JPS6346593B2 - - Google Patents

Info

Publication number
JPS6346593B2
JPS6346593B2 JP8764379A JP8764379A JPS6346593B2 JP S6346593 B2 JPS6346593 B2 JP S6346593B2 JP 8764379 A JP8764379 A JP 8764379A JP 8764379 A JP8764379 A JP 8764379A JP S6346593 B2 JPS6346593 B2 JP S6346593B2
Authority
JP
Japan
Prior art keywords
electron beam
paint
flexible printed
printed wiring
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8764379A
Other languages
Japanese (ja)
Other versions
JPS5612794A (en
Inventor
Keiichi Kojima
Yasutoshi Sato
Tetsuya Shiga
Meikyo Katanosaka
Koichi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8764379A priority Critical patent/JPS5612794A/en
Publication of JPS5612794A publication Critical patent/JPS5612794A/en
Publication of JPS6346593B2 publication Critical patent/JPS6346593B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はフレキシブル印刷配線板の製造方法に
関するものである。 フレキシブル印刷配線板は通常の電線や硬質基
板に比べて小型軽量化、配線レイアウトの単純
化、配線作業の簡素化、回路特性及び信頼性の向
上等が可能であることから、最近、電子卓上計算
機、電話機、カメラの内部配線、或いは自動車の
配線パネル等に広く使用されるようになつてき
た。 フレキシブル印刷配線板はフレキシブルフラツ
トケーブル、片面・両面フレキシブル印刷配線
板、多層フレキシブル印刷配線板に大別される
が、いずれも可撓性のある絶縁ベースフイルムの
片面又は両面に銅箔を接着剤を介して張り合わ
せ、回路設計に基づいた配線図形をエツチング等
により銅箔を電気回路として再現し、その上の必
要箇所にオーバーレイフイルム又はオーバーコー
トを設けて製造されるものである。オーバーレイ
フイルムはポリエステルフイルム、ポリイミドフ
イルム等をポリイミド系、エポキシ系、ポリエス
テル系、フエノール・ブチラール系の熱硬化性接
着剤を介し回路が形成されているベースフイルム
と張り合わせ、次いで該接着剤を加熱硬化させる
ことにより形成される。又、オーバーコートを設
ける方法としてエポキシ系、ウレタン系等の液状
樹脂から成る熱硬化性塗料を塗布し加熱硬化する
方法も採用されている。 フレキシブル印刷配線板はハンダ処理が必要な
ので、これらの方法には上記の様な熱硬化性接着
剤或は熱硬化性塗料が用いられている。これら材
料を加熱による硬化以前に移動したり、積み重ね
たりすると、オーバーレイフイルムが所定の位置
から摩れたり、未硬化のオーバーコートが他の物
に接触して剥離するなどのトラブルが生じる。そ
の為これらの材料を用いる方法にはフレキシブル
印刷配線板の製造工程を連続化して量産化、合理
化を計ることが難しいという欠点がある。 我々は電子線硬化タイプの樹脂であれば、電子
線照射で瞬時に硬化が完成するということに目を
つけ、このタイプの樹脂をフレキシブル印刷配線
板のオーバーコートとして応用して、上記欠点を
解消すべく検討した。 これまでに電子線硬化タイプの樹脂として、非
常に多くの種類(例えばアクリル系、シリコン
系、エポキシ系等)の官能性モノマー又は官能基
を有するオリゴマーが知られている。 我々は電子線硬化タイプの樹脂を用いた種々の
配合について塗料としての検討をしたが、電子線
を照射してオーバーコートを形成した場合、耐ハ
ンダ性と柔軟性とのバランスを持たせることが非
常に難かしかつた。すなわち、ハンダに浸漬して
も耐えるような配合は、折りまげるとすぐに折れ
てしまうような硬くてもろいものしか得られず、
曲げても折れないような配合はハンダバスに浸漬
すると発泡したり、ちじれたりするような配合し
か得られなかつた。 我々は、更に検討を続けた結果、電子線硬化塗
料にてオーバーコートする前に、銅箔回路つきの
フイルム表面をある種のプライマーで処理してお
けば、電子線硬化後の塗膜の物性が驚くほど顕著
に向上し、曲げても折れない柔軟性と、ハンダに
も耐える耐熱性とを兼ねそなえたオーバーコート
になるという思いがけない現象を見出した。 本発明は上記知見に基づいてなされたもので、
その要旨とするところは、銅箔で形成された回路
を有する絶縁ベースフイルムの表面に、あらかじ
め、ビニル基、アクリル基など不飽和2重結合
か、又はエポキシ基、又はアミノ基を含むシラン
カツプリング剤を塗布した後電子線を照射するこ
とにより硬化しうる塗料にてオーバーコートし、
次いで電子線を照射して該塗料を硬化せしめるこ
とを特徴とするフレキシブル印刷配線板の製造方
法にある。 本発明に言うシランカツプリング剤は、具体的
にはプライマーとして使用されるビニルトリエト
キシシラン、γ−メタアクリロキシプロピルトリ
メトキシシランなどのように、ビニル基、アクリ
ル基など不飽和2重結合をふくむシランカツプリ
ング剤、γ−グリシドキシプロピルトリメトキシ
シランなどエポキシ基をふくむシランカツプリン
グ剤及びN−β(アミノエチル)γ−アミノプロ
ピルトリメトキシシラン、γ−アミノプロピルト
リエトキシシランなどのアミノ基を含むシランカ
ツプリング剤が有効である。 又、本発明に言う電子線を照射することにより
硬化しうる塗料として次に示す様な樹脂と反応性
希釈剤から成るものが用いられる。すなわち、不
飽和ポリエステル樹脂又は不飽和ポリエステルの
変性物(例えば、不飽和ポリエステルのジイソシ
アネートによるウレタン化物、ヒドロキシアルキ
ルアクリレートによるビニル化物、反応性水酸基
或は炭化水素オキシ基を持つ環式シロキサンによ
るシリコーン化物)にスチレン、ビニルトルエ
ン、α−メチルスチレン、ジビニルベンゼン、メ
チルメタアクリレート、メチルアクリレート、ブ
チルメタアクリレート、ブチルアクリレート、ヒ
ドロキシプロピルメタクリレート、グリシジルメ
タクリレート等のビニル系モノマーの1種又は2
種以上を配合したもの、エポキシ樹脂の変性物
(例えばエポキシ基及び第2級水酸基とマレイン
酸無水物、イタコン酸無水物等の不飽和二塩基酸
を付加せしめて得られるエポキシ樹脂エステル)
に前記ビニル系モノマーの1種又は2種以上を配
合したもの、反応型変性アクリル系樹脂(例え
ば、末端カルボキシのポリアミドにグリシジルメ
タクリレートを反応させて得られるテロメリ化ポ
リアミドアクリレート、多官能エポキシ化合物に
アクリル酸その他のα・β不飽和カルボン酸を付
加させて得られるエポキシアクリレート、多官能
イソシアネート化合物にヒドロキシエチルメタク
リレートなどを付加反応させて得られるウレタン
アクリレート、ヒドロキシル基又はメトキシ基含
有シリコーンとヒドロキシメタクリレートなどを
縮合させて得られる非シリコーンアクリレート)、
又は分子中に2個以上のアクリロイル基又はメタ
アクリロイル基を持つエステルアクリレート又は
エステルメタアクリレート(例えば、エチレング
リコールメタアクリレート、テトラエチレングリ
コールメタアクリレート等のオリゴマーいわゆる
官能性オリゴエステルアクリレート)に前記ビニ
ル系モノマーの1種又は2種以上を配合したも
の、或は前記官能性オリゴエステルにアクリル系
等の飽和プレポリマーを溶解したものが挙げられ
る。更に本発明は前記官能性オリゴエステル単独
でも塗料として使用できる。又、上記塗料には必
要に応じて願料、染料、有機・無機フイラー等の
充填材、アルキルチタネート、メタクリレートク
ロムクロリド等の表面処理剤を添加することも可
能である。 上記塗料を回路を有するベースフイルムに塗布
する方法として、刷毛塗り、ローラ塗り、流し塗
り、普通シルクスクリーン法を称せられる方法で
施してよい。 本発明に於て使用される電子線の照射線量は上
記塗料の配合により異なるが、0.5〜20メガラツ
ト(Mrad)でよく、1.0〜10メガラツトが望まし
い。 実施例 第1表に示した各種プライマーをエチルアルコ
ール又は水でうすめて、銅箔で形成された回路を
有するポリイミドフイルムに塗布し、夫々風乾し
た。 こうしてプライマーを塗布した後、第2表の配
合の塗料をオーバーコートし、電子線を10メガラ
ツド照射し、該塗料を硬化させ、フレキシブル印
刷配線板を作成した。 こうして得られたフレキシブル印刷配線板を
280℃ハンダ槽に10秒間浸漬して耐ハンダ性の試
験を行つた。 その結果は第3表に示した通りであつた。すな
わち前処理なし、即ち、プライマーを塗布しない
場合(比較例1)はハンダ浸漬によつてオーバー
コートの塗膜がちじれてしまうのに対して、
KBE1003、KBM503、KBM403、KBM603を塗
布した後オーバーコートしたもの(実施例1、
2、3、4)はハンダ浸漬しても変化が認められ
ず、顕著な塗膜改良効果があることが判つた。 又、塗料が塗布されていない裸の銅箔面には、
これらのプライマーが塗布されたままでもハンダ
がのることも判つた。 KC223は塗膜物性の改良も出来ず、裸の銅箔の
上にハンダがのらなくなり、全然実用に供しない
ものであつた(比較例2)。
The present invention relates to a method for manufacturing a flexible printed wiring board. Flexible printed circuit boards have recently become popular in electronic desk calculators because they can be smaller and lighter, simplify wiring layouts, simplify wiring work, and improve circuit characteristics and reliability compared to ordinary electric wires and rigid boards. It has come to be widely used for the internal wiring of telephones, cameras, and automobile wiring panels. Flexible printed wiring boards are broadly classified into flexible flat cables, single-sided/double-sided flexible printed wiring boards, and multilayer flexible printed wiring boards, and all of them are made by adhesively bonding copper foil to one or both sides of a flexible insulating base film. It is manufactured by pasting the copper foil together via a copper foil, etching a wiring pattern based on the circuit design, etc. to reproduce the copper foil as an electrical circuit, and then providing an overlay film or overcoat in the necessary places on the copper foil. The overlay film is made by laminating a polyester film, polyimide film, etc. to a base film on which a circuit is formed via a polyimide-based, epoxy-based, polyester-based, or phenol-butyral-based thermosetting adhesive, and then heat-curing the adhesive. It is formed by Further, as a method of providing an overcoat, a method of applying a thermosetting paint made of a liquid resin such as an epoxy type or a urethane type and curing it by heating has also been adopted. Since flexible printed wiring boards require soldering, thermosetting adhesives or thermosetting paints as described above are used in these methods. If these materials are moved or stacked before being cured by heating, problems may occur such as the overlay film being rubbed away from a predetermined position or the uncured overcoat coming into contact with other objects and peeling off. Therefore, methods using these materials have the disadvantage that it is difficult to serialize the manufacturing process of flexible printed wiring boards to achieve mass production and rationalization. We focused on the fact that electron beam curing type resins can be cured instantly by electron beam irradiation, and applied this type of resin as an overcoat for flexible printed wiring boards to solve the above drawbacks. I considered it as much as possible. So far, many types of functional monomers (eg, acrylic, silicone, epoxy, etc.) or oligomers having functional groups have been known as electron beam-curable resins. We have investigated various formulations using electron beam curable resins as paints, but when forming an overcoat by irradiating electron beams, it is difficult to achieve a balance between solder resistance and flexibility. It was very difficult. In other words, a composition that can withstand being immersed in solder will only yield a hard and brittle product that will break easily when folded.
A formulation that would not break when bent was only possible to obtain a formulation that foamed or shriveled when immersed in a solder bath. As a result of further investigation, we found that if the surface of the film with copper foil circuits was treated with a certain type of primer before overcoating with electron beam curing paint, the physical properties of the coating film after electron beam curing would be improved. We have discovered an unexpected phenomenon in which the overcoat has both flexibility that does not break even when bent, and heat resistance that can withstand soldering. The present invention was made based on the above findings, and
The gist of this is that a silane coupling containing an unsaturated double bond such as a vinyl group or an acrylic group, or an epoxy group or an amino group is applied to the surface of an insulating base film having a circuit formed of copper foil. After applying the agent, overcoat with a paint that can be cured by irradiating it with an electron beam.
The method of manufacturing a flexible printed wiring board is characterized in that the coating material is then cured by irradiation with an electron beam. The silane coupling agent referred to in the present invention specifically includes unsaturated double bonds such as vinyl groups and acrylic groups, such as vinyltriethoxysilane and γ-methacryloxypropyltrimethoxysilane used as primers. Silane coupling agents containing epoxy groups, such as γ-glycidoxypropyltrimethoxysilane, and amino acids such as N-β (aminoethyl) γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, etc. Silane coupling agents containing groups are effective. Further, as the paint which can be cured by irradiation with an electron beam as referred to in the present invention, a paint consisting of a resin and a reactive diluent as shown below is used. That is, unsaturated polyester resins or modified products of unsaturated polyesters (for example, urethanized products of unsaturated polyesters with diisocyanates, vinylized products with hydroxyalkyl acrylates, siliconized products with cyclic siloxanes having reactive hydroxyl groups or hydrocarbon oxy groups) One or two vinyl monomers such as styrene, vinyltoluene, α-methylstyrene, divinylbenzene, methyl methacrylate, methyl acrylate, butyl methacrylate, butyl acrylate, hydroxypropyl methacrylate, glycidyl methacrylate, etc.
Modified products of epoxy resin (for example, epoxy resin esters obtained by adding unsaturated dibasic acids such as maleic anhydride and itaconic anhydride to epoxy groups and secondary hydroxyl groups)
containing one or more of the above vinyl monomers, reactive modified acrylic resins (for example, telomerized polyamide acrylate obtained by reacting glycidyl methacrylate with polyamide with terminal carboxy, polyfunctional epoxy compound with acrylic Epoxy acrylate obtained by adding acid or other α/β unsaturated carboxylic acid, urethane acrylate obtained by addition reaction of hydroxyethyl methacrylate etc. to a polyfunctional isocyanate compound, hydroxy methacrylate with silicone containing a hydroxyl group or methoxy group, etc. non-silicone acrylate obtained by condensation),
Or the vinyl monomer is added to an ester acrylate or an ester methacrylate (for example, an oligomer so-called functional oligoester acrylate such as ethylene glycol methacrylate or tetraethylene glycol methacrylate) having two or more acryloyl or methacryloyl groups in the molecule. For example, one or more of these may be blended, or a saturated prepolymer such as an acrylic prepolymer may be dissolved in the functional oligoester. Furthermore, in the present invention, the functional oligoester can be used alone as a coating material. Moreover, it is also possible to add to the above-mentioned coating material, if necessary, fillers such as pigments, dyes, organic and inorganic fillers, and surface treatment agents such as alkyl titanates and methacrylate chromium chloride. The above-mentioned coating material may be applied to the base film having the circuit by a method commonly referred to as brush coating, roller coating, flow coating, or a silk screen method. The irradiation dose of the electron beam used in the present invention varies depending on the composition of the paint, but may be from 0.5 to 20 megarats (Mrad), preferably from 1.0 to 10 megarats. Examples Various primers shown in Table 1 were diluted with ethyl alcohol or water, applied to a polyimide film having a circuit formed of copper foil, and air-dried. After the primer was applied in this manner, a paint having the composition shown in Table 2 was overcoated, and an electron beam of 10 megarads was irradiated to cure the paint, thereby producing a flexible printed wiring board. The flexible printed wiring board obtained in this way
Solder resistance was tested by immersing it in a 280°C solder bath for 10 seconds. The results were as shown in Table 3. In other words, without pretreatment, that is, without applying a primer (Comparative Example 1), the overcoat film was torn due to solder immersion, whereas
Overcoated after applying KBE1003, KBM503, KBM403, KBM603 (Example 1,
No changes were observed in samples 2, 3, and 4) even after immersion in solder, and it was found that they had a remarkable effect of improving the coating film. Also, on the bare copper foil surface that has not been coated with paint,
It was also found that solder could be applied even with these primers applied. KC223 could not improve the physical properties of the coating film, and the solder did not adhere to bare copper foil, making it completely unusable (Comparative Example 2).

【表】【table】

【表】【table】

【表】 その他KBM803、EDTA、NP−ACo、St−
Amなどいずれも塗膜物性改良の効果はなかつ
た。 (比較例3〜6)。 理由は良くわからないが、本発明のビニル基、
アクリル基など不飽和2重結合か、又はエポキシ
基、又はアミノ基を含むシランカツプリング剤で
前処理した場合のみ塗膜物性が顕著に改良され、
しかも塗膜のない部分の銅へのハンダののりが悪
くなることもなく、良好なフレキシブル印刷配線
板が得られた。 本発明によりはじめて電子線硬化塗料をフレキ
シブル印刷配線板のオーバーコート用として応用
出来るようになり、フレキシブル印刷配線板の製
造方法が大巾に合理化出来た。
[Table] Others KBM803, EDTA, NP-ACo, St-
Neither Am nor the like had any effect on improving the physical properties of the coating film. (Comparative Examples 3 to 6). Although the reason is not well understood, the vinyl group of the present invention,
Only when pretreated with a silane coupling agent containing an unsaturated double bond such as an acrylic group, an epoxy group, or an amino group, the physical properties of the coating film are significantly improved.
Moreover, the adhesion of solder to copper in areas without a coating film did not deteriorate, and a good flexible printed wiring board was obtained. The present invention has made it possible for the first time to apply an electron beam curing paint as an overcoat for flexible printed wiring boards, and has greatly streamlined the method of manufacturing flexible printed wiring boards.

Claims (1)

【特許請求の範囲】[Claims] 1 銅箔で形成された回路を有する絶縁ベースフ
イルム表面に、あらかじめ、ビニル基、アクリル
基など不飽和2重結合か、又はエポキシ基あるい
はアミノ基を含むシランカツプリング剤を塗布し
た後、電子線を照射することにより硬化しうる塗
料をオーバーコートし、次いで0.5〜20Mradの電
子線を照射して該塗料を硬化せしめることを特徴
とするフレキシブル印刷配線板の製造方法。
1. After applying a silane coupling agent containing an unsaturated double bond such as a vinyl group or an acrylic group, or an epoxy group or an amino group to the surface of an insulating base film having a circuit formed of copper foil, an electron beam is applied. 1. A method for producing a flexible printed wiring board, which comprises overcoating with a paint that can be cured by irradiation with irradiation, and then curing the paint by irradiating with an electron beam of 0.5 to 20 Mrad.
JP8764379A 1979-07-10 1979-07-10 Method of manufacturing flexible printed circuit board Granted JPS5612794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8764379A JPS5612794A (en) 1979-07-10 1979-07-10 Method of manufacturing flexible printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8764379A JPS5612794A (en) 1979-07-10 1979-07-10 Method of manufacturing flexible printed circuit board

Publications (2)

Publication Number Publication Date
JPS5612794A JPS5612794A (en) 1981-02-07
JPS6346593B2 true JPS6346593B2 (en) 1988-09-16

Family

ID=13920658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8764379A Granted JPS5612794A (en) 1979-07-10 1979-07-10 Method of manufacturing flexible printed circuit board

Country Status (1)

Country Link
JP (1) JPS5612794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115799U (en) * 1990-03-09 1991-11-29

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166495A (en) * 1981-04-07 1982-10-13 Toshiyuki Toyonaka Heat collecting device for high temperature exhaust gas
JPS6163653U (en) * 1984-09-28 1986-04-30
JPH0619968Y2 (en) * 1985-05-13 1994-05-25 オリオン機械株式会社 Liquid cooling device
JPH07368B2 (en) * 1987-11-04 1995-01-11 三菱製紙株式会社 Method for manufacturing release sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115799U (en) * 1990-03-09 1991-11-29

Also Published As

Publication number Publication date
JPS5612794A (en) 1981-02-07

Similar Documents

Publication Publication Date Title
US3962520A (en) Adhesive composition for flexible printed circuit and method for using the same
JP2019127501A (en) Thermosetting adhesive composition, adhesive film, coverlay film, and flexible printed wiring board
JPS6346593B2 (en)
JPH01170091A (en) Flexible substrate for printed wiring
JPS643917B2 (en)
JPS606757A (en) Method for forming coating film
JPS607192A (en) Method of producing flexble printed circuit board
JP2722402B2 (en) Adhesive composition for flexible printed circuit boards
JPS5851586A (en) Method of producing flexible printed circuit board
JP2002069414A (en) Adhesive composition and its application
JPH03209792A (en) Both-side metal-cladded flexible printed circuit board and manufacture thereof
JP4189699B2 (en) Additive adhesive for printed wiring board and printed wiring board using the same
JPH02199179A (en) Curing of paint
JPH07283540A (en) Multilayered printed wiring board and its manufacture
JPS58184791A (en) Method of producing flexible printed circuit board
JPS58184790A (en) Method of producing flexible printed circuit board
JPS618991A (en) Method of producing flexible printed circuit board
JPS58188183A (en) Method of producing flexible printed circuit board
JP2003027028A (en) Adhesive composition, and substrate for flexible printed wiring and cover-lay film obtained by using the same
JPS61138680A (en) Adhesive and substrate for flexible printed circuit
JPS60180836A (en) Thermo-setting resin film laminate
JP2004168921A (en) Thermosetting resin composition
JPS6161848A (en) Manufacture of flexible printed wiring board
JPS6094348A (en) Manufacture of copper lined laminated board
JPH09293988A (en) Manufacture of shielding plate for multilayer printed wiring board