JPS6346770A - Change coupled device - Google Patents

Change coupled device

Info

Publication number
JPS6346770A
JPS6346770A JP18952186A JP18952186A JPS6346770A JP S6346770 A JPS6346770 A JP S6346770A JP 18952186 A JP18952186 A JP 18952186A JP 18952186 A JP18952186 A JP 18952186A JP S6346770 A JPS6346770 A JP S6346770A
Authority
JP
Japan
Prior art keywords
electrode
layer
phase
electrodes
coupled device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18952186A
Other languages
Japanese (ja)
Inventor
Hidetsugu Oda
織田 英嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18952186A priority Critical patent/JPS6346770A/en
Publication of JPS6346770A publication Critical patent/JPS6346770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a high density charge coupled device adapted for 2-phase drive by not overlapping the electrode of a device first phase second layer with that of a second phase first layer, and not overlapping the electrode of a second phase second layer with that of a first phase first layer. CONSTITUTION:The electrodes of a first layer, such as electrodes 11, 14 are electrically connected, for example, to those of a second layer, such as electrodes 13, 16 to form one transfer electrode phi1, and the electrode 12 is electrically connected, for example, to the electrode 15 to form another transfer electrode phi2, there by forming a 2-phase driving transfer electrode. Here, the electrode of the second layer which forms the electrode phi1, such as the electrode 14 and the electrode of the first layer which forms the electrode phi2, such as the electrode 12 are not overlapped, and the electrode of the second layer which forms the electrode phi2, such as the electrode 15 and the electrode of the first layer which forms the electrode phi1, such as the electrode 13 are not overlapped. Thus, the size of an element can be largely reduced to form a high density charge coupled device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二相駆動の電荷結合素子に関し、特に高密度
化を可能ならしめ、低消費電力化が可能な二相駆動の電
荷結合素子に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a two-phase drive charge-coupled device, and in particular a two-phase drive charge-coupled device that enables high density and low power consumption. Regarding.

〔従来の技術〕[Conventional technology]

近年、電荷結合素子を用いた二次元固体撮像素子は、よ
り高画質化をめざして水平方向の画素数を増加させ、高
解像度化をはかる傾向にある。一方、カメラの小型化、
素子歩留まりの向上をはかるべく、チップサイズの縮小
化が必須の課題となっている。このような高解像度化と
チップサイズの縮小化を同時に達成させるには、素子の
高密度化が不可避である。
In recent years, two-dimensional solid-state image sensing devices using charge-coupled devices have tended to increase the number of pixels in the horizontal direction in order to achieve higher image quality and higher resolution. On the other hand, the miniaturization of cameras,
Reducing chip size has become an essential issue in order to improve device yield. In order to simultaneously achieve such high resolution and reduction in chip size, it is inevitable to increase the density of elements.

ところで、このような二次元固体撮像素子の高密度化を
はかるには二次元固体撮像素子を構成する水平レジスタ
を高密度に形成する必要がある。
By the way, in order to increase the density of such a two-dimensional solid-state image sensor, it is necessary to form horizontal registers constituting the two-dimensional solid-state image sensor at a high density.

従来、一般に水平レジスタとしては、高速駆動に通した
二相駆動方式で、素子形成が容易な重ね合わせ電極構造
が採用されている。第2図に、従来の水平レジスタの主
要部の断面を示す。なお、以下の説明では、説明の便宜
上、Nチャネルの場合について述べるが、Pチャネルの
場合も同様の考え方が適用できる。図において、1は半
導体基板で、例えばP型のシリコンである。2は半導体
基板1と反対導電型の半導体層で、ここではN型の半導
体層で、埋め込みチャネル電荷結合素子を構成する。3
は酸化膜、4〜6は第一層の電極、7゜8は第二層の電
極、9,10は第二層の電極7,8直下に形成され、半
導体層2よりもより低濃度の半導体領域で、信号電荷の
転送に方向性を与えるための電位障壁を発生させる。こ
こで、例えば第一層の電極4と第二層の電極7とは互い
に電気的に接続され、二相駆動の第一の相φ1を構成し
、第一層の電極5と第二層の電極8とは互いに電気的に
接続され、二相駆動の第二の相φ2を構成している。ま
た、この電荷結合素子においては、第一層の電極4〜6
直下は、信号電荷蓄積領域を構成し、第二層の電極7,
8直下は電位障壁領域を構成している。
Conventionally, horizontal registers have generally adopted a two-phase drive system that allows high-speed drive, and an overlapping electrode structure that facilitates element formation. FIG. 2 shows a cross section of the main part of a conventional horizontal register. Note that in the following description, for convenience of explanation, the case of N channel will be described, but the same concept can be applied to the case of P channel. In the figure, 1 is a semiconductor substrate, for example, P-type silicon. Reference numeral 2 denotes a semiconductor layer of a conductivity type opposite to that of the semiconductor substrate 1, in this case an N-type semiconductor layer, which constitutes a buried channel charge-coupled device. 3
is an oxide film, 4 to 6 are electrodes of the first layer, 7°8 are electrodes of the second layer, 9 and 10 are formed directly under the electrodes 7 and 8 of the second layer, and have a lower concentration than the semiconductor layer 2. A potential barrier is generated in a semiconductor region to give directionality to the transfer of signal charges. Here, for example, the electrode 4 of the first layer and the electrode 7 of the second layer are electrically connected to each other and constitute the first phase φ1 of the two-phase drive, and the electrode 5 of the first layer and the electrode 7 of the second layer are The electrodes 8 are electrically connected to each other and form a second phase φ2 of two-phase drive. In addition, in this charge coupled device, the first layer electrodes 4 to 6
Immediately below constitutes a signal charge accumulation region, the second layer electrode 7,
The area directly below 8 constitutes a potential barrier region.

このような従来の二相駆動の電荷結合素子では、信号電
荷のチャネル内部での転送を支障なく行わせるために、
第2図に示すような重ね合わせ電極構造が採用されてい
る。したがって、−転送屯極当たりの電極長t、oは、
第一層の電極間隙長、例えば電極4と5の間隙長G1 
 と、第二層の電極間隙長、例えば電極7と8の間隙長
G2と、φ1を構成する第一層の電極、例えば電極4と
、同じくφ1を構成する第二層の電極、例えば電極7と
の重なり長01、およびφ1を構成する第二層の電極、
例えば電極7と、ψ2を構成する第一層の電極、例えば
電極5との重なり長02との和、すなわちt、o=G、
+Q2+Q、  +02で与えられる。
In such conventional two-phase drive charge-coupled devices, in order to transfer signal charges inside the channel without any problems,
A stacked electrode structure as shown in FIG. 2 is employed. Therefore, the electrode length t, o per -transfer pole is:
The electrode gap length of the first layer, for example, the gap length G1 between electrodes 4 and 5
, the electrode gap length of the second layer, for example, the gap length G2 of electrodes 7 and 8, the first layer electrode that constitutes φ1, for example electrode 4, and the second layer electrode that also constitutes φ1, for example electrode 7. a second layer electrode constituting an overlap length 01 and φ1,
For example, the sum of the overlap length 02 between the electrode 7 and the first layer electrode forming ψ2, for example, the electrode 5, that is, t, o=G,
+Q2+Q, given by +02.

したがって、二相駆動電荷結合素子の単位素子の電極長
は、2XL、とじて与えられる。一般に、これらの値c
、 、  G2 、01,02は、露光技術。
Therefore, the electrode length of the unit element of the two-phase drive charge-coupled device is given by 2XL. In general, these values c
, , G2, 01 and 02 are exposure techniques.

目合わせ技術、加工技術等、様々な要因により最小限度
の寸法が必要とされ、これにより、単位素子の電極長が
定まるため、おのずから二相駆動電荷結合素子の密度の
向上に限度が生じていた。
Minimum dimensions are required due to various factors such as alignment technology and processing technology, which determines the electrode length of a unit device, which naturally limits the ability to increase the density of two-phase drive charge-coupled devices. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上述べたように、従来技術では、二相駆動電荷結合素
子の電極構造として、重ね合わせ電極を用いており、高
密度の素子を実現することが困難であった。
As described above, in the conventional technology, stacked electrodes are used as the electrode structure of a two-phase drive charge-coupled device, and it is difficult to realize a high-density device.

本発明の目的は、このような従来の問題点を解消するこ
とにより、二相駆動に適合した高密度の電荷結合素子を
提供することにある。
An object of the present invention is to provide a high-density charge coupled device suitable for two-phase drive by solving such conventional problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、第一の層の電極と第二の層の電極とを互いに
接続して一個の転送電極とし、この転送電極二個で第一
の相および第二の相よりなる一対の転送電極が構成され
る二相駆動の電荷結合素子において、第一の相の第二の
層の電極は第二の相の第一の層の電極とは重なり合って
おらず、第二の相の第二の層の電極は第一の相の第一の
層の電極とは重なり合っていないことを特徴としている
In the present invention, a first layer electrode and a second layer electrode are connected to each other to form one transfer electrode, and the two transfer electrodes form a pair of transfer electrodes consisting of a first phase and a second phase. In a two-phase drive charge-coupled device configured with The electrodes of the layer are characterized in that they do not overlap the electrodes of the first layer of the first phase.

〔作用〕[Effect]

本発明の二相駆動電荷結合素子では、第一の相の第二の
層の電極が第二の相の第一の層の電極とは重なり合って
おらず、また第二の相の第二の層の電極が第一の相の第
一の層の電極とは重なり合っていないため、前記型なり
長02が不要となり、高密度化が達成され、かつ第一お
よび第二の相の相間誘電体容量が低減される。
In the two-phase drive charge coupled device of the present invention, the electrodes of the second layer of the first phase do not overlap the electrodes of the first layer of the second phase, and the electrodes of the second layer of the second phase do not overlap with the electrodes of the first layer of the second phase. Since the electrodes of the layer do not overlap with the electrodes of the first layer of the first phase, the mold length 02 is unnecessary, high density is achieved, and the interphase dielectric of the first and second phases Capacity is reduced.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明による一実施例の要部を示し、二相駆
動電荷結合素子の主要部の断面図を示している。図にお
いて、第2図と同一番号は、同一の構成要素を示すもの
とする。11〜13は第一層の電極、14〜16は第二
層の電極を示し、本実施例では、第一層の電極と第二層
の電極、例えば電極11と14、電極13と16を電気
的に接続することにより一転送電極φ1を構成し、例え
ば電極12と15を電気的に接続することによりもう一
つの転送電極φ2を構成することにより、二相駆動の転
送電極を形成している。本実施例における従来例との主
要な相違は、転送電極φ1を構成する第二層の電極、例
えば電極14と、転送電極φ2を構成する第一層の電極
、例えば電極12とが重なり合っておらず、同様に、転
送電極φ2を構成する第二層の電極、例えば電極15と
、転送電極φ1を構成する第一層の電極、例えば電極1
3とが重なり合っていないことである。したがって、本
発明による二相駆動の!は荷結合素子の一転送電極長L
Nは、r−N=c、+c2+Q、で与えられる。すなわ
ち、従来素子に比べ02の分が不要となる。この結果、
単位素子当たりの電極長は、従来素子に比べ、2×02
だけ短く構成できる。具体的な数値でみると、例えば、
G+  =02 =O1=02 = 1.5μmとする
と、従来技術ではLo −6,0μmとなり、本発明で
はLN−4,5μmとなる。単位素子当たりの電極長と
しては、3.0μm短く構成でき、素子寸法の大幅な低
減が可能となり、高密度電荷結合素子の形成が可能とな
る。
FIG. 1 shows the main parts of an embodiment according to the present invention, and shows a sectional view of the main parts of a two-phase drive charge-coupled device. In the figure, the same numbers as in FIG. 2 indicate the same components. Reference numerals 11 to 13 indicate the electrodes of the first layer, and 14 to 16 indicate the electrodes of the second layer. One transfer electrode φ1 is formed by electrically connecting the electrodes 12 and 15, and another transfer electrode φ2 is formed by electrically connecting the electrodes 12 and 15, thereby forming a two-phase drive transfer electrode. There is. The main difference between this embodiment and the conventional example is that the second layer electrode, for example, electrode 14, which constitutes transfer electrode φ1, and the first layer electrode, for example, electrode 12, which constitutes transfer electrode φ2, do not overlap. First, similarly, a second layer electrode, for example electrode 15, which constitutes transfer electrode φ2, and a first layer electrode, for example electrode 1, which constitutes transfer electrode φ1.
3 do not overlap. Therefore, the two-phase drive according to the invention! is the length L of one transfer electrode of the charge-coupled element
N is given by r-N=c, +c2+Q. That is, compared to the conventional element, 02 parts are unnecessary. As a result,
The electrode length per unit element is 2×02 compared to conventional elements.
It can be composed as short as possible. Looking at specific numbers, for example,
If G+ = 02 = O1 = 02 = 1.5 μm, then Lo -6.0 μm in the prior art and LN -4.5 μm in the present invention. The electrode length per unit device can be shortened by 3.0 μm, allowing a significant reduction in device dimensions and forming a high-density charge-coupled device.

このような本発明による二相駆動電荷結合素子の他の利
点は、転送電極φI と転送電極φ2とが互いに重なり
合っていないため相間の誘電体容量が、従来素子に比べ
大幅に低減することである。
Another advantage of the two-phase drive charge-coupled device according to the present invention is that the transfer electrode φI and the transfer electrode φ2 do not overlap each other, so that the interphase dielectric capacitance is significantly reduced compared to conventional devices. .

この結果、転送電極φ1および転送電極φ2を駆動する
外部駆動回路の負荷容量が軽減され、駆動回路の低消費
電力化が可能となる。
As a result, the load capacity of the external drive circuit that drives transfer electrode φ1 and transfer electrode φ2 is reduced, and the power consumption of the drive circuit can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、極めて高密度で低
消費電力化が可能な二相駆動の電荷結合素子が実現可能
となる。
As described above, according to the present invention, it is possible to realize a two-phase drive charge coupled device with extremely high density and low power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による電荷結合素子の主要部の断面図
、 第2図は、従来の電荷結合素子の主要部の断面図である
。 工・・・・・・・・半導体基板 2・・・・・・・・埋め込みチャネル 半導体層 3・・・・・・・・酸化膜
FIG. 1 is a sectional view of the main part of a charge coupled device according to the present invention, and FIG. 2 is a sectional view of the main part of a conventional charge coupled device. Process: Semiconductor substrate 2: Buried channel semiconductor layer 3: Oxide film

Claims (1)

【特許請求の範囲】[Claims] (1)第一の層の電極と第二の層の電極とを互いに接続
して一個の転送電極とし、この転送電極二個で第一の相
および第二の相よりなる一対の転送電極が構成される二
相駆動の電荷結合素子において、第一の相の第二の層の
電極は第二の相の第一の層の電極とは重なり合っておら
ず、第二の相の第二の層の電極は第一の相の第一の層の
電極とは重なり合っていないことを特徴とする電荷結合
素子。
(1) The first layer electrode and the second layer electrode are connected to each other to form one transfer electrode, and these two transfer electrodes form a pair of transfer electrodes consisting of a first phase and a second phase. In a two-phase drive charge-coupled device configured, the electrode of the second layer of the first phase does not overlap the electrode of the first layer of the second phase, and the electrode of the second layer of the second phase does not overlap with the electrode of the first layer of the second phase. A charge coupled device characterized in that the electrodes of the layers do not overlap the electrodes of the first layer of the first phase.
JP18952186A 1986-08-14 1986-08-14 Change coupled device Pending JPS6346770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18952186A JPS6346770A (en) 1986-08-14 1986-08-14 Change coupled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18952186A JPS6346770A (en) 1986-08-14 1986-08-14 Change coupled device

Publications (1)

Publication Number Publication Date
JPS6346770A true JPS6346770A (en) 1988-02-27

Family

ID=16242678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18952186A Pending JPS6346770A (en) 1986-08-14 1986-08-14 Change coupled device

Country Status (1)

Country Link
JP (1) JPS6346770A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183782A (en) * 1975-01-20 1976-07-22 Matsushita Electric Ind Co Ltd DENKATENSOSOSHINOSEIZOHOHO
JPS5638865A (en) * 1979-09-07 1981-04-14 Toshiba Corp Manufacture of charge transfer device
JPS60136258A (en) * 1983-12-23 1985-07-19 Toshiba Corp Charge coupled device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183782A (en) * 1975-01-20 1976-07-22 Matsushita Electric Ind Co Ltd DENKATENSOSOSHINOSEIZOHOHO
JPS5638865A (en) * 1979-09-07 1981-04-14 Toshiba Corp Manufacture of charge transfer device
JPS60136258A (en) * 1983-12-23 1985-07-19 Toshiba Corp Charge coupled device

Similar Documents

Publication Publication Date Title
JPS63120465A (en) Charge transfer device
JP2545801B2 (en) Solid-state imaging device
JPS6346770A (en) Change coupled device
US5075747A (en) Charge transfer device with meander channel
JPS62208668A (en) Charge transfer type solid-state image sensing element
JP3002365B2 (en) Charge transfer device and driving method thereof
JP2714000B2 (en) Method for manufacturing solid-state imaging device
JPH05315587A (en) Semiconductor device
JP3713863B2 (en) Solid-state image sensor
JP3060649B2 (en) Semiconductor device and driving method thereof
JP2853779B2 (en) Solid-state imaging device
JPH05259431A (en) Ccd element
JP2904180B2 (en) Driving method of charge transfer device
JP3318639B2 (en) Charge transfer device and solid-state imaging device using the same
JPH06252376A (en) Wiring structure of solid-state image pickup element
JPS59221176A (en) Charge transfer device
JPS59221177A (en) Charge transfer device
JP4673053B2 (en) Charge transfer device
JPS6345097Y2 (en)
JP2671151B2 (en) Semiconductor device
JPH0436469B2 (en)
JPS63261744A (en) Solid-state image pickup device
JPS5857021B2 (en) Embedded channel solid-state imaging device using frame transfer method
JPH02133963A (en) Solid-state image sensing device
JPH06310703A (en) Solid state image pickup element