JPS6346551B2 - - Google Patents

Info

Publication number
JPS6346551B2
JPS6346551B2 JP7315283A JP7315283A JPS6346551B2 JP S6346551 B2 JPS6346551 B2 JP S6346551B2 JP 7315283 A JP7315283 A JP 7315283A JP 7315283 A JP7315283 A JP 7315283A JP S6346551 B2 JPS6346551 B2 JP S6346551B2
Authority
JP
Japan
Prior art keywords
waveguide
antenna
protruding
protrusion
protruding portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7315283A
Other languages
Japanese (ja)
Other versions
JPS59198697A (en
Inventor
Yoshuki Takada
Toshio Kai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7315283A priority Critical patent/JPS59198697A/en
Publication of JPS59198697A publication Critical patent/JPS59198697A/en
Publication of JPS6346551B2 publication Critical patent/JPS6346551B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子レンジ等の高周波加熱装置の給
電構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a power supply structure for a high frequency heating device such as a microwave oven.

従来例の構成とその問題点 従来の例えばマグネトロンでマイクロ波を発生
させ導波管で加熱室にマイクロ波を供給するタイ
プの高周波加熱装置は第1図に示すようにマイク
ロ波を発生するマグネトロン(発振器)1のアン
テナ1−aを導波管2の中へ突き出し、前記導波
管を通つて開口3より加熱室4の中へマイクロ波
を放射し被加熱物を加熱する基本構成である。電
子レンジのような高周波加熱装置では種々の料理
メニユーに対しその加熱分布を良いことが重要な
性能であり、これを分布性能と呼んでいる。この
分布性能に影響を与える大きな要因が開口3の加
熱室4に対する位置であることが経験上わかつて
いる。すなわち分布性能の要求から開口3の位置
が決まる。5は整合ピン(突き出し部)でマグネ
トロン1を効率の高い動作をさせるようインピー
ダンス整合をとるために設けられる。この突出し
部5は一般にアルミニウムの材質で、導波管2に
めることにより構成される。ところでこの従来
例の高周波加熱装置の加熱室4に被加熱物を入れ
ないで又は少量の被加熱物を入れて動作させた場
合、前記突き出し部5と加熱室4の上面を形成す
る上板4−aとの間に生ずる電界により、放電し
たり前記突き出し部直下の上板4−aを過熱し
て、開口カバー6を変形させる等の欠点を有して
いた。
Configuration of conventional example and its problems A conventional high-frequency heating device, for example, uses a magnetron to generate microwaves and a waveguide to supply the microwaves to the heating chamber, as shown in Fig. 1. This is a basic configuration in which an antenna 1-a of an oscillator 1 is projected into a waveguide 2, and microwaves are radiated through the waveguide into a heating chamber 4 from an opening 3 to heat an object to be heated. In high-frequency heating devices such as microwave ovens, it is important to have good heating distribution for various food menus, and this is called distribution performance. Experience has shown that a major factor that affects this distribution performance is the position of the opening 3 with respect to the heating chamber 4. That is, the position of the aperture 3 is determined based on the distribution performance requirements. Reference numeral 5 denotes a matching pin (projection) provided for impedance matching so that the magnetron 1 can operate with high efficiency. This protrusion 5 is generally made of aluminum and is constructed by fitting it into the waveguide 2. By the way, when this conventional high-frequency heating device is operated without putting an object to be heated into the heating chamber 4 or with a small amount of object to be heated, the above-mentioned protruding portion 5 and the upper plate 4 forming the upper surface of the heating chamber 4 The electric field generated between the opening cover 6 and the opening cover 6 causes a discharge and overheats the upper plate 4-a directly below the protruding portion, causing the opening cover 6 to become deformed.

発明の目的 本発明は上記従来の欠点を解消するもので、空
焼等の苛酷な使用条件においても安定な動作が得
られる信頼性の高い高周波加熱装置を提供するこ
とを目的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and aims to provide a highly reliable high-frequency heating device that can operate stably even under severe usage conditions such as dry firing.

発明の構成 上記目的を達するため、本発明の高周波加熱装
置は、アンテナと、発振器と、導波管と、開口
と、複数個の突き出し部とを備え、前記アンテナ
を前記導波管内へ突き出すとともに前記突き出し
部は金属体体よりなり前記導波管内へ突き出し、
前記突き出し部個々の間の距離をマイクロ波の進
行方向に略λg/2の整数倍とする構成であり、
インピーダンス整合の機能を従来の導波管内に単
一の突き出し部を設ける構成から導波管の管内波
長の1/2すなわちλg/2の整数倍の位置での複数
の突き出し部を設ける本発明の構成にすることで
導波管内の各突き出し部に分担させることによ
り、それぞれの突き出し部の導波管内への突き出
し寸法を短かくすることが出来る。従つて導波管
の突き出し部に対向する壁面との距離を長くする
ことが出来、電界の集中を緩和し放電や過熱を防
止するという効果を有するものである。
Structure of the Invention In order to achieve the above object, the high frequency heating device of the present invention includes an antenna, an oscillator, a waveguide, an opening, and a plurality of protruding parts, and the antenna is protruded into the waveguide. The protruding portion is made of a metal body and protrudes into the waveguide,
The distance between each of the protruding parts is set to be an integral multiple of approximately λg/2 in the direction of propagation of the microwave,
The impedance matching function is changed from the conventional configuration in which a single protrusion is provided in the waveguide to the structure of the present invention in which multiple protrusions are provided at positions of 1/2 of the waveguide's internal wavelength, that is, an integral multiple of λg/2. By making each protruding part in the waveguide share the responsibility, the length of each protruding part protruding into the waveguide can be shortened. Therefore, the distance between the protruding portion of the waveguide and the opposing wall surface can be increased, which has the effect of alleviating the concentration of electric field and preventing discharge and overheating.

実施例の説明 以下、本発明の一実施例について図面に基づい
て説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第2図において1は発振器、1−aはアンテ
ナ、2は導波管、3は開口、5−a,5−b,5
−cはそれぞれ突き出し部である。4はそこで被
加熱物を加熱する加熱室、4−aは前記加熱室4
の上壁を形成する上板でありこの上板は同時に導
波管2の下壁を形成している。7は被加熱物をそ
の上に置くテーブルでありモーター8の駆動力に
より回転する。6は開口3をカバーして加熱室壁
面の凹凸をなくす為の開口カバーでマイクロ波を
透過するようポリプロピレン等の低損失な誘電体
でできている。9は前記発振器を発振するための
電源を供給するトランスである。10は安全上及
び外観上のためのボデー、11はシヤーシであ
る。前記アンテナ1−aは図のごとく導波管2内
に突き出し複数の前記突き出し部5−a,5−
b,5−cは板金の金属体よりなる前記導波管2
の一部を第3図のように前記導波管2内へ絞り加
工により突き出し、前記突き出し部5−a,5−
b,5−c個々の間の距離はマイクロ波の進行方
向、すなわち第2図に左右方向、第3図における
矢印M−M方向に、マイクロ波の発振周波数と導
波管の寸法によつて決まる管内波長λgの1/2の整
数倍にしている。すなわち前記突き出し部5−a
と前記突き出し部5−bの間の距離P1をλg/2
に前記突き出し部5−bと5−cの間の距離P2
をλg/2にしている。また前記アンテナ1−a
と前記突き出し部5−cの位置を図のように一致
させている。さらに前記開口3と前記突き出し部
5−aの間の距離Qをマイクロ波の進行方向に
λg/4としている。
In Fig. 2, 1 is an oscillator, 1-a is an antenna, 2 is a waveguide, 3 is an aperture, 5-a, 5-b, 5
-c are respective protruding parts. 4 is a heating chamber in which the object to be heated is heated; 4-a is the heating chamber 4;
The upper plate forms the upper wall, and this upper plate also forms the lower wall of the waveguide 2. Reference numeral 7 denotes a table on which the object to be heated is placed, and is rotated by the driving force of a motor 8. Reference numeral 6 denotes an aperture cover for covering the aperture 3 and eliminating unevenness on the wall surface of the heating chamber, and is made of a low-loss dielectric material such as polypropylene so as to transmit microwaves. 9 is a transformer that supplies power for oscillating the oscillator. 10 is a body for safety and appearance, and 11 is a chassis. The antenna 1-a protrudes into the waveguide 2 as shown in the figure, and has a plurality of protruding parts 5-a, 5-.
b, 5-c are the waveguides 2 made of sheet metal bodies;
As shown in FIG.
The distance between b and 5-c is determined by the microwave oscillation frequency and waveguide dimensions in the microwave propagation direction, that is, in the left-right direction in Fig. 2 and in the arrow M-M direction in Fig. 3. It is set to an integral multiple of 1/2 of the determined pipe wavelength λg. That is, the protruding portion 5-a
and the protruding portion 5-b, the distance P 1 is λg/2
The distance P 2 between the protruding parts 5-b and 5-c
is set to λg/2. In addition, the antenna 1-a
The positions of the protruding portion 5-c and the protruding portion 5-c are made to coincide with each other as shown in the figure. Further, the distance Q between the opening 3 and the protruding portion 5-a is set to λg/4 in the direction of propagation of the microwave.

以下上記構成における作用について説明する。
前記トランス9により発生した高電圧により前記
発振器1が動作し前記アンテナ1−aと前記導波
管2の内壁面との間に電界が生じマイクロ波を導
波管内に励振する。マイクロ波は前記導波管2内
を通つて前記開口3より前記加熱室4内に放射さ
れ被加熱物を加熱する。ところが電子レンジ等の
大多数の高周波加熱装置においては加熱すべき被
加熱物の量や形状が種々雑多でありそれによつて
前記アンテナ1−aからみた負荷側のマイクロ波
的なインピーダンスが変動しマイクロ波出力や効
率に変動を及ぼす。このため最も頻繁に使用する
被加熱物を前記加熱室4に入れたときに最も効率
よく動作するように前記突き出し部5−a,5−
b,5−cによつてインピーダンス整合をとつて
いる。本実施例においては第2図のように3箇所
の前記突き出し部をλg/2のピツチで設けてい
るため、第1図の従来例のように突き出し部を1
箇所に集中して設ける場合に比べて突き出し部の
導波管内への突き出し寸法を短かくすることが出
来る。本実施例の高周波加熱装置において前記突
き出し部5−cを無くし、前記突き出し部5−
a,5−bの寸法とその間の距離P1を可変して
実験を行なつた結果第4図に示すデータを得た。
図においてh1は突き出し部を1箇所のみでインピ
ーダンス整合をとつた場合の突き出し部の突き出
し寸法、h2は前記突き出し部5−a,5−bの突
き出し寸法を同じとする状態でインピーダンス整
合をとつた場合の突き出し寸法、P1はそのとき
の突き出し部の間の距離である。従つて縦軸h2
h1は突き出し部を2箇所設けた場合の1箇所設け
た場合に対する低減度をあらわしており、その値
が1以下のときは突き出し寸法が短かくなること
を示している。又横軸P1/λgは突き出し部間の
距離が管内波長の何倍であるかを示している。
The operation of the above configuration will be explained below.
The oscillator 1 is operated by the high voltage generated by the transformer 9, and an electric field is generated between the antenna 1-a and the inner wall surface of the waveguide 2, thereby exciting microwaves into the waveguide. The microwave passes through the waveguide 2 and is radiated into the heating chamber 4 from the opening 3 to heat the object to be heated. However, in most high-frequency heating devices such as microwave ovens, the amount and shape of the objects to be heated vary widely, and as a result, the microwave impedance on the load side as seen from the antenna 1-a fluctuates. It causes fluctuations in wave power and efficiency. For this reason, the protruding portions 5-a, 5-
Impedance matching is achieved by b and 5-c. In this embodiment, as shown in FIG. 2, the protruding portions are provided at three locations at a pitch of λg/2, so unlike the conventional example shown in FIG.
The length of the protrusion into the waveguide can be made shorter than when the protrusion is provided in a concentrated manner. In the high frequency heating device of this embodiment, the protruding portion 5-c is eliminated, and the protruding portion 5-c is eliminated.
Experiments were carried out by varying the dimensions of a and 5-b and the distance P1 between them, and the data shown in FIG. 4 was obtained.
In the figure, h 1 is the protrusion dimension of the protrusion when impedance matching is achieved at only one protrusion, and h 2 is the impedance matching when the protrusion dimensions of the protrusion 5-a and 5-b are the same. The protrusion dimension when the protrusions are removed, P 1 is the distance between the protrusions at that time. Therefore, the vertical axis h 2 /
h 1 represents the degree of reduction when two protruding portions are provided compared to the case where one protruding portion is provided, and when the value is 1 or less, it indicates that the protruding dimension is shortened. Moreover, the horizontal axis P 1 /λg indicates how many times the distance between the protruding parts is the wavelength inside the pipe.

実験によれば第4図から明らかなように突き出
し部個々の間の距離P1がλg/2のとき突き出し
部の寸法を最も短く出来、その長さは突き出し部
1箇所の場合の約84%の長さでよいことがわか
る。
According to experiments, as is clear from Figure 4, when the distance P 1 between individual protruding parts is λg/2, the dimension of the protruding parts can be shortest, and the length is about 84% of that in the case of one protruding part. It turns out that the length of is sufficient.

従つて突き出し部の突き出し寸法が短かくなる
ことで突き出し部における電界集中が緩和され、
突き出し部と上板の間の距離が長くなることとに
よつて突き出し部と上板の間での放電と上板の過
熱がおさえられる。
Therefore, by shortening the protrusion dimension of the protrusion, electric field concentration at the protrusion is alleviated,
By increasing the distance between the protrusion and the top plate, electric discharge between the protrusion and the top plate and overheating of the top plate can be suppressed.

又、前記突き出し部5−cを前記アンテナ1−
aの位置を一致することにより、前記アンテナ1
−aと前記突き出し部5−cの間の距離を、前記
発振器1からのマイクロ波出力が高く、空焼時の
前記アンテナ1−aの温度の低いような最適な寸
法に設計することが、前記突き出し部5−a,5
−bの突き出し寸法を短かく出来るという効果を
得たうえに、可能となる。上記の前記アンテナ1
−aと前記突き出し部5−cの間の距離と空焼時
の前記アンテナ1−aとの関係を実験により確認
した一例を第5図に示す。図において縦軸は空焼
時のアンテナの温度、A,B,Cは前記アンテナ
1−aと前記突き出し部5−cの間の距離lをそ
れぞれ5.2mm、4.6mm、4.0mmにした状態を示す。第
5図は前記発振器1や前記導波管2やその他のバ
ラツキによつてアンテナ温度がどのような確率関
数で変化するかを、横軸に発生頻度をとることに
よりあらわしている。図から前記アンテナ1−a
と前記突き出し部5−cの間の距離が空焼時のア
ンテナ1−aの温度に大きな影響を与えているこ
とがわかる。
Further, the protruding portion 5-c is connected to the antenna 1-
By matching the positions of the antennas 1 and 1,
-a and the protruding portion 5-c are designed to an optimal dimension so that the microwave output from the oscillator 1 is high and the temperature of the antenna 1-a is low during dry firing. The protruding portions 5-a, 5
In addition to achieving the effect of shortening the protrusion dimension of -b, this becomes possible. The above antenna 1
FIG. 5 shows an example of the relationship between the distance between -a and the protruding portion 5-c and the antenna 1-a during dry firing, which was confirmed through experiments. In the figure, the vertical axis represents the temperature of the antenna during dry firing, and A, B, and C represent the state in which the distance l between the antenna 1-a and the protruding portion 5-c is 5.2 mm, 4.6 mm, and 4.0 mm, respectively. show. FIG. 5 shows the probability function by which the antenna temperature changes due to variations in the oscillator 1, the waveguide 2, and other factors, by plotting the frequency of occurrence on the horizontal axis. From the figure, the antenna 1-a
It can be seen that the distance between the antenna and the protruding portion 5-c has a large influence on the temperature of the antenna 1-a during dry firing.

次に本実施例においては、第2図における前記
開口3の位置を前記突き出し部5−aよりλg/
4の位置に設けているため、電界の極大点となる
前記突き出し部5−aおよびその位置からλg/
2の整数倍離れた各位置のそれぞれから最も離れ
た位置に前記開口3が存在することになり、突き
出し部5−aの寸法が短くなることによる電界集
中の緩和と相まつて前記開口部3近傍の前記上板
4−aの温度上昇の低下および前記上板4−aの
開口部端面における放電がおさえられる。
Next, in this embodiment, the position of the opening 3 in FIG.
4, the protrusion 5-a is the maximum point of the electric field, and from that position λg/
The opening 3 is present at the farthest position from each of the positions separated by an integral multiple of 2, and the reduction in electric field concentration due to the shortening of the protrusion 5-a also reduces the area near the opening 3. The temperature rise of the upper plate 4-a is reduced and the discharge at the end face of the opening of the upper plate 4-a is suppressed.

このように本実施例によれば、基本効果として
複数個の前記突き出し部5−a,5−b,5−c
をλg/2ピツチで前記導波管2内に突き出すこ
とにより、各突き出し寸法が短かくなり、突き出
し部の電界集中の緩和と突き出し部と上板の間の
距離の増大とにより突き出し部付近での放電と上
板の過熱がおさえられる。又前記アンテナ1−a
と前記突き出し部5−cの位置を一致させること
により、上記基本効果の増大をはかりながら前記
アンテナ1−aの温度を下げる等の前記発振器1
の出力特性を良くすることができる。さらに前記
突き出し部5−aよりλg/4の位置に前記開口
を設けることにより上記基本効果との相乗的な作
用で前記上板4−aの温度上昇の低下と前記上板
4−aの開口部端面における放電をおさえること
が出来、それによつて前記開口カバー6の焼けや
溶けを防止できる。又前記複数の突き出し部5−
a,5−b,5−cをλg/2のピツチで設ける
構成によつて、前記発振器1の発振周波数のバラ
ツキによる前記アンテナ1−aからみたインピー
ダンスのバラツキを小さくする効果もあり高周波
出力のバラツキを小さくできる。
As described above, according to this embodiment, the basic effect is that the plurality of protruding portions 5-a, 5-b, 5-c
By protruding into the waveguide 2 at a pitch of λg/2, each protrusion dimension is shortened, and electric field concentration at the protrusion is relaxed and the distance between the protrusion and the upper plate is increased, so that discharge near the protrusion is reduced. This prevents the top plate from overheating. Moreover, the antenna 1-a
By aligning the positions of the protruding portion 5-c with the oscillator 1, the temperature of the antenna 1-a can be lowered while increasing the basic effect.
can improve the output characteristics of Further, by providing the opening at a position λg/4 from the protruding portion 5-a, a synergistic effect with the above basic effect reduces the temperature rise of the upper plate 4-a and the opening of the upper plate 4-a. Electric discharge at the end face of the opening can be suppressed, thereby preventing the aperture cover 6 from burning or melting. Moreover, the plurality of protruding parts 5-
The configuration in which a, 5-b, and 5-c are provided at a pitch of λg/2 has the effect of reducing variations in impedance seen from the antenna 1-a due to variations in the oscillation frequency of the oscillator 1, and reduces the high-frequency output. Variations can be reduced.

発明の効果 以上のように本発明によれば次の効果を得るこ
とができる。
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(1) 導波管内の突き出し部(整合ピン)の突き出
し寸法の減少によつて、空焼時等の導波管内で
の放電や上板の過熱をおさえ安定な動作が得ら
れ安全性、信頼性を増す。
(1) By reducing the protrusion dimension of the protruding part (alignment pin) inside the waveguide, it suppresses discharge inside the waveguide during dry firing and overheating of the upper plate, resulting in stable operation and safety and reliability. Increase sex.

(2) 発振器からの出力特性を改善でき効率の高い
耐久性の高い高周波加熱装置を提供できる。
(2) It is possible to improve the output characteristics of the oscillator and provide a highly efficient and highly durable high-frequency heating device.

(3) 開口部温度の低下により、開口カバーの焼け
や溶けを防止し、信頼性を増す。
(3) Lowering the opening temperature prevents the opening cover from burning or melting, increasing reliability.

(4) 発振器の周波数のバラツキによる高周波出力
のバラツキ等の影響を少なくできる。
(4) The effects of variations in high frequency output due to variations in oscillator frequency can be reduced.

(5) 突き出し部の突き出し寸法を短かく出来るこ
とによつて突き出し部を板金の導波管の一部を
絞り加工することで実現出来加工性、作業性、
コスト面で有利である。
(5) By shortening the length of the protruding part, the protruding part can be realized by drawing a part of the sheet metal waveguide, improving workability and workability.
It is advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高周波加熱装置の要部断面図、
第2図は本発明の一実施例である高周波加熱装置
の要部断面図、第3図は同装置の導波管の斜視
図、第4図は突き出し部間の距離と突き出し寸法
の関係を示す図、第5図は、アンテナと突き出し
部との間のギヤツプと空焼時のアンテナ温度を示
す図である。 1……発振器、1−a……アンテナ、2……導
波管、3……開口、4……加熱室、5−a,5−
b,5−c……突き出し部、6……開口カバー、
7……テーブル、8……モータ、9……トラン
ス、10……ボデー、11……シヤーシ。
Figure 1 is a cross-sectional view of the main parts of a conventional high-frequency heating device.
Fig. 2 is a cross-sectional view of a main part of a high-frequency heating device that is an embodiment of the present invention, Fig. 3 is a perspective view of a waveguide of the same device, and Fig. 4 shows the relationship between the distance between protruding parts and the protruding dimension. FIG. 5 is a diagram showing the gap between the antenna and the protrusion and the antenna temperature during dry firing. 1... Oscillator, 1-a... Antenna, 2... Waveguide, 3... Opening, 4... Heating chamber, 5-a, 5-
b, 5-c...Protruding portion, 6...Opening cover,
7... table, 8... motor, 9... transformer, 10... body, 11... chassis.

Claims (1)

【特許請求の範囲】 1 アンテナを有する発振器と、この発振器から
のマイクロ波を伝送する導波管と、この導波管に
設けた開口と、導波管に設けた複数個の突き出し
部とを備え、前記アンテナを前記導波管内に突き
出すとともに前記導波管の突き出し部は金属体で
構成し、前記突き出し部間の距離はマイクロ波の
進行方向に略λg/2の整数倍とする構成とした
高周波加熱装置。 2 複数個の突き出し部のうちの一個の位置をア
ンテナの位置とほぼ一致する構成とした特許請求
の範囲第1項記載の高周波加熱装置。 3 開口の位置を突き出し部よりマイクロ波の進
行方向にλg/4の位置から略λg/2の整数倍の
距離に設ける構成とした特許請求の範囲第1項記
載の高周波加熱装置。
[Claims] 1. An oscillator having an antenna, a waveguide for transmitting microwaves from the oscillator, an opening provided in the waveguide, and a plurality of protruding portions provided in the waveguide. The antenna is configured to protrude into the waveguide, and the protruding portion of the waveguide is made of a metal body, and the distance between the protruding portions is approximately an integral multiple of λg/2 in the direction of propagation of the microwave. high frequency heating device. 2. The high-frequency heating device according to claim 1, wherein the position of one of the plurality of protrusions substantially coincides with the position of the antenna. 3. The high-frequency heating device according to claim 1, wherein the opening is located at a distance from a position of λg/4 from the protruding portion in the direction of propagation of the microwaves to a distance approximately an integral multiple of λg/2.
JP7315283A 1983-04-25 1983-04-25 High frequency heater Granted JPS59198697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7315283A JPS59198697A (en) 1983-04-25 1983-04-25 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7315283A JPS59198697A (en) 1983-04-25 1983-04-25 High frequency heater

Publications (2)

Publication Number Publication Date
JPS59198697A JPS59198697A (en) 1984-11-10
JPS6346551B2 true JPS6346551B2 (en) 1988-09-16

Family

ID=13509920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7315283A Granted JPS59198697A (en) 1983-04-25 1983-04-25 High frequency heater

Country Status (1)

Country Link
JP (1) JPS59198697A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2268104A4 (en) * 2008-04-15 2012-07-04 Panasonic Corp Microwave heating device
CN104186024A (en) * 2011-12-19 2014-12-03 松下电器产业株式会社 Microwave heating device
EP2824991B1 (en) * 2012-03-09 2019-11-27 Panasonic Corporation Microwave heating device
WO2013171990A1 (en) * 2012-05-15 2013-11-21 パナソニック株式会社 Microwave heating device
JP2014032744A (en) * 2012-08-01 2014-02-20 Panasonic Corp Microwave heating device
JP5816820B2 (en) * 2012-08-29 2015-11-18 パナソニックIpマネジメント株式会社 Microwave heating device

Also Published As

Publication number Publication date
JPS59198697A (en) 1984-11-10

Similar Documents

Publication Publication Date Title
US9876481B2 (en) Microwave processing device
JPH06111933A (en) Waveguide system of microwave oven
JPH04233188A (en) Microwave oven, and microwave oven cavity excitation method and wave guide device for the embodiment of thid method
JP2000048946A (en) Microwave oven
KR19980017873A (en) Microwave Waveguide Structure
CA1234185A (en) High frequency heating unit with rotating waveguide
JPS6346551B2 (en)
JPH0922775A (en) High-frequency heating device
JP2558877B2 (en) High frequency heating equipment
AU719744B2 (en) Microwave feeding of an oven cavity
US5935479A (en) Microwave oven with two microwave output apertures
KR890003057B1 (en) Electronic range
JPS6025874B2 (en) High frequency heating device
US20240172337A1 (en) High-frequency heating apparatus
JPS5935998Y2 (en) High frequency heating device
KR0116571Y1 (en) Extinction apparatus for microwave oven reflex wave
JPS6340036B2 (en)
KR102035810B1 (en) Cooking appliance
JPS6230798Y2 (en)
CN117425240A (en) Microwave assembly and cooking utensil
KR950000256Y1 (en) Microwave induction apparatus of a electronic range
JPS5934073Y2 (en) High frequency heating device
KR102037310B1 (en) Cooking appliance
JPS6332235B2 (en)
JPS643039B2 (en)