JPS643039B2 - - Google Patents

Info

Publication number
JPS643039B2
JPS643039B2 JP23272482A JP23272482A JPS643039B2 JP S643039 B2 JPS643039 B2 JP S643039B2 JP 23272482 A JP23272482 A JP 23272482A JP 23272482 A JP23272482 A JP 23272482A JP S643039 B2 JPS643039 B2 JP S643039B2
Authority
JP
Japan
Prior art keywords
frequency
heating chamber
modes
band
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23272482A
Other languages
Japanese (ja)
Other versions
JPS59123188A (en
Inventor
Masaaki Yamaguchi
Shigeru Kusuki
Tomotaka Nobue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23272482A priority Critical patent/JPS59123188A/en
Publication of JPS59123188A publication Critical patent/JPS59123188A/en
Publication of JPS643039B2 publication Critical patent/JPS643039B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はI.S.M.(工業・科学・医事用)周波数
帯の1つである915MHz帯を高周波加熱源の発振
周波数とした高周波加熱装置のうち、特に加熱室
が波長(約33cm)の数倍以内の民生用の機器の加
熱室の改善に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a high-frequency heating device in which the oscillation frequency of the high-frequency heating source is 915MHz, which is one of the ISM (industrial, scientific, and medical) frequency bands. This relates to the improvement of heating chambers for consumer equipment whose chambers are within several times the wavelength (approximately 33 cm).

従来例の構成とその問題点 従来の高周波加熱装置として広く民生用に用い
られている電子レンジの場合、そのほとんどがI.
S.M.周波数帯の1つである2450MHz帯を利用し
ているが、この周波数帯(2450MHz帯)を利用し
た高周波加熱装置に対し、本発明にかかる915M
Hz帯の高周波を利用した場合、次に述べるような
特徴がある。
Conventional configurations and their problems In the case of microwave ovens, which are widely used for consumer use as conventional high-frequency heating devices, most of them are I.
Although the 2450MHz band, which is one of the SM frequency bands, is used, the 915MHz according to the present invention is
When using high frequencies in the Hz band, there are the following characteristics.

まず第1に、2450MHzを利用するのに比較し、
915MHzの場合、食品の主成分である水や脂肪に
対する半減深度が大きく、食品の局部や表面のみ
に高周波エネルギーが集中せず食品の均一加熱に
有利である。
First of all, compared to using 2450MHz,
In the case of 915MHz, the half-life depth with respect to water and fat, which are the main components of food, is large, and high-frequency energy is not concentrated only in localized areas or on the surface of food, which is advantageous for uniform heating of food.

第2に、半導体素子を高周波発振源として考え
た場合、近年増々高周波領域においても大電力、
高効率の半導体素子の開発が進んで来たといえど
も、半導体素子の出力限界は周波数()の2乗
2)に逆比例するという理論もあるように、少
しでも周波数の低い915MHzの方が有利である。
Second, when considering semiconductor devices as high-frequency oscillation sources, in recent years, even in the high-frequency region, large amounts of power and
Even though the development of highly efficient semiconductor devices has progressed, there is a theory that the output limit of a semiconductor device is inversely proportional to the square of the frequency ( 2 ). It's advantageous.

以上のような観点から、915MHz帯を使用した
高周波加熱装置は2450MHzを利用したものに比較
して勝つているといえるが、高周波発振源と共振
器である加熱室を主体とする高周波回路設計上で
2450MHzと異なつた問題点が存在する。
From the above points of view, it can be said that high-frequency heating devices using the 915 MHz band are superior to those using 2450 MHz. in
There are different problems than 2450MHz.

次にその問題点の説明をする。第1図は、高周
波加熱装置の基本構成を示す基本概念図である。
高周波加熱装置は、基本的には高周波を発生する
高周波発振源1と被加熱物4を収納し加熱するた
めの加熱室2、高周波発振源1で発生した高周波
エネルギーを加熱室2へ導くための結合器3の3
部分から成り立つている。高周波発振源1で発生
した高周波を効率よく加熱室2内に導いて、被加
熱物3を加熱するのに最も一般的な手法は、その
周波数で加熱室である共振器を共振させることで
あることは、電気工学の教えるところである。
Next, I will explain the problem. FIG. 1 is a basic conceptual diagram showing the basic configuration of a high-frequency heating device.
The high-frequency heating device basically consists of a high-frequency oscillation source 1 that generates high-frequency waves, a heating chamber 2 for storing and heating an object to be heated 4, and a heating chamber 2 for guiding the high-frequency energy generated by the high-frequency oscillation source 1 to the heating chamber 2. coupler 3 of 3
It is made up of parts. The most common method for efficiently guiding the high frequency waves generated by the high frequency oscillation source 1 into the heating chamber 2 and heating the object to be heated 3 is to cause a resonator, which is the heating chamber, to resonate at that frequency. This is what electrical engineering teaches.

一方加熱室2の共振周波数は加熱室2が直方体
で各辺の長さをそれぞれW、D、Hとしたとき、 f=(1/√2)×√()2+()2
(S/H)2…… 式1で表わされる。ここで、ε、μは加熱室2
内の媒体の誘電率と透磁率、m、n、sは励磁さ
れる共振モードの次数を示す零又は正の整数であ
る。式1が、加熱室2内の媒体の誘電率εの関数
であることからも予測されるように、加熱室2で
ある共振器の共振周波数は、中にはいる負荷(被
加熱物4)の量、形状、質によつて変化する。
On the other hand, when heating chamber 2 is a rectangular parallelepiped and the lengths of each side are W, D, and H, the resonant frequency of heating chamber 2 is f=(1/√2)×√() 2 +() 2 +
(S/H) 2 ... Represented by Formula 1. Here, ε and μ are heating chamber 2
The dielectric constant and magnetic permeability of the medium, m, n, and s are zero or positive integers indicating the order of the excited resonance mode. As predicted from the fact that Equation 1 is a function of the dielectric constant ε of the medium in the heating chamber 2, the resonant frequency of the resonator that is the heating chamber 2 depends on the load (the object to be heated 4) inside the resonator. Varies depending on quantity, shape, and quality.

ところで2450MHzを利用した高周波加熱装置の
場合、民生用機器を考えてもその加熱室2の寸法
は波長(12cm)に比較して十分大きい。従つて励
振加能な多数の近接モードが存在するので、特定
のモードを励振するのは困難である代り、負荷が
変つて共振周波数が変化しても、複数のモードの
いずれかが共振もしくはそれに近い状態になるた
め、多少負荷が変つても高周波エネルギーは加熱
室2内へ導かれる。
By the way, in the case of a high-frequency heating device using 2450 MHz, the dimensions of the heating chamber 2 are sufficiently large compared to the wavelength (12 cm) even when considering consumer equipment. Therefore, since there are many adjacent modes that can be excited, it is difficult to excite a specific mode, but even if the load changes and the resonant frequency changes, one of the multiple modes will resonate or Since the state is close to that of the heating chamber 2, the high frequency energy is guided into the heating chamber 2 even if the load changes slightly.

これに対し、915MHzの場合自由空間波長は、
2450MHzの自由空間波長12cmの約2.7倍の33cmで
あるため同一寸法の加熱室2で共振しうるモード
数のは大巾に少なくなる。例えばD=365mm、H
=240mm、W=365mmという寸法の共振器を考えた
場合、2450MHzを中心に±5%の周波数範囲に存
在する共振可能なモード数は27個存在するのに対
し、915MHzを中心に±5%の周波数範囲では
(m、n、s)=(1、0、2)と(m、n、s)=
(2、0、1)の2個のみである。このことは、
915MHzの場合特定のモード(この例の場合(1、
0、2)もしくは、(2、0、1)というモード)
は励磁し易い代り、給供される周波数がそのモー
ドの共振周波数からずれた場合、電気工学でいう
いわゆるインピーダンス整合が完全に取れなくな
つて、加熱室2内へ高周波エネルギーが入らなく
なるという問題があつた。
On the other hand, for 915MHz, the free space wavelength is
Since the free space wavelength of 2450 MHz is 33 cm, which is approximately 2.7 times the free space wavelength of 12 cm, the number of modes that can resonate in the heating chamber 2 of the same size is greatly reduced. For example, D=365mm, H
When considering a resonator with dimensions of = 240 mm and W = 365 mm, there are 27 resonant modes that exist within a frequency range of ±5% around 2450 MHz, but within a frequency range of ±5% around 915 MHz. In the frequency range of (m, n, s) = (1, 0, 2) and (m, n, s) =
There are only two (2, 0, 1). This means that
915MHz for a specific mode (in this example (1,
0, 2) or (2, 0, 1) mode)
Although it is easy to excite, if the supplied frequency deviates from the resonant frequency of that mode, impedance matching in electrical engineering terms cannot be achieved completely, resulting in the problem that high frequency energy will not enter into the heating chamber 2. It was hot.

発明の目的 本発明は上記の915MHz帯を利用する場合に生
ずるインピーダンス整合上の問題を解決し、効率
のよい、しかし信頼性の高い高周波加熱装置を実
現することを目的としたものである。
OBJECTS OF THE INVENTION The present invention aims to solve the problem of impedance matching that occurs when using the 915 MHz band, and to realize an efficient but highly reliable high-frequency heating device.

発明の構成 上記目的を達するため、本発明の高周波加熱装
置は、I.S.M.周波数帯の1つである915MHz帯を
使用するとともに前記周波数帯で高さ方向に定在
波を有しないTE201とTE102モードを発生可能と
し、かつ前記2つのモードTE201とTE102の共振
周波数が異なるように奥行と巾の寸法を異ならせ
た加熱室を設ける構成を特徴とする。
Structure of the Invention In order to achieve the above object, the high frequency heating device of the present invention uses the 915MHz band, which is one of the ISM frequency bands, and also operates in the TE201 and TE102 modes that do not have standing waves in the height direction in the frequency band. It is characterized by a configuration in which heating chambers are provided with different dimensions in depth and width so that the resonant frequencies of the two modes TE201 and TE102 are different.

実施例の説明 以下、本発明一実施例に基づいて、図面に基づ
いて説明する。第2図は本発明よりなる高周波加
熱装置の励磁部であるプローブアンテナ3を含む
加熱室2の構成と、励振される2つのモード
TE201とTE102の電界強度分布A,Bを示してお
り、巾Wと奥行Dは必ず異なつている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Figure 2 shows the configuration of the heating chamber 2 including the probe antenna 3, which is the excitation part of the high-frequency heating device according to the present invention, and the two excited modes.
The electric field strength distributions A and B of TE201 and TE102 are shown, and the width W and depth D are always different.

第3図は、加熱室を上部から見た平面図(X−
Z面)での上記モードの磁力線の基本的な方向を
示している。今加熱室2の巾W=360mm、奥行D
=370mmとした場合について考えてみると、(本発
明の場合高さ方向には一様な電界を有する
TE201、TE102モードを考えているのでHは任
意)加熱室2内に全く負荷のは入つていない状態
で、この加熱室2は(201)=926MHz(1,0,
2)=912MHzという近接した共振周波数を有する
TE201及びTE102というモードを励振できる。こ
れは巾Wと奥行Dを異ならせたことにより、W=
Dの正方形の場合に縮退して単一の共振周波数と
なつていたTE201とTE102の共振周波数が分離し
たためである。このWとDと共振周波数の関係を
さらに詳しく示したのが図4でW=350mm、355
mm、360mmの各場合につき、Dを変化させた場合
の共振周波数をプロツトしてあり、互いに等しく
ないDとWを適当に組み合せることより、近接す
る任意の2つの共振周波数を設定できることから
わかる。一方、TE201、TE102、2つのモードの
X−Z面でみた磁力線の基本パターンは、図3の
C,Dで示される通りで、プローブアンテナを図
2,3に示すように、ほぼ天面の対角線上で角か
ら対角線長の1/4の位置に天面から加熱室2内
に下向に配置すれば、TE201、TE102いずれのモ
ードも周波数さえ一致すれば励振できる。
Figure 3 is a plan view of the heating chamber viewed from above (X-
This shows the basic direction of the magnetic field lines of the above mode in the Z plane). Now width W of heating chamber 2 = 360mm, depth D
= 370 mm (in the case of the present invention, the electric field is uniform in the height direction)
Since we are considering TE201 and TE102 modes, H is optional) With no load in heating chamber 2, this heating chamber 2 has a frequency of (201) = 926MHz (1, 0,
2) Has a close resonant frequency of =912MHz
It can excite modes TE201 and TE102. This is because the width W and depth D are different, so W=
This is because the resonant frequencies of TE201 and TE102, which had degenerated into a single resonant frequency in the case of the square D, have separated. Figure 4 shows the relationship between W, D, and resonance frequency in more detail, where W = 350 mm and 355 mm.
The resonant frequencies are plotted when D is changed for each case of mm and 360 mm, and it can be seen that by appropriately combining D and W, which are not equal to each other, it is possible to set any two resonant frequencies that are close to each other. . On the other hand, the basic patterns of the magnetic lines of force for the two modes TE201 and TE102 as seen in the X-Z plane are as shown in C and D in Figure 3. If it is placed diagonally from the corner at a position 1/4 of the diagonal length from the top surface downward into the heating chamber 2, both the TE201 and TE102 modes can be excited as long as their frequencies match.

さて負荷量に対する共振周波数の変化は、使用
する負荷(被加熱物4)の成分や形状、あるいは
加熱室の高さ等によつても変化するが、以上説明
の本発明の構成に従つて、近接した2つの共振周
波数(201)と(102)を負荷条件に従つて適当
に設定することにより、915MHz帯の単一モード
では実現できない広い範囲でのインピーダンス整
合が実現できるものである。
Now, the change in the resonance frequency with respect to the load amount varies depending on the components and shape of the load (heated object 4) used, the height of the heating chamber, etc., but according to the configuration of the present invention described above, By appropriately setting two adjacent resonant frequencies (201) and (102) according to the load conditions, impedance matching can be achieved over a wide range that cannot be achieved with a single mode in the 915 MHz band.

従つて、915MHz帯を利用した民生用の高周波
加熱装置において、広範囲の負荷に対して効率の
良い加熱室が実現される。
Therefore, in a consumer high-frequency heating device that uses the 915MHz band, a heating chamber that is efficient for a wide range of loads can be realized.

又加熱室2へエネルギーがは入らないというこ
とは、発振器への反射の多いことを意味するが、
特に半導体素子を用いた装置は反射に弱いから、
効率の向上はそのまま信頼性の向上につながるこ
とになる。
Also, the fact that no energy enters the heating chamber 2 means that there is a lot of energy reflected back to the oscillator.
In particular, devices using semiconductor elements are susceptible to reflection, so
Improving efficiency will directly lead to improved reliability.

発明の効果 以上の説明の通り、本発明の構成によれば
915MHz帯という低い周波数帯を使用しながら加
熱室の奥行Dと幅Wの寸法を異ならせることによ
り、W=Dの正方形の場合に縮退して単一の共振
周波数となつていたTE201とTE102の共振周波数
を分離し、近接する任意の2つの共振周波数を設
定することができる。これにより負荷量の違いに
よつて生じる共振周波数の変化に対して、単一モ
ードでは実現できない広範囲でのインピーダンス
整合が実現できる。さらに、アンテナプローブの
位置を加熱室の角近くに配置できるため、加熱室
の実効有効体積が大きく取れるという効果もあ
る。
Effects of the Invention As explained above, according to the configuration of the present invention
By varying the depth D and width W of the heating chamber while using the low frequency band of 915 MHz, TE 201 and TE, which had degenerated to a single resonant frequency in the case of a square where W = D, were created. The 102 resonant frequencies can be separated and any two adjacent resonant frequencies can be set. This makes it possible to achieve impedance matching over a wide range, which cannot be achieved with a single mode, in response to changes in the resonant frequency caused by differences in load. Furthermore, since the antenna probe can be placed near the corner of the heating chamber, there is also the effect that the effective volume of the heating chamber can be increased.

又上記の説明において使用周波数帯として、I.
S.M.周波数帯の1つである915MHz帯を考えた
が、この周波数帯は各国の電波利用状況により法
律的に割当てられたもので、一般にその帯域巾と
して、915±13MHzを採用している場合が多い。
In addition, in the above explanation, the frequency band used is I.
We considered the 915MHz band, which is one of the SM frequency bands, but this frequency band is legally allocated depending on the radio wave usage status of each country, and generally the band width is 915±13MHz. many.

本発明において、915MHz帯と特に指定してい
るのは、こうした法律上の背景によるもので、純
技術的には915MHzのI.S.M.周波数帯から離れた
915±100MHz程度の範囲まで本特許の構成方法は
適用できる。従つて一部これ(915MHz)と多少
異なる周波数帯域を採用している国もあるが、こ
うした周波数帯でも全く同様に本発明が成り立つ
ことは言うまでもない。
In the present invention, the reason why the 915MHz band is specifically designated is due to this legal background, and technically it is far from the 915MHz ISM frequency band.
The configuration method of this patent can be applied to a range of approximately 915±100MHz. Therefore, although some countries have adopted a frequency band that is slightly different from this (915MHz), it goes without saying that the present invention can be applied in exactly the same way even in such a frequency band.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高周波加熱装置の基本構成図、
第2図は本発明の一実施例である高周波加熱装置
の加熱室における励振される2つのモードTE201
とTE102の電界強度分布図、第3図は第2図の加
熱室を上から見た平面図(X−Z面)での励振さ
れる2モードTE201及びTE102の磁力線の基本パ
ターン図、第4図は同加熱室の巾Wと奥行Dを変
えたときのTE201及びTE102両モードの共振周波
数の特性図である。 1……高周波発振源、2……加熱室、3……結
合部(プローブアンテナ)、4……被加熱物。
Figure 1 is a basic configuration diagram of a conventional high-frequency heating device.
Figure 2 shows two excited modes TE201 in the heating chamber of a high-frequency heating device that is an embodiment of the present invention.
Fig. 3 is a diagram of the electric field strength distribution of TE102 and TE102; Fig. 3 is a diagram of the basic pattern of the magnetic field lines of two excited modes TE201 and TE102 in a plan view (X-Z plane) of the heating chamber shown in Fig. 2; The figure is a characteristic diagram of the resonance frequency of both the TE201 and TE102 modes when the width W and depth D of the heating chamber are changed. DESCRIPTION OF SYMBOLS 1... High frequency oscillation source, 2... Heating chamber, 3... Coupling part (probe antenna), 4... Heated object.

Claims (1)

【特許請求の範囲】 1 I.S.M.周波数帯の1つである915MHz帯を使
用するとともに、前記周波数帯で高さ方向に定在
波を有しないTE201及びTE102モードを発生可能
とし、かつ前記2つのモードTE201とTE102の共
振周波数が異なるように奥行と巾の寸法を異なら
せた加熱室を設けてなる高周波加熱装置。 2 TE201とTE102の両モードを同時に励振可能
な励振部を設けた特許請求の範囲第1項記載の高
周波加熱装置。
[Claims] 1. The 915 MHz band, which is one of the ISM frequency bands, is used, and the TE201 and TE102 modes that do not have standing waves in the height direction can be generated in the frequency band, and the two modes A high-frequency heating device that has heating chambers with different depth and width so that the resonance frequencies of TE201 and TE102 are different. 2. The high-frequency heating device according to claim 1, which is provided with an excitation section that can simultaneously excite both TE201 and TE102 modes.
JP23272482A 1982-12-28 1982-12-28 High frequency heater Granted JPS59123188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23272482A JPS59123188A (en) 1982-12-28 1982-12-28 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23272482A JPS59123188A (en) 1982-12-28 1982-12-28 High frequency heater

Publications (2)

Publication Number Publication Date
JPS59123188A JPS59123188A (en) 1984-07-16
JPS643039B2 true JPS643039B2 (en) 1989-01-19

Family

ID=16943788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23272482A Granted JPS59123188A (en) 1982-12-28 1982-12-28 High frequency heater

Country Status (1)

Country Link
JP (1) JPS59123188A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3900162C1 (en) * 1989-01-04 1990-03-08 Shibata Needle Mfg. Co., Ltd., Nara, Jp Latch needle for knitting machines
JP2016053341A (en) * 2014-09-04 2016-04-14 株式会社東芝 Exhaust emission control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798999A (en) * 1980-12-11 1982-06-19 Matsushita Electric Ind Co Ltd High frequency heater

Also Published As

Publication number Publication date
JPS59123188A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
US4165454A (en) Microwave oven
US3931587A (en) Microwave power accumulator
JPS63225493A (en) Microwave oven
US5559521A (en) Antennas with means for blocking current in ground planes
JPS643039B2 (en)
US2586754A (en) Radio-frequency system
JP3995980B2 (en) Slot radiating element
US20090166354A1 (en) Microwave Heating Applicator
JPS6091A (en) High frequency heater
JPS59228395A (en) High frequency heater
Hirokawa et al. Analysis of an untilted wire-excited slot in the narrow wall of a rectangular waveguide by including the actual external structure
JPS59134593A (en) High frequency heater
JPS60143593A (en) High frequency heater
Mayboroda et al. A Leaky-wave antenna on the basis of an inverted dielectric waveguide
US4266228A (en) Circularly polarized crossed slot waveguide antenna array
US4025881A (en) Microwave harmonic power conversion apparatus
JPS6346551B2 (en)
JP2573768B2 (en) Leaky wave dielectric line
JPS6126844B2 (en)
JPS6259435B2 (en)
JPH02155194A (en) Microwave oven
JP3269683B2 (en) Leak wave NRD guide
SU1573486A1 (en) Microstrip active antenna
JPS6092A (en) High frequency heater
JPS6344276B2 (en)