and the plate thickness was 2 mm. Furthermore
The distance between the MR element and the facing surface of the permanent magnet was set to 1.5 mm.
第4図bは実測されたMR素子出力を示したも
ので、永久磁石の磁極25,26とMR素子21
の変位線23は第4図aの様にとり、MR素子2
1の基準方向はx軸方向と45度にしている。第4
図bの横軸はx軸方向の距離であり、縦軸は
Voa/2で規格化したMR素子出力である。この場
合もやはりヒステリシスやバルクハウゼンノイズ
がなく、なめらかに最大限の変化をしていること
がわかる。 Figure 4b shows the actually measured MR element output, showing the magnetic poles 25 and 26 of the permanent magnet and the MR element 21.
The displacement line 23 of is taken as shown in Fig. 4a, and the MR element 2
The reference direction of 1 is set at 45 degrees with the x-axis direction. Fourth
The horizontal axis in figure b is the distance in the x-axis direction, and the vertical axis is
This is the MR element output normalized to Voa/2. In this case as well, there is no hysteresis or Barkhausen noise, and it can be seen that the changes are smooth and maximum.
この様に、永久磁石の対向面と平行な面内で磁
界の方向が回転していく様に永久磁石の磁極を構
成したことにより、MR素子のMR膜を永久磁石
の対向面と平行に、しかも磁界の方向が回転して
いく様に、つまり言いかえると、磁界強度が均一
でより強い回転磁界をかけられる様になつたた
め、MR素子は出力はヒステリシスやバルクハウ
ゼンノイズが全くなく、なめらかで最大限の変化
をするので、無接点変位検出器の信頼性を極めて
高くしている。 In this way, by configuring the magnetic poles of the permanent magnet so that the direction of the magnetic field rotates in a plane parallel to the facing surface of the permanent magnet, the MR film of the MR element is aligned parallel to the facing surface of the permanent magnet. Moreover, as the direction of the magnetic field rotates, or in other words, the magnetic field strength is uniform and a stronger rotating magnetic field can be applied, the output of the MR element is smooth without any hysteresis or Barkhausen noise. The maximum amount of change is possible, making the non-contact displacement detector extremely reliable.
一方、従来の磁界強度の変化を検出する様に構
成されたものでは前にも述べた様に出力はほぼゼ
ロからVoa/2まで、またはほぼゼロから−Voa/2ま
でしか変化しないのでダイナミツクレンジは半減
してしまつており、また磁界が弱くなる部分、つ
まりゼロ付近ではヒステリシスのために出力が不
安定だつたり、外来の雑音磁界の影響を受け易く
なつていた。また、前に述べた様に実開昭51−
18146号公報ではMR膜にかかる磁界の方向を変
化させている例が示されているが、本考案のもの
と異なり、磁界の方向は対向面に垂直な面内で回
転しているのでMR膜を対向面に垂直に配置せね
ばならない。ところが本願第3図から明らかな様
にたとえMR膜自体が小さかつたとしてもMR素
子の基板はかなり大きくなつており、更に、この
図では省略しているが一般には通常のIC等の様
にパツケージに納めたり、モールドしたりするの
で余計大きくなる。従つてMR膜の部分部分では
磁界強度が大きく異なつたり、十分な強度の磁界
をかけられなかつたりして出力の低減やSN比の
低下をおこしがちであり、また必然的により大き
な永久磁石を使わざるを得なくなつてしまつてい
た。更に、同じく引例公報にはMR膜を永久磁石
の対向面と平行に配置した例とその時の出力が示
されているが、本考案者等が同様の構成、配置で
実験を行なつた結果(第5図b)とは異なつてい
る。本考案者等の行なつた実験はMR素子98と
して第3図に示したMR素子を使用しているがこ
れは引例公報のMR素子と同等のものであり、ま
た永久磁石99、及び両者の配置は全く同じであ
る。第5図bのMR素子出力は本考案を実施した
構成によるMR素子出力(第4図)と異なり、
Voa/2から−Voa/4程度しか変化しておらず、ダイ
ナミツクレンジは3/4程度に低減している。更に
x=0近傍ではバルクハウゼンノイズやヒステリ
シスが現われ、不安定な出力となつてしまつてい
る。これは第5図aの構成が磁界の方向の回転を
検出しているのではないことを示すものである。
つまり、この場合にも磁界の方向の変化は永久磁
石の対向面に垂直な面内で変化しているのであ
り、一方MR膜が感応するのはあくまでもその面
内成分のみであつてMR膜の膜面に垂直の磁界成
分は何等の影響も与えないため、この配置は単に
磁界の強弱の変化(つまり、x=0近傍が弱い状
態に対応する)を検出しているのにすぎないため
である。 On the other hand, in conventional devices configured to detect changes in magnetic field strength, the output changes only from almost zero to Voa/2, or from almost zero to -Voa/2, so it is not dynamic. The range had been halved, and the output was unstable due to hysteresis in areas where the magnetic field weakened, near zero, and was susceptible to the effects of external noise magnetic fields. Also, as mentioned earlier,
Publication No. 18146 shows an example in which the direction of the magnetic field applied to the MR film is changed, but unlike the one of the present invention, the direction of the magnetic field rotates in a plane perpendicular to the opposing surface, so the MR film must be placed perpendicular to the opposing surface. However, as is clear from Figure 3 of this application, even if the MR film itself is small, the substrate of the MR element is quite large, and although it is omitted in this figure, it is generally It will be larger because it will be placed in a package cage or molded. Therefore, the magnetic field strength may vary greatly between parts of the MR film, or a magnetic field of sufficient strength may not be applied, which tends to cause a reduction in output and a reduction in the S/N ratio. I had no choice but to use it. Furthermore, the same reference publication shows an example in which the MR film is arranged parallel to the opposing surface of the permanent magnet and the output at that time, but the inventors conducted experiments with a similar configuration and arrangement ( This is different from Figure 5b). The experiments conducted by the present inventors used the MR element shown in Figure 3 as the MR element 98, which is equivalent to the MR element in the cited publication, and the permanent magnet 99 and both The layout is exactly the same. The MR element output in Fig. 5b is different from the MR element output (Fig. 4) according to the configuration implementing the present invention,
It only changes from Voa/2 to -Voa/4, and the dynamic range has been reduced to about 3/4. Furthermore, Barkhausen noise and hysteresis appear near x=0, resulting in unstable output. This shows that the configuration of FIG. 5a does not detect rotation in the direction of the magnetic field.
In other words, in this case as well, the direction of the magnetic field changes within a plane perpendicular to the facing surface of the permanent magnet, and on the other hand, what the MR film is sensitive to is only the in-plane component; This is because the magnetic field component perpendicular to the film surface has no effect, so this arrangement simply detects changes in the strength of the magnetic field (in other words, the vicinity of x = 0 corresponds to a weak state). be.
以上から明らかな様に従来のものはMR素子が
磁界の強弱の変化を検出するか、又は永久磁石の
対向面に垂直に配置せねばならず、均一で十分な
強度の磁界を得ることができなかつたのに対し、
本特許を実施した無接点変位検出器では永久磁石
の磁極を適当に構成することによつて、MR素子
に対して均一で十分な強度の磁界の方向がなめら
かに回転していく様にできるので、ヒステリシス
やバルクハウゼンノイズがなく、なめらかでより
大きなMR出力を得ることができ、無接点変位検
出器をより誤動作しにくい信頼性の高いものとす
ることができた。尚、実測に使用したMR素子は
MR膜がブリツジ構成されているものであるが、
単一のMR膜から成つているものでも、又電流方
向が直交する2本のMR膜で差り動構成されてい
るのでも、全く同様であることは言うまでもな
い。 As is clear from the above, in conventional devices, the MR element must either detect changes in the strength of the magnetic field or be placed perpendicular to the facing surface of the permanent magnet, making it impossible to obtain a uniform and sufficiently strong magnetic field. In contrast,
In the non-contact displacement detector implementing this patent, by appropriately configuring the magnetic poles of the permanent magnet, it is possible to ensure that the direction of a uniform and sufficiently strong magnetic field rotates smoothly with respect to the MR element. , we were able to obtain a smoother and larger MR output without hysteresis or Barkhausen noise, and we were able to make the non-contact displacement detector more reliable and less likely to malfunction. In addition, the MR element used for the actual measurement was
The MR membrane has a bridge structure,
Needless to say, it is exactly the same whether it is made up of a single MR film or if it has a differential configuration with two MR films whose current directions are perpendicular to each other.
次に本考案の無接点変位検出器についてより具
体的な実施例をあげる。 Next, a more specific example of the non-contact displacement detector of the present invention will be described.
第6図は本考案による無接点変位検出器を利用
した無接点スイツチの一例である無接点キースイ
ツチの断面図を示している。この無接点キースイ
ツチはキーが押されているかどうかを電気信号と
して出力するものであり、本式的にキーの変位を
検出し出力する無接点変位検出器にほかならな
い。これは上下に動くキー83と、これを押し上
げているスプリング84、キー83に固定された
永久磁石82、MR素子81、駆動検出回路8
5、電極ピン86、及びこれらを保持し外枠とな
るハウジング87とで構成される。永久磁石82
は板厚方向に磁化されている2枚の矩形板状のフ
エライト磁石を合わせたもので第2図に示した構
成例と同様のものである。MR素子81は基板8
8にMR膜89が形成されたもので、永久磁石8
2の磁極面と平行にし、かつこれに流れる電流の
方向が変位の方向、つまりキーが動く上下方向と
45度になる様にする。又、永久磁石82の大き
さ、及びMR素子81の位置はキー83が押され
ていない時(実線で示す)にはMR膜89が第2
図の点23Aに相当する位置となり、キー83が
押し込まれた時(二点鎖線で示す)には点23B
に相当する位置になる様に設定する。駆動検出回
路85はMR素子81すなわちMR膜89に電流
を供給し、その抵抗値の変化を検出して電気信号
として出力するための回路であり、電極ピン86
はこれに接続して外部の電源や信号出力線と結合
するためのものである。 FIG. 6 shows a sectional view of a non-contact key switch, which is an example of a non-contact switch using the non-contact displacement detector according to the present invention. This non-contact key switch outputs an electrical signal indicating whether a key is pressed or not, and is essentially a non-contact displacement detector that detects and outputs the displacement of a key. This consists of a key 83 that moves up and down, a spring 84 pushing it up, a permanent magnet 82 fixed to the key 83, an MR element 81, and a drive detection circuit 8.
5, electrode pins 86, and a housing 87 that holds these and serves as an outer frame. Permanent magnet 82
is a combination of two rectangular plate-shaped ferrite magnets magnetized in the thickness direction, and is similar to the configuration example shown in FIG. The MR element 81 is the substrate 8
8 with an MR film 89 formed on the permanent magnet 8.
2, and the direction of the current flowing through it is the direction of displacement, that is, the up and down direction in which the key moves.
Make it 45 degrees. Furthermore, the size of the permanent magnet 82 and the position of the MR element 81 are such that when the key 83 is not pressed (indicated by a solid line), the MR film 89 is in the second position.
The position corresponds to point 23A in the figure, and when the key 83 is pressed (indicated by a two-dot chain line), point 23B
Set it to a position corresponding to . The drive detection circuit 85 is a circuit for supplying current to the MR element 81, that is, the MR film 89, detecting a change in its resistance value, and outputting it as an electric signal.
is used to connect to this and connect it to an external power supply or signal output line.
キー83は押されていない時にはMR膜89は
第2図の点23Aに相当する位置にあるので面内
成分磁界の方向と電流の方向とは平行であり、従
つてMR膜89の磁化方向と電流方向との間の角
度は0度で抵抗値はRoになつている。キー83
が押し込まれていくとこれに固定された永久磁石
82とMR素子81との相対位置が変化してい
き、MR膜89は第3図の点23Bに相当する位
置に達する。点23Bでは面内成分磁界の方向と
MR膜89の電流方向とは直交するので、MR膜
89の磁化方向と電流方向との間の角度はほぼ90
度になり、抵抗値Ro−ΔRsになる。キー83が
押し込まれていく途中では面内成分磁界84の方
向は連続的になめらかに回転する如く変化してい
くのでMR膜89の抵抗値もRoからRo−ΔRsま
で連続的になめらかに変化していく。この抵抗値
の変化を駆動検出回路86で検出し、例えば抵抗
値がRo−1/2ΔRs以上であればキー83が押され
ていないことを示す電気信号を出力し、Ro−1/2
ΔRs以下であればキー83が押されていないこと
を示す電気信号を出力することで無接点キースイ
ツチとして動作する。この時、MR膜89の抵抗
値はバルクハウゼンノイズやヒステリシスがなく
連続的になめらかに変化するので駆動検出回路8
6の出力にチヤタリングはおこらず、又MR膜8
9が磁界異方性を持つていなくても飽和変位量ま
で抵抗変化させることができていわゆるダイナミ
ツクレンジが広く、しかも常に磁化回転に要する
強度以上の磁界が加わつているので外部からの雑
音磁界の影響を受けにくいためにSN比が高い。
こうして、誤動作しにいく信頼性の高い無接点キ
ースイツチとなつている。 When the key 83 is not pressed, the MR film 89 is at a position corresponding to point 23A in FIG. The angle with the current direction is 0 degrees and the resistance value is Ro. key 83
As the permanent magnet 82 is pushed in, the relative position between the permanent magnet 82 fixed thereto and the MR element 81 changes, and the MR film 89 reaches a position corresponding to point 23B in FIG. At point 23B, the direction of the in-plane component magnetic field and
Since it is perpendicular to the current direction of the MR film 89, the angle between the magnetization direction of the MR film 89 and the current direction is approximately 90
degree, and the resistance value becomes Ro−ΔRs. While the key 83 is being pushed in, the direction of the in-plane component magnetic field 84 changes continuously and smoothly as if rotating, so the resistance value of the MR film 89 also changes continuously and smoothly from Ro to Ro−ΔRs. To go. This change in resistance value is detected by the drive detection circuit 86, and if the resistance value is greater than or equal to Ro−1/2ΔRs, an electrical signal indicating that the key 83 is not pressed is output, and Ro−1/2
If it is less than ΔRs, it operates as a non-contact key switch by outputting an electric signal indicating that the key 83 is not pressed. At this time, the resistance value of the MR film 89 changes continuously and smoothly without Barkhausen noise or hysteresis, so the drive detection circuit 89
No chattering occurred in the output of 6, and the MR membrane 8
Even if 9 has magnetic field anisotropy, it is possible to change the resistance up to the saturation displacement amount, so it has a wide so-called dynamic range, and since the magnetic field is always applied with a strength greater than the strength required for magnetization rotation, external noise magnetic fields can be avoided. The signal-to-noise ratio is high because it is less susceptible to the effects of
In this way, it has become a highly reliable non-contact key switch that is unlikely to malfunction.
尚、MR膜とこれに対向する永久磁石の対向面
とは完全に平行にしているが、こうした方がMR
膜により均一で強い磁界が加わつて効果的なため
であり、磁化回転に要する強度以上の面内成分磁
界がかかる限りは完全に平行でなくてもかまわな
い。 Note that the MR film and the facing surface of the permanent magnet facing it are completely parallel, but this is better for MR.
This is because it is effective when a more uniform and stronger magnetic field is applied to the film, and as long as the in-plane component magnetic field is applied with an intensity greater than the strength required for magnetization rotation, it is not necessary that they be completely parallel.
この無接点キースイツチは本考案の無接点変位
検出器の一応用例にすぎず、この実施例のキーに
相当するものが手で押されるのではなく、温度や
圧力に応じて変位する様にすればそのまま感温ス
イツチや感圧スイツチとすることができる。又例
えばプロパン、都市ガス等の気体や水等の液体の
単位流量毎にこの実施例のキーに相当する部分が
1往復する様にしておけばその回数を計数するこ
とにより流量計とすることもできる。更に、前述
の実施例は無接点スイツチの1つとして応用した
ものであるため、出力の電気信号はデジタル的に
押されているかどうかの2つの状態を示すだけで
あるが、例えばプロパン、都市ガス、水等の流量
や温度や圧力等を変位の大きさに対応させてその
変位量を検出し、そのままその大きさを表わす電
気信号に変換して出力することでそれらを測定す
るメーターも容易に構成することができる。 This non-contact key switch is just one application example of the non-contact displacement detector of the present invention, and if the keys of this embodiment are not pressed by hand, they will be displaced according to temperature and pressure. It can be used as a temperature-sensitive switch or a pressure-sensitive switch. For example, if the part corresponding to the key in this embodiment is made to make one reciprocation for each unit flow rate of gas such as propane, city gas, or liquid such as water, it can be used as a flowmeter by counting the number of times. can. Furthermore, since the above-mentioned embodiment is applied as a non-contact switch, the output electrical signal only digitally indicates two states: whether it is pressed or not. , it is easy to create a meter that measures the flow rate, temperature, pressure, etc. of water, etc. by detecting the amount of displacement, converting it directly into an electrical signal that represents the magnitude, and outputting it. Can be configured.
永久磁石の材料としてはフエライトや希土類磁
石等が利用でき、それらを所定の形状に着磁する
か、又は既に着磁されているものを組み合わせて
本考案を実施するに適当な磁極を構成することが
できる。MR素子は表面に絶縁膜を形成したシリ
コンやガラスやセラミツクの様な十分平滑な絶縁
基板上に、鉄、ニツケル、コバルト等の単体やそ
れらを主成分とする合金のMR膜を周知の蒸着、
スパツター、メツキ等の薄膜形成技術、又はレジ
スト処理及びエツチング技術等によつて形成して
作製される。MR膜の代表的な形状を挙げると、
膜厚が200〜1000Å、幅が数μm〜100μm程度のス
トライプ、又はこれを複数回折り返したもの、又
はこうしたストライプをその方向が互いに0度か
ら90度の間の角度をなす様に複数個配置したもの
であり、それらの具体的な数値、及び長さ等は使
用する永久磁石の大きさや必要とする抵抗値等に
合わせて決定される。尚、駆動検出回路がIC作
製技術によつてMR膜と同一基板上に形成された
MR素子の場合には基板はシリコンを使用する。
駆動検出回路はMR素子に電流を供給する部分と
MR素子の抵抗変化を検出する部分とこれを適当
に処理して永久磁石とMR素子の相対的変位の大
きさに対応した電気信号を出力する部分とを有す
る。最も簡単な例はMR素子の抵抗値に比例した
電圧又は電流を出力するアナログ信号出力の場合
で、MR素子に一定の電圧又は電流を供給する電
源部とMR素子のMR膜の両端の電圧又は電流の
変化を検出し増幅する増幅器とで構成される。別
の例としては第6図の無接点キースイツチの様に
永久磁石とMR素子との相対的変位をある点を境
としてデジタル的に出力する場合があり、MR膜
の抵抗変化というアナログ信号をあらかじめ設定
した値と比較する比較回路が駆動検出回路に含ま
れる。更に上で述べたアナログ信号出力の場合に
これをアナログ−デジタル変換を行なつて2進コ
ードやBCDコード等のパルス列で出力すること
もでき、この時には周知のアナログ−デジタル変
換回路が含まれる。又、気体や液体の単位流量毎
に1往復の相対的変位をする様に構成した流量計
の場合には、駆動検出回路はそれらの回路を数え
る計数回路を含む。 Ferrite, rare earth magnets, etc. can be used as materials for the permanent magnet, and magnetic poles suitable for implementing the present invention can be constructed by magnetizing them into a predetermined shape or by combining already magnetized materials. I can do it. MR elements are made by depositing an MR film of iron, nickel, cobalt, etc., or alloys mainly composed of these elements, on a sufficiently smooth insulating substrate such as silicon, glass, or ceramic, which has an insulating film formed on its surface.
It is formed by thin film forming techniques such as sputtering and plating, or by resist processing and etching techniques. Typical shapes of MR membranes are:
Stripes with a film thickness of 200 to 1000 Å and a width of several μm to 100 μm, or stripes folded multiple times, or multiple such stripes arranged so that their directions form an angle between 0 and 90 degrees. Their specific values, length, etc. are determined according to the size of the permanent magnet used, the required resistance value, etc. Note that the drive detection circuit was formed on the same substrate as the MR film using IC fabrication technology.
In the case of MR elements, silicon is used as the substrate.
The drive detection circuit is the part that supplies current to the MR element.
It has a part that detects the resistance change of the MR element and a part that processes this appropriately and outputs an electric signal corresponding to the magnitude of the relative displacement between the permanent magnet and the MR element. The simplest example is an analog signal output that outputs a voltage or current proportional to the resistance value of the MR element. It consists of an amplifier that detects and amplifies changes in current. Another example is the non-contact key switch shown in Figure 6, in which the relative displacement between a permanent magnet and an MR element is digitally output with a certain point as a boundary, and an analog signal representing the resistance change of the MR film is generated in advance. The drive detection circuit includes a comparison circuit that compares it with a set value. Furthermore, in the case of the above-mentioned analog signal output, it is also possible to perform analog-to-digital conversion and output it as a pulse train such as a binary code or BCD code, and in this case, a well-known analog-to-digital conversion circuit is included. Further, in the case of a flowmeter configured to perform one reciprocating relative displacement for each unit flow rate of gas or liquid, the drive detection circuit includes a counting circuit that counts these circuits.
以上説明した様に、本考案によればMR膜の抵
抗変化は連続的でなめらかであり、又磁気異方性
の有無によらず大きな抵抗変化量が得られ、しか
もより強い強度の磁界が常にかかつているので雑
音磁界の影響を受けにくく、チヤタリングや誤動
作がない、より信頼性の高い無接点変位検出器を
提供できる。 As explained above, according to the present invention, the resistance change of the MR film is continuous and smooth, and a large amount of resistance change can be obtained regardless of the presence or absence of magnetic anisotropy. Therefore, it is possible to provide a more reliable non-contact displacement detector that is less susceptible to the effects of noise magnetic fields and is free from chattering and malfunctions.
第1図は本考案の無接点変位検出器の基本構成
を示した模式図でaは平面図、bは斜視図、第2
図は本考案の実施例を示す図でaは平面図、bは
斜視図、第3図は実験に使用したMR素子を表わ
す平面図、第4図はMR素子出力を実測した例を
示す図でaは具体的構成図、bは出力曲線、第5
図は磁界の方向の回転を検出しているのではない
構成についてMR素子出力を実測した図で、aは
具体的構成図、bは出力曲線、第6図は本考案の
無接点変位検出器を無接点キースイツチとして応
用した例を示す断面図である。
図において、1,21,81,98はMR素
子、22,82,99は永久磁石、3,85は駆
動検出回路、5,23,100は変位線、6,8
8,91はMR素子の基板、8,93,94,9
5,96は電極端子、23A,23Bは変位線上
の点、4,24は面内成分磁界、25,26は永
久磁石の対向面上の領域、27は永久磁石の対向
面上の領域の境界線、29,30は永久磁石の対
向面の一辺、7,28,89,92はMR膜、8
3はキー、84はスプリング、86は電極ピン、
87はハウジング、97はMR素子の基準方向を
表わす。
Figure 1 is a schematic diagram showing the basic configuration of the non-contact displacement detector of the present invention, in which a is a plan view, b is a perspective view, and
The figures show an embodiment of the present invention, in which a is a plan view, b is a perspective view, Fig. 3 is a plan view showing the MR element used in the experiment, and Fig. 4 is a diagram showing an example of actually measured MR element output. where a is the specific configuration diagram, b is the output curve, and the fifth
The figure shows the actual measured MR element output for a configuration that does not detect rotation in the direction of the magnetic field, where a is a specific configuration diagram, b is an output curve, and Figure 6 is a non-contact displacement detector of the present invention. FIG. 2 is a sectional view showing an example in which the switch is applied as a non-contact key switch. In the figure, 1, 21, 81, 98 are MR elements, 22, 82, 99 are permanent magnets, 3, 85 are drive detection circuits, 5, 23, 100 are displacement lines, 6, 8
8, 91 are MR element substrates, 8, 93, 94, 9
5 and 96 are electrode terminals, 23A and 23B are points on the displacement line, 4 and 24 are in-plane component magnetic fields, 25 and 26 are regions on the opposing surfaces of the permanent magnets, and 27 are boundaries of the regions on the opposing surfaces of the permanent magnets. Lines 29, 30 are one side of the opposing surface of the permanent magnet, 7, 28, 89, 92 are MR films, 8
3 is a key, 84 is a spring, 86 is an electrode pin,
87 represents a housing, and 97 represents a reference direction of the MR element.
Claims (1)
強磁性磁気抵抗効果素子、及び前記相対的変位
を電気信号として出力する駆動検出回路とを含
んで構成された無接点変位検出器において、前
記永久磁石によつて前記強磁性磁気抵抗効果素
子の強磁性磁気抵抗効果薄膜に作用する磁界の
強度を該強磁性磁気抵抗効果薄膜の磁化回転に
要する強度以上に保ちながら、かつ前記相対的
変位に伴ない前記磁界の方向が前記強磁性磁気
抵抗効果薄膜に対向する前記永久磁石の対向面
に平行な面内で回転する様に、前記永久磁石の
対向面は両者の相対的変位の方向と平行な辺を
持つ矩形で、かつ前記相対的変位の方向と平行
な境界線によつて2つの領域に分け、該領域そ
れぞれの全部、又は前記境界線近傍を除いた部
分が互いに反対の磁極とし、更に前記強磁性磁
気抵抗効果薄膜の膜面及び前記永久磁石の対向
面及び前記相対的変位の方向がすべてほぼ平行
でかつ強磁性磁気抵抗効果薄膜の中心が前記境
界線から離れた位置に対向する様に配置したこ
とを特徴とする無接点変位検出器。 2 強磁性磁気抵抗効果薄膜を流れる電流の方向
と、相対的変位の方向とがほぼ45度になる様に
強磁性磁気抵抗効果素子を配置した実用新案登
録請求の範囲第1項に記載の無接点変位検出
器。[Claims for Utility Model Registration] 1. A device comprising a permanent magnet and a ferromagnetic magnetoresistive element that are linearly displaced relative to each other, and a drive detection circuit that outputs the relative displacement as an electrical signal. In the contact displacement detector, while maintaining the strength of the magnetic field acting on the ferromagnetic magnetoresistive thin film of the ferromagnetic magnetoresistive element by the permanent magnet to be greater than the intensity required for magnetization rotation of the ferromagnetic magnetoresistive thin film. , and the opposing surfaces of the permanent magnets are arranged so that the direction of the magnetic field rotates in a plane parallel to the opposing surface of the permanent magnet facing the ferromagnetic magnetoresistive thin film. A rectangular shape with sides parallel to the direction of relative displacement, divided into two regions by a boundary line parallel to the direction of relative displacement, and excluding the entirety of each region or the vicinity of the boundary line. are mutually opposite magnetic poles, and further, the film surface of the ferromagnetic magnetoresistive thin film, the facing surface of the permanent magnet, and the direction of the relative displacement are all substantially parallel, and the center of the ferromagnetic magnetoresistive thin film is the boundary line. A non-contact displacement detector characterized in that it is placed facing away from the. 2. The device according to claim 1 of the utility model registration claim, in which the ferromagnetic magnetoresistive element is arranged so that the direction of the current flowing through the ferromagnetic magnetoresistive thin film and the direction of relative displacement are approximately 45 degrees. Contact displacement detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12510286U JPS6346803Y2 (en) | 1986-08-15 | 1986-08-15 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12510286U JPS6346803Y2 (en) | 1986-08-15 | 1986-08-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6296518U JPS6296518U (en) | 1987-06-19 |
JPS6346803Y2 true JPS6346803Y2 (en) | 1988-12-05 |
Family
ID=31017716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12510286U Expired JPS6346803Y2 (en) | 1986-08-15 | 1986-08-15 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6346803Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5483516B2 (en) * | 2006-09-20 | 2014-05-07 | 旭化成エレクトロニクス株式会社 | POSITION DETECTION DEVICE, OPTICAL SYSTEM HAVING POSITION DETECTION DEVICE, AND IMAGING DEVICE |
-
1986
- 1986-08-15 JP JP12510286U patent/JPS6346803Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS6296518U (en) | 1987-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7786725B2 (en) | Magnetic field detection apparatus for detecting an external magnetic field applied to a magnetoresistance effect element, and method of adjusting the same | |
US6100686A (en) | Magnetic field sensor with double wheatstone bridge having magneto-resistive elements | |
JP6220971B2 (en) | Multi-component magnetic field sensor | |
US20070194787A1 (en) | Magnetic sensor, production method thereof, rotation detection device, and position detection device | |
CN105527451B (en) | Magnetoresistive device | |
JP2000035343A (en) | Encoder provided with gigantic magnetic resistance effect element | |
US6522132B1 (en) | Linear angular sensor with magnetoresistors | |
JPH08178937A (en) | Magnetism detecting device | |
WO2006020626A1 (en) | Precision non-contact digital switch | |
JPH10233146A (en) | Ferromagnet passage sensor | |
JPS6346803Y2 (en) | ||
CN112305471A (en) | Magnetic field sensor, system and oblique incidence deposition manufacturing method | |
JPH028171Y2 (en) | ||
JPH06229708A (en) | Noncontact linear displacement sensor | |
JPS637857Y2 (en) | ||
JP4663204B2 (en) | Rotation angle sensor | |
JPS637856Y2 (en) | ||
JP3013031B2 (en) | Magnetoresistance effect element and magnetoresistance sensor | |
JP3067484B2 (en) | Magnetic position and rotation detection element | |
JPH08316548A (en) | Magnetoresistive element | |
JPH01301113A (en) | Signal processing circuit for magneto-resistance element | |
US20240310190A1 (en) | Devices for determining a number of rotations of a magnetic field | |
JP2005043209A (en) | Magnetic detection device | |
JPS6031313Y2 (en) | Non-contact displacement switch | |
JP2011007685A (en) | Magnetic sensor |