JPS6346583B2 - - Google Patents

Info

Publication number
JPS6346583B2
JPS6346583B2 JP11379779A JP11379779A JPS6346583B2 JP S6346583 B2 JPS6346583 B2 JP S6346583B2 JP 11379779 A JP11379779 A JP 11379779A JP 11379779 A JP11379779 A JP 11379779A JP S6346583 B2 JPS6346583 B2 JP S6346583B2
Authority
JP
Japan
Prior art keywords
emitter
base
electrode
polycrystalline silicon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11379779A
Other languages
Japanese (ja)
Other versions
JPS5637674A (en
Inventor
Reiji Takashina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP11379779A priority Critical patent/JPS5637674A/en
Publication of JPS5637674A publication Critical patent/JPS5637674A/en
Publication of JPS6346583B2 publication Critical patent/JPS6346583B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置、特に高周波高出力トラン
ジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a high frequency, high power transistor.

近来、高周波高出力トランジスタ(以下Trと
略記する)における特性は、益々高い周波数帯、
高い出力のものが要求されている。この要求を満
足するためには、高周波高出力Trのエミツタ・
ベースの各不純物領域および各電極層の形状や間
隔は、精密かつ微細に形成されなければならな
い。したがつて各不純物領域および各電極層の形
成に自己整合法を用いれば、各PR工程における
マスク位置合せおよび加工による設計寸法からの
ず・れ・の問題がなくなり、有利となる。又各電極層
間の間隔を半導体表面に対して縦の方向に求めれ
ば、各不純物領域の間隔を非常に小さく設計でき
るので高周波特性の良いものとなる。
In recent years, the characteristics of high-frequency, high-output transistors (hereinafter abbreviated as Tr) have been increasing in higher frequency bands,
High output is required. In order to satisfy this requirement, the emitter of the high-frequency, high-power transistor must be
The shape and spacing of each impurity region of the base and each electrode layer must be formed precisely and minutely. Therefore, if a self-alignment method is used to form each impurity region and each electrode layer, the problem of deviation from design dimensions due to mask alignment and processing in each PR process will be eliminated, which is advantageous. Furthermore, if the spacing between each electrode layer is determined in the vertical direction with respect to the semiconductor surface, the spacing between each impurity region can be designed to be very small, resulting in good high frequency characteristics.

このような構造を有する従来技術としては、段
付電極トランジスタとして、例えば特開昭50−
34485に開示されている。これはエミツタ領域上
に逆台形状の多結晶シリコン層を有する構造であ
り、この逆台形状の底部の位置及び大きさからエ
ミツタ領域を定め、又底部と逆台形状の上表面部
の垂直方向に投影した位置との相対関係からエミ
ツタ領域とベースコンタクトとの間隔を定めるも
のである。
As a conventional technology having such a structure, as a stepped electrode transistor, for example,
34485. This is a structure that has an inverted trapezoidal polycrystalline silicon layer on the emitter region, and the emitter region is determined from the position and size of the bottom of this inverted trapezoid, and the vertical direction between the bottom and the upper surface of the inverted trapezoid is The distance between the emitter region and the base contact is determined from the relative relationship with the projected position.

しかしながらこのような逆台形多結晶シリコン
の形状に各領域の形成を依存する構造のため、製
造技術的な限界から逆台形の高さは必然的に制約
を受け、その結果電極、特に集極電極部を高周波
高出力トランジスタとして信頼度上必要な膜厚と
することができないという問題があつた。特に高
信頼度の多層電極(Ti―Pt―Au、Ti―W―Au)
を用いた場合は、その傾向が顕著になつていた。
それ故、従来この逆台形構造を利用した高周波高
出力Trでは、上面より電極金属を形成した後、
さらに通常のリフトオフ法により導電パス用金属
(エミツタとベースをシヨートさせる)を設け、
この金属を利用してメツキする方法により集極電
極部の電極金具(Auなど)の膜厚を所望の厚さ
まで盛り上げていた。
However, since the formation of each region depends on the shape of the inverted trapezoidal polycrystalline silicon, the height of the inverted trapezoid is inevitably restricted due to manufacturing technology limitations, and as a result, the height of the inverted trapezoid is inevitably limited, and as a result, the height of the inverted trapezoid is inevitably limited due to the limitations of manufacturing technology. There was a problem in that it was not possible to make the film thickness necessary for reliability as a high-frequency, high-output transistor. Especially highly reliable multilayer electrodes (Ti-Pt-Au, Ti-W-Au)
When using , this tendency became more pronounced.
Therefore, in conventional high-frequency, high-output transistors using this inverted trapezoidal structure, after forming electrode metal from the top surface,
Furthermore, a conductive path metal (shotting the emitter and base) is provided using the normal lift-off method.
By plating using this metal, the film thickness of the electrode fittings (Au, etc.) of the collector electrode part was raised to the desired thickness.

しかしながら、この従来の製法では、工程が複
雑で長くなるばかりでなく導電パス用金属として
有利なTiあるいはAlを用いた場合、電極金属
(Au)と反応して合金層を形成しやすく、その為
メツキ終了後も、エツチング除去できず外観不良
をもたらすという問題がしばしば発生していた。
However, with this conventional manufacturing method, not only is the process complicated and long, but when Ti or Al, which is advantageous as a conductive path metal, is used, it tends to react with the electrode metal (Au) and form an alloy layer. Even after plating, the problem often occurred that the etching could not be removed, resulting in poor appearance.

本発明は、上記の点に鑑みなしたもので、エミ
ツタ領域上の多結晶シリコン層の一部だけを台形
状に加工することにより蒸着電極金属でエミツタ
とベースをシヨートさせる、段付電極Trの新規
なるメツキ方法を提供せんとするものである。
The present invention has been developed in view of the above points, and is a stepped electrode transistor in which the emitter and base are shot with vapor-deposited electrode metal by processing only a part of the polycrystalline silicon layer on the emitter region into a trapezoidal shape. The purpose is to provide a new plating method.

以下本発明をよりよく理解できるように添付図
面を参照しながら、本発明を適用したトランジス
タの一製法例について、従来の製法と比較しなが
ら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to better understand the present invention, an example of a method for manufacturing a transistor to which the present invention is applied will be described below in comparison with a conventional manufacturing method, with reference to the accompanying drawings.

以下図面において同一符号を用いることにす
る。
The same reference numerals will be used in the drawings below.

第1図は、逆台形エミツタ形状を有するTrの
一例を示す平面図であり、第2図は第1図の逆台
形エミツタ型Trに従来の製法を適用した場合を
示し、A―A′線に沿つて切断し矢印の方向にみ
た断面図である。
Fig. 1 is a plan view showing an example of a Tr having an inverted trapezoidal emitter shape, and Fig. 2 shows a case in which a conventional manufacturing method is applied to the inverted trapezoidal emitter type Tr shown in Fig. 1. FIG. 2 is a sectional view taken along the direction of the arrow.

第2図において、半導体基板1の内部に、半導
体基板1と反対の導電型を呈するベースコンタク
ト領域7と活性ベース領域3及び半導体基板と同
じ導電型の不純物を含み、かつ逆台形状に加工さ
れた多結晶シリコン層4からの不純物導入により
エミツタ領域5を形成し、さらに逆台形部を絶縁
層6により保護し、さらに電極金属8を垂直上面
方向から蒸着して形成し、さらにホトレジストを
用いた通常のリフト法によりメツキ層9が設けら
れている。しかしながら、この製造方法では、工
程が複雑で長くなるばかりでなくメツキ導電パス
用金属10として一般的なAlあるいはチタンを
用いた場合、スパツタあるいは蒸着時に電極金属
(Au)と反応して合金層を形成しやすく、その為
メツキ終了後もこの導電パス用金属をエツチング
除去できないという問題があつた。
In FIG. 2, a semiconductor substrate 1 contains a base contact region 7 and an active base region 3 having a conductivity type opposite to that of the semiconductor substrate 1, and an impurity having the same conductivity type as the semiconductor substrate, and is processed into an inverted trapezoidal shape. An emitter region 5 is formed by introducing impurities from the polycrystalline silicon layer 4, the inverted trapezoidal part is further protected by an insulating layer 6, an electrode metal 8 is formed by vapor deposition from the vertical upper surface direction, and a photoresist is used. A plating layer 9 is provided by a normal lift method. However, with this manufacturing method, the process is not only complicated and long, but also when general Al or titanium is used as the plating conductive path metal 10, it reacts with the electrode metal (Au) during sputtering or vapor deposition, forming an alloy layer. Because it is easy to form, there was a problem that the conductive path metal could not be removed by etching even after plating was completed.

第3図は逆台形エミツタ型Trに本発明を適用
した場合の平面図であり、又第4図はそれをB―
B′線に沿つて切断し矢印の方向にみた断面図で
ある。
FIG. 3 is a plan view when the present invention is applied to an inverted trapezoidal emitter type Tr, and FIG.
FIG. 3 is a cross-sectional view taken along line B' and viewed in the direction of the arrow.

第5図〜第8図は、逆台形エミツタ構造を有す
る高周波トランジスタに本発明を適用し、B―
B′線に沿つて切断し主な工程ごとに矢印の方向
にみた断面図である。
FIG. 5 to FIG. 8 show that the present invention is applied to a high-frequency transistor having an inverted trapezoidal emitter structure.
It is a sectional view taken along line B' and viewed in the direction of the arrow for each main process.

従来製法と同様にして、半導体基板1に活性ベ
ース領域3、不純物を多量に含む多結晶シリコン
層(ドボス層)4、不純物を含まないポリシリコ
ン層14、及び絶縁層13を形成した後、通常の
写真蝕刻法によりホトレジスト15を用いて絶縁
層13をエミツタ電極のパターンに形成する(第
5図)。
After forming an active base region 3, a polycrystalline silicon layer (dobos layer) 4 containing a large amount of impurities, a polysilicon layer 14 containing no impurities, and an insulating layer 13 on a semiconductor substrate 1 in the same manner as in the conventional manufacturing method, The insulating layer 13 is formed into an emitter electrode pattern using a photoresist 15 by photolithography (FIG. 5).

しかる後、イオンミリング法あるいは、スパツ
タエツチング法により露出した絶縁層13、ポリ
シリコン層14を完全に除去した後、さらにドポ
ス層4を膜厚の1/2程度までエツチング除去する。
本製法例はドポス層を膜厚の1/2程度エツチング
除去したが、このドポス層のエツチング膜厚は0
以上で、初期形成膜厚以下であればよい。つぎに
通常の写真蝕刻法によりホトレジスト16でエミ
ツタ・ベース短絡形成部を被覆保護した後(第6
図)、弗硝酸系混合液で露出したドポス層4をエ
ツチング除去し、次いでホトレジスト16を除去
する(第7図)。この湿式エツチングにより、ホ
トレジスト16を耐エツチングマスクとして用い
たドポス層4の断面は台形状12に、又一方絶縁
層13を耐エツチングマスクとして用いたドポス
層4とポリシリコン層14の断面は、逆台形状1
1に加工される。
Thereafter, the exposed insulating layer 13 and polysilicon layer 14 are completely removed by ion milling or sputter etching, and then the dopos layer 4 is etched to about 1/2 of its thickness.
In this manufacturing method example, the dopos layer was removed by etching about 1/2 of the film thickness, but the etching thickness of this dopos layer was 0.
The above is sufficient as long as it is equal to or less than the initially formed film thickness. Next, after covering and protecting the emitter-base short circuit forming part with photoresist 16 using the usual photolithography method (6th
(Fig. 7), the exposed dopos layer 4 is removed by etching with a fluoro-nitric acid mixture, and then the photoresist 16 is removed (Fig. 7). By this wet etching, the cross-section of the dopos layer 4 using the photoresist 16 as an etching-resistant mask becomes trapezoidal 12, and the cross-sections of the dopos layer 4 using the insulating layer 13 as an etching-resistant mask and the polysilicon layer 14 are reversed. Trapezoid 1
Processed into 1.

次に従来製法と同様にしてエミツタ領域5、絶
縁層6、ベースコンタクト領域7を形成し、絶縁
層13をエツチング除去した後、垂直上面から電
極金属8を蒸着する(第8図)。ドポス層4から
の不純物導入によりエミツタ領域5を形成する際
に不純物はポリシリコン層14にもドープされ
る。蒸着電極金属8は本実施例の場合Ti、Pt、
Auを連続蒸着に三層構造とした。この蒸着金属
8により、エミツタ・ベース間は台形状部分12
を経て必然的に短絡されるので、これを用いてエ
ミツタ電極上のAuメツキ9を行なう(第4図)。
場合によりベース電極上の所定部にも同等にAu
メツキをしてもよい。次いでフオトレジストをか
ぶせて蒸着金属の短絡部(台形部12の近傍)を
露出させ、短絡部を除去してエミツタ・ベース電
極を分離する(図示せず)。
Next, emitter region 5, insulating layer 6, and base contact region 7 are formed in the same manner as in the conventional manufacturing method, and after removing insulating layer 13 by etching, electrode metal 8 is deposited from the vertical upper surface (FIG. 8). When forming emitter region 5 by introducing impurities from dopos layer 4, polysilicon layer 14 is also doped with impurities. In this example, the vapor-deposited electrode metal 8 is Ti, Pt,
Au was continuously deposited to create a three-layer structure. This vapor-deposited metal 8 forms a trapezoidal portion 12 between the emitter and the base.
Since this is inevitably short-circuited through the process, Au plating 9 on the emitter electrode is performed using this (Fig. 4).
In some cases, Au may also be applied to certain areas on the base electrode.
You can also do some mitsuki. Next, a photoresist is applied to expose the short-circuited portion of the vapor-deposited metal (near the trapezoidal portion 12), and the short-circuited portion is removed to separate the emitter and base electrodes (not shown).

以上の製法例の説明からわかるように、本発明
を適用したTrでは従来製法のようにメツキ導電
バス用金属(TiあるいはAl)を設ける必要がな
いので製造工程が簡略化される。又、あらたにエ
ミツタ・ベース短絡部を形成する為の写真蝕刻工
程が増えるが、段差部をホトレジストで被覆しさ
えすればよいので製法を困難とはしない。さらに
又、メツキ導電バス用金属を設ける必要がないの
で従来しばしば発生していた。メツキ導電パス用
金属と電極金属との間の合金層の形成による外観
不良も全くなくすることができる。
As can be seen from the above description of the manufacturing method example, in the Tr to which the present invention is applied, there is no need to provide a plating conductive bus metal (Ti or Al) unlike in the conventional manufacturing method, so the manufacturing process is simplified. Further, although the photolithography step for forming a new emitter-base shorting portion is increased, the manufacturing method is not difficult because it is only necessary to cover the stepped portion with photoresist. Furthermore, there is no need to provide a plating conductive bus metal, which has often occurred in the past. Defects in appearance due to the formation of an alloy layer between the plating conductive path metal and the electrode metal can also be completely eliminated.

以上の実施例ではTrを用いたが、ダイオード、
ICでも同様に実施できることはいうまでもない。
In the above embodiment, a transistor was used, but a diode,
It goes without saying that the same can be done with IC.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエミツタ領域上に逆台形構造を成した
多結晶シリコン層を有するTrの例を示す平面図、
第2図は第1図のTrをA―A′線に沿つて切断し
矢印の方向にみた断面図である。第3図は逆台形
エミツタ型Trに本発明を適用した場合の平面図
であり、第4図〜第8図はそれをB―B′線に沿
つて切断し、主な工程ごとに矢印の方向にみた断
面図である。 1…半導体基板、2…絶縁層、3…活性ベース
層、4…高濃度多結晶シリコン層(ドポス層)、
5…エミツタ層、6…絶縁層、7…ベースコンタ
クト層、8…電極金属層、9…Auメツキ層、1
0…メツキ導電パス用金属、11…逆台形部、1
2…台形部、13…絶縁層、14…不純物を含ま
ない多結晶シリコン層(ポリシリコン層)、15
…ホトレジスト層、16…EB短絡形成部(ホト
レジスト層)。
FIG. 1 is a plan view showing an example of a transistor having a polycrystalline silicon layer with an inverted trapezoidal structure on the emitter region.
FIG. 2 is a cross-sectional view of the Tr shown in FIG. 1 taken along line AA' and viewed in the direction of the arrow. Fig. 3 is a plan view of the case where the present invention is applied to an inverted trapezoidal emitter type Tr, and Figs. It is a sectional view seen in the direction. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Insulating layer, 3... Active base layer, 4... High concentration polycrystalline silicon layer (dopos layer),
5... Emitter layer, 6... Insulating layer, 7... Base contact layer, 8... Electrode metal layer, 9... Au plating layer, 1
0...Metal for plating conductive path, 11...Inverted trapezoidal part, 1
2... Trapezoidal part, 13... Insulating layer, 14... Polycrystalline silicon layer (polysilicon layer) not containing impurities, 15
...Photoresist layer, 16...EB short circuit forming part (photoresist layer).

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板の表面に選択的にベース
領域を形成する工程と、該ベース領域上の少なく
とも一部に接触するように多結晶シリコン層を設
ける工程と、該多結晶シリコン層のエミツタ電極
形成部以外を所定の厚さにまで除去することによ
り前記ベース領域のベース電極取り出し部上の前
記多結晶シリコン層を前記エミツタ電極形成部の
多結晶シリコン層より薄くする工程と、前記多結
晶シリコン層上のエミツタ・ベース短絡形成部を
被覆保護した後、前記ベース電極取り出し部上の
多結晶シリコン層を選択的に除去することによ
り、前記多結晶シリコン層の前記ベース電極取り
出し部に隣接しない前記エミツタ電極形成部の一
部を台形状に加工し、前記多結晶シリコン層の前
記ベース電極取り出し部に隣接する前記エミツタ
電極形成部の端部を逆台形状に加工する工程と、
前記ベース領域内に前記多結晶シリコンと接する
エミツタ領域を形成する工程と、垂直上面から電
極金属を被着し、エミツタ電極、ベース電極、及
び前記台形状部分にエミツタ・ベース間短絡部を
形成する工程と、少なくとも前記エミツタ電極上
にメツキを行なう工程と、前記エミツタ・ベース
間短絡部を除去して前記エミツタ電極と前記ベー
ス電極とを分離する工程とを有することを特徴と
する半導体装置の製造方法。
1. A step of selectively forming a base region on the surface of a semiconductor substrate of one conductivity type, a step of providing a polycrystalline silicon layer in contact with at least a portion of the base region, and an emitter electrode of the polycrystalline silicon layer. a step of making the polycrystalline silicon layer on the base electrode extraction portion of the base region thinner than the polycrystalline silicon layer on the emitter electrode formation portion by removing the portion other than the formation portion to a predetermined thickness; After covering and protecting the emitter-base short circuit formation portion on the layer, the polycrystalline silicon layer on the base electrode extraction portion is selectively removed, thereby removing the polycrystalline silicon layer that is not adjacent to the base electrode extraction portion. processing a part of the emitter electrode forming part into a trapezoidal shape, and processing an end of the emitter electrode forming part adjacent to the base electrode extraction part of the polycrystalline silicon layer into an inverted trapezoidal shape;
forming an emitter region in contact with the polycrystalline silicon in the base region, depositing an electrode metal from the vertical upper surface, and forming an emitter-base short circuit on the emitter electrode, the base electrode, and the trapezoidal portion; a step of plating at least the emitter electrode; and a step of removing the emitter-base short circuit to separate the emitter electrode and the base electrode. Method.
JP11379779A 1979-09-05 1979-09-05 Manufacture of semiconductor device Granted JPS5637674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11379779A JPS5637674A (en) 1979-09-05 1979-09-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11379779A JPS5637674A (en) 1979-09-05 1979-09-05 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5637674A JPS5637674A (en) 1981-04-11
JPS6346583B2 true JPS6346583B2 (en) 1988-09-16

Family

ID=14621316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11379779A Granted JPS5637674A (en) 1979-09-05 1979-09-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5637674A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174963U (en) * 1988-05-30 1989-12-13
JP3179087B2 (en) * 1990-04-13 2001-06-25 日本電気株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5637674A (en) 1981-04-11

Similar Documents

Publication Publication Date Title
US5670801A (en) Heterojunction bipolar transistor
JPH05206451A (en) Mosfet and its manufacture
JP2553699B2 (en) Method for manufacturing semiconductor device
JPS6346583B2 (en)
JPS6134972A (en) Bipolar transistor structure
JPS587862A (en) Bipolar transistor structure and method of producing same
JPS6013313B2 (en) Manufacturing method of semiconductor device
JPS6323669B2 (en)
JPH047099B2 (en)
JP3075245B2 (en) Method for manufacturing compound semiconductor
JP2624253B2 (en) Manufacturing method of bipolar transistor
JP2550715B2 (en) Semiconductor device
JPH0612776B2 (en) Semiconductor device
JPS61207069A (en) Semiconductor device
JPS6125217B2 (en)
JP3340809B2 (en) Vertical semiconductor device and method of manufacturing the same
JPH0236277Y2 (en)
JP2511716B2 (en) Semiconductor element
JPH01251669A (en) Manufacture of field effect transistor
JP2002043317A (en) Method for manufacturing semiconductor device
JP2577996B2 (en) Method of manufacturing image display device
JP2817191B2 (en) Method for manufacturing heterojunction bipolar transistor
JPS6118350B2 (en)
JPH02194652A (en) Manufacture of semiconductor device
JPH04291925A (en) Manufacture of semiconductor device