JPS6346604B2 - - Google Patents

Info

Publication number
JPS6346604B2
JPS6346604B2 JP13340179A JP13340179A JPS6346604B2 JP S6346604 B2 JPS6346604 B2 JP S6346604B2 JP 13340179 A JP13340179 A JP 13340179A JP 13340179 A JP13340179 A JP 13340179A JP S6346604 B2 JPS6346604 B2 JP S6346604B2
Authority
JP
Japan
Prior art keywords
crystal
tuning fork
base
leg
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13340179A
Other languages
Japanese (ja)
Other versions
JPS5657320A (en
Inventor
Kazuo Komagata
Yutaka Sasagawa
Masao Myazaki
Naoki Kawase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP13340179A priority Critical patent/JPS5657320A/en
Publication of JPS5657320A publication Critical patent/JPS5657320A/en
Publication of JPS6346604B2 publication Critical patent/JPS6346604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は複合的に作られる晶音叉の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a compositely made crystal tuning fork.

従来複合的に作られる音叉が知られておりこれ
は第1図に示すように薄板状の水晶製振動脚1を
結合体2に貼合せて組立てるものであつた。
Conventionally, a tuning fork made in a composite manner is known, and this is assembled by laminating a thin plate-like crystal vibrating leg 1 to a bonding body 2, as shown in FIG.

従来の欠点は 二枚の振動脚の間に厚い結合板があり小型薄
型化出来ない。
The disadvantage of the conventional method is that there is a thick coupling plate between the two vibrating legs, making it impossible to make it smaller and thinner.

接着剤により各部材を貼合せるため組立誤差
により有効脚長が不安定のため周波数のバラツ
キが大きい。
Because each member is pasted with adhesive, the effective leg length is unstable due to assembly errors, resulting in large frequency variations.

振動子用材料としては不適当である接着剤が
脚部の振動歪の大きい部分(結合体側の脚の根
元部分)に介在する為周波数の安定性が劣る
(十分高いQ値が得られず、あるいは周波数の
長期エージングによる変動が大きくなる。)。
Because the adhesive, which is unsuitable as a material for a vibrator, is present in the part of the leg where the vibrational distortion is large (the base of the leg on the combined body side), the frequency stability is poor (a sufficiently high Q value cannot be obtained, Or the fluctuations due to long-term aging of the frequency become large.)

また従来第2図に示すように水晶音叉固有の
温度特性を改善するために振動脚をY字型に形
成し各脚の結晶軸に対する切出角度を異らせ
て、これらを一体の音叉として振動させたとき
各脚の切出角度から期待される特性の平均的な
特性を得ようとする試みがあつた。しかし水晶
音叉の振動脚は本来互に平行でなければならな
いのにY字型では振動のアンバランスが大き
く、音叉としての機能を充分に果たさないもの
であつた。
Conventionally, as shown in Figure 2, in order to improve the temperature characteristics specific to a quartz crystal tuning fork, the vibrating legs are formed into a Y-shape, and each leg is cut at a different angle with respect to the crystal axis. Attempts have been made to obtain the average properties expected from the cutting angle of each leg when vibrated. However, although the vibrating legs of a quartz crystal tuning fork should originally be parallel to each other, the Y-shape had a large unbalance of vibration, and did not function well as a tuning fork.

本発明は上記従来例のそれぞれの欠点を除いて
上それらの長所を組合せることができしかも耐衝
撃性にもすぐれ、小型に製作しうるため特に腕時
計用の水晶振動子として好適な水晶音叉振動子を
得ることを目的とするものである。
The present invention eliminates each of the disadvantages of the conventional examples and combines the advantages thereof. Furthermore, the present invention has excellent impact resistance and can be manufactured in a small size. Therefore, the present invention is a crystal tuning fork vibrator that is particularly suitable as a crystal resonator for wristwatches. The purpose is to have a child.

以下図面に基き本発明の実施例を説明する。 Embodiments of the present invention will be described below based on the drawings.

第3図は本発明の一実施例の部品要素を示すも
のであつて10は、振動脚で11は、基部であり
両者はほぼL字型に一枚の水晶板からエツチング
などで切り出される。θ2は結晶軸に対する切り出
し角度である。第4図も同様に他の部品要素を示
すものであつて振動脚12と基部13が逆L字型
に切り出される。切り出し角度θ1はθ2と異らせる
事により両脚の温度特性を第2図に示す従来例と
同様な考え方により異らせる事ができる。第5図
は本発明の実施例の組立完成図であり前記の二つ
の要素をその各基部の対向する表面に設けた接着
部14,15によつて各脚が重ならないように接
合して組立てた状態を示す。接着部14,15の
接合は基部11と基部13とを基部の面積の例え
ば1/2以上の部分に蒸着等で金属部及びハンダ層
を形成し、加熱接着するか又は接着剤等を塗付し
接着することにより強固にかつ安定になされる。
FIG. 3 shows the components of an embodiment of the present invention, in which 10 is a vibrating leg, and 11 is a base, both of which are cut into a substantially L-shape from a single crystal plate by etching or the like. θ 2 is the cutting angle with respect to the crystal axis. FIG. 4 similarly shows other component elements, in which the vibrating leg 12 and the base 13 are cut out in an inverted L shape. By making the cutting angle θ 1 different from θ 2 , the temperature characteristics of both legs can be made different based on the same concept as the conventional example shown in FIG. FIG. 5 is a diagram showing the completed assembly of the embodiment of the present invention, in which the above-mentioned two elements are joined together by adhesive parts 14 and 15 provided on the opposing surfaces of each base so that the legs do not overlap. Indicates the condition. The adhesive parts 14 and 15 are joined by forming a metal part and a solder layer on the base part 11 and the base part 13 by vapor deposition or the like on a part of the base part that is, for example, 1/2 or more of the area of the base part, and then bonding them by heating or by applying an adhesive or the like. It is made strong and stable by adhering it.

本構造の特徴として脚の曲げ応力が基部に応力
集中なしに分散されるようになつている。各脚上
には当然励振電極が設けられるが、これらは導電
ペーストや接合に用いるハンダを通じて一方の要
素の表面に端子が集められ、音叉の支持系を通じ
て外部回路と接続される。この点は特に図示しな
いが従来技術の範囲で実施できるものである。第
6図は本発明の水晶音叉を多数個取りで作るため
の水晶ウエハーを示す図であつて16,17はウ
エハーのフレームでその中に第3図又は第4図に
示した各要素をそれぞれ多数整列した状態で一体
的にエツチング法で形成する。次いで励振電極
(図示せず)および接着部14,15が、各要素
が連結した状態で同時形成される。各ウエハーは
位置決めして重ねられ、全接着部は同時に接着さ
れ、その後各音叉を切離すと第5図の完成音叉が
量産的な手法で得られる。
A feature of this structure is that the bending stress of the legs is dispersed without stress concentration at the base. Naturally, excitation electrodes are provided on each leg, and these terminals are collected on the surface of one element through conductive paste or solder used for joining, and are connected to an external circuit through the support system of the tuning fork. Although this point is not particularly shown in the drawings, it can be implemented within the scope of the prior art. FIG. 6 is a diagram showing a crystal wafer for manufacturing the crystal tuning fork of the present invention in multiple pieces, and 16 and 17 are wafer frames in which each element shown in FIG. 3 or 4 is placed, respectively. A large number of them are aligned and formed integrally by etching. Next, an excitation electrode (not shown) and adhesive parts 14, 15 are simultaneously formed with each element connected. Each wafer is positioned and stacked, all bonded parts are bonded simultaneously, and each tuning fork is then separated to obtain the finished tuning fork shown in FIG. 5 in a mass-produced manner.

本発明によつて得られる諸効果をまとめると、 応力集中を起すスリツトがないので振動脚が
折れにくく耐衝撃性にもすぐれる。
To summarize the various effects obtained by the present invention, since there are no slits that cause stress concentration, the vibrating legs are less likely to break and have excellent impact resistance.

各要素はエツチングで成形すれば形状精度が
良く従つて周波数のバラツキが少ない。
If each element is formed by etching, the shape accuracy will be good and there will be less variation in frequency.

接着剤は基部にのみ用いられ振動にはほとん
ど関与しないので周波数が安定である。
The frequency is stable because the adhesive is used only at the base and has little to do with vibration.

基部は単に重ねて接着するだけでその他の結
合部材がなく容積及び厚さは十分少なく腕時計
用小型振動子とするのに適している。
The base is simply overlapped and bonded, and there are no other connecting members, and the volume and thickness are sufficiently small, making it suitable for use as a small vibrator for a wristwatch.

各脚の温度特性を自由に選択できるので合成
温度特性を改善できる。
Since the temperature characteristics of each leg can be freely selected, the composite temperature characteristics can be improved.

多数個取りによる量産に向いている。 Suitable for mass production with multiple pieces.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の複合型の水晶音叉の斜視図、第
2図は他の従来例の水晶音叉の平面図及び切出角
度の説明図、第3図及び第4図は本発明の実施例
の要素である各振動脚の斜視図及び切出角度の説
明図、第5図は本発明の実施例を示す組立平面
図、第6図は水晶音叉を多数個取り手法でウエハ
ー加工する場合の水晶ウエハーの部分平面図であ
る。 10,12……振動脚、11,13……基部、
14,15……接合部。
Fig. 1 is a perspective view of a conventional composite type crystal tuning fork, Fig. 2 is a plan view of another conventional crystal tuning fork and an explanatory diagram of the cutting angle, and Figs. 3 and 4 are examples of the present invention. FIG. 5 is an assembled plan view showing an embodiment of the present invention, and FIG. 6 is a diagram showing a case where wafers are processed using a multi-piece method for crystal tuning forks. FIG. 3 is a partial plan view of a crystal wafer. 10, 12... vibrating leg, 11, 13... base,
14, 15...Joint part.

Claims (1)

【特許請求の範囲】 1 水晶薄板により、一個の振動脚および基部を
ほぼL字型となるように成形し、前記水晶薄板の
複数個を前記L字型の向きを互に反対にし、かつ
薄板に垂直な方向から眺めたとき、各薄板の前記
振動脚は重ならずに、前記基部のみで互に重なる
ように重ねて前記基部の重なり部分にて接合する
ことによつて、前記薄板に垂直な方向から見て実
質的に音叉の平面形状をなすようにしたことを特
徴とする貼合せ水晶音叉振動子。 2 複数個の水晶薄板は結晶軸に対する切り出し
角度を異にしたことを特徴とする特許請求の範囲
第1項記載の貼合せ水晶音叉振動子。
[Scope of Claims] 1. One vibrating leg and base are formed by a thin crystal plate into a substantially L-shape, and a plurality of the thin crystal plates are formed so that the directions of the L-shape are opposite to each other, and When viewed from a direction perpendicular to A laminated crystal tuning fork vibrator characterized in that it has a substantially planar shape of a tuning fork when viewed from the same direction. 2. A laminated crystal tuning fork vibrator according to claim 1, wherein the plurality of crystal thin plates are cut out at different angles with respect to the crystal axis.
JP13340179A 1979-10-16 1979-10-16 Clad quartz tuning fork oscillator Granted JPS5657320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13340179A JPS5657320A (en) 1979-10-16 1979-10-16 Clad quartz tuning fork oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13340179A JPS5657320A (en) 1979-10-16 1979-10-16 Clad quartz tuning fork oscillator

Publications (2)

Publication Number Publication Date
JPS5657320A JPS5657320A (en) 1981-05-19
JPS6346604B2 true JPS6346604B2 (en) 1988-09-16

Family

ID=15103878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13340179A Granted JPS5657320A (en) 1979-10-16 1979-10-16 Clad quartz tuning fork oscillator

Country Status (1)

Country Link
JP (1) JPS5657320A (en)

Also Published As

Publication number Publication date
JPS5657320A (en) 1981-05-19

Similar Documents

Publication Publication Date Title
JPS6025926B2 (en) Crystal oscillator
JPS58172008A (en) Structure and manufacture of piezoelectric oscillator
JPS6346604B2 (en)
JPS6144408B2 (en)
JPH09172346A (en) Piezoelectric resonance parts and manufacture of the same
JPS59119911A (en) Piezoelectric oscillator
JPS627213A (en) Piezoelectric resonance component
JPH08139339A (en) Semiconductor element and manufacturing method thereof
JPS58120312A (en) Flat package type crystal oscillator
US20240162879A1 (en) Vibrator Element And Vibrator Device
JPH08148962A (en) Piezoelectric component
JPS6318176Y2 (en)
JPS58116809A (en) Manufacture of crystal oscillator
JPS6117169B2 (en)
JPS59218019A (en) Crystal oscillator
JPS6156503A (en) Composite element
JPH0422567Y2 (en)
JPS6216573B2 (en)
JPH0631778Y2 (en) Piezoelectric resonator
JP3206187B2 (en) Manufacturing method of chip type piezoelectric resonator
JPS6016108Y2 (en) Tuning fork crystal oscillator
JPH08162875A (en) Manufacture of piezoelectric resonance component
JP2689766B2 (en) Method of manufacturing chip-type piezoelectric resonator
JPS59148419A (en) Thickness shear piezoelectric oscillator
JPH03178211A (en) Piezoelectric resonator