JPS6092A - High frequency heater - Google Patents

High frequency heater

Info

Publication number
JPS6092A
JPS6092A JP10708483A JP10708483A JPS6092A JP S6092 A JPS6092 A JP S6092A JP 10708483 A JP10708483 A JP 10708483A JP 10708483 A JP10708483 A JP 10708483A JP S6092 A JPS6092 A JP S6092A
Authority
JP
Japan
Prior art keywords
frequency
antenna
excited
modes
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10708483A
Other languages
Japanese (ja)
Inventor
小川 守正
公明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10708483A priority Critical patent/JPS6092A/en
Publication of JPS6092A publication Critical patent/JPS6092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は1.S、M(工業、科学、医事用)周波数帯の
1つである915MH2帯を発振周波数とする高周波発
生装置を用い、特に加熱室が波長(約330a ) の
2倍以内程度の民生用の高周波加熱装置にかかり、高周
波発生装置で発生した電波を加熱室へ導くアンテナの構
成の改善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is characterized by 1. Uses a high frequency generator whose oscillation frequency is the 915MH2 band, which is one of the S, M (industrial, scientific, and medical) frequency bands, and is especially suitable for consumer use where the heating chamber is within twice the wavelength (approximately 330a). This invention relates to an improvement in the configuration of an antenna that is applied to a heating device and guides radio waves generated by a high-frequency generator to a heating chamber.

従来例の構成とその問題点 近年トランジスタ技術の進歩に伴い、従来広く使用され
て来たマグネトロンに代り高周波発生装置をトランジス
タ等の固体能動素子で構成し、低電圧化、軽量小型化、
長寿命化をはかることが検討されている。しかしながら
トランジスタの能力は一般に使用周波数fの1乗から2
乗に比例して低下すると言われ、従来、民生用高周波加
熱装置に広く使われて来た周波数2450MH2で大出
力。
Conventional configurations and their problems In recent years, with advances in transistor technology, high-frequency generators have been constructed with solid-state active elements such as transistors instead of the conventionally widely used magnetrons, resulting in lower voltage, lighter weight, and smaller size.
Efforts to extend the lifespan are being considered. However, the ability of a transistor generally ranges from the 1st power to the 2nd power of the operating frequency f.
It is said that the power decreases in proportion to the power of the product, and the output is high at the frequency of 2450MH2, which has been widely used in consumer high-frequency heating devices.

高効率のトランジスタを作ることは困難が太きい。It is extremely difficult to create highly efficient transistors.

従ってトランジスタ化を図るには、もう1つの1、S、
M周波数帯である915MHz帯という低い周波数を使
わざるを得ない。
Therefore, in order to make it into a transistor, another 1, S,
There is no choice but to use a low frequency of 915 MHz, which is the M frequency band.

しかし915MHzという周波数を使用すると、波長が
2450MHzの場合の約3倍になるということから2
450MHzと異なった問題が生じる。
However, if a frequency of 915 MHz is used, the wavelength will be approximately three times that of 2450 MHz, so 2
A different problem arises at 450 MHz.

第1図はこの問題点を説明するだめのもので、今加熱室
2が直方体で各辺の長さをそれぞれW、D、Hとしたと
き、加熱室2の共振周波数fは、f−(1/ff)x 
(m/W)2+(n/D)2+(s扉・・・・・・・・
・式1 で表わされる。ここでε、μは加熱室2内の媒体の誘電
率と透磁率2m、n、S、は励振されるモードの次数を
示す正又は零の整数である。
FIG. 1 is only meant to explain this problem. If the heating chamber 2 is a rectangular parallelepiped and the lengths of each side are W, D, and H, the resonant frequency f of the heating chamber 2 is f-( 1/ff)x
(m/W)2+(n/D)2+(s door...
・Represented by Formula 1. Here, ε and μ are the dielectric constant and magnetic permeability of the medium in the heating chamber 2. m, n, and S are positive or zero integers indicating the order of the excited mode.

今例えばW= 366”、 D = 365mm、 H
: 240”という寸法の加熱室2の場合について考え
る。
For example, W = 366”, D = 365mm, H
: Consider the case of a heating chamber 2 with dimensions of 240".

2450 MHZを中心に±5%の同波数範囲内で共振
可能なモードの数は27個あるのに対し、915M H
z の場合、同じ±5%の範囲内で共振可能なモードは
、次数が(m、n、5)=(2,0,1)、と(1,0
,2)の2つだけで、これらは一般にTE 、TE20
1 102 と呼ばれるモードである。従って同じ寸法の加熱室2で
あっても使用する周波数が2460M Hzであれば、
非常に多くの共振モードがあるため、1つの励振アンテ
ナにより多数のモードが励振されるのに対し、915M
Hzの場合、例えば第1図に示すように加熱室2の上面
の左半面の略中夫にプローブアンテナ3を突き出して励
振すれば、TE2o1のみが強く励振される。
There are 27 modes that can resonate within the same wave number range of ±5% around 2450 MHZ, whereas 915 MHZ
z, modes that can resonate within the same ±5% range have orders of (m, n, 5) = (2, 0, 1) and (1, 0
, 2), and these are generally TE , TE20
This is a mode called 1 102. Therefore, even if the heating chamber 2 has the same dimensions, if the frequency used is 2460 MHz,
Because there are so many resonant modes, a single excitation antenna can excite many modes, whereas the 915M
In the case of Hz, for example, as shown in FIG. 1, if the probe antenna 3 is protruded from approximately the center of the left half of the upper surface of the heating chamber 2 and excited, only TE2o1 is strongly excited.

上述のように、915MHz帯で共振周波数が極端に少
ないということは具体的には次のような問題を生じるこ
とになる。
As mentioned above, the fact that the resonance frequency is extremely low in the 915 MHz band specifically causes the following problems.

まず第1は加熱分布の問題である。すなわち先の例でT
E2o1のみが励振された場合を考えると、その電界の
電力密度分布は第2図に実線で示すようになる。これは
被加熱物の無い場合の分布で、被加熱物のある場合の分
布はかなり異なったものになる場合が多いが、いずれに
せよ加熱分布はモードパターンに依存しており、励振さ
れるのが基本的にTE2゜−モード−っであるため、加
熱分布が均一にならないという問題があった。
The first problem is heating distribution. That is, in the previous example, T
Considering the case where only E2o1 is excited, the power density distribution of the electric field becomes as shown by the solid line in FIG. 2. This is the distribution when there is no object to be heated, and the distribution when there is an object to be heated is often quite different, but in any case, the heating distribution depends on the mode pattern, and the excited Since this is basically the TE2° mode, there is a problem in that the heating distribution is not uniform.

第2は複数の高周波発生装置による電波出力の合成の問
題である。すなわち、高周波発生装置1台の出力で希望
する加熱出力の得られない場合、2つ以上の高周波発生
装置の出力をそれぞれ対応する別々のアンテナで加熱室
へ給電し、合成し、2倍、3倍の出力を得るという手段
は、従来2450MHz 帯で高周波発生装置としてマ
グネトロンを使用した場合、ごく一般的に利用されて来
た技術である。トランジスタにより構成された高周波発
生装置の場合、トランジスタの大電力化がマグネトロン
以上眞困難であるところから、上記のような電力合成は
より必要となるところである。
The second problem is the synthesis of radio wave outputs from a plurality of high frequency generators. In other words, if the desired heating output cannot be obtained with the output of one high-frequency generator, the outputs of two or more high-frequency generators are fed to the heating chamber with their corresponding separate antennas, combined, and doubled or tripled. The method of obtaining twice the output is a technique that has been very commonly used when a magnetron is used as a high frequency generator in the 2450 MHz band. In the case of a high-frequency generating device constituted by transistors, it is truly difficult to increase the power of the transistors more than that of a magnetron, so the above-described power combination becomes even more necessary.

しかし従来このような手段が特別な配慮なしに成立した
のは、2450 M Hzの場合、複数のアンテナで励
振しても、各々のアンテナで励振されるモード数が非常
に多いので、結果的に各々のアンテナで励振されるモー
ド間で特定の干渉条件が成立しないことが大きな理由で
ある。すなわち複数の発振源とアンテナで励振しても、
互いに独立した給電系と考えられる状態になるのである
However, the reason why such a method was established without special consideration in the past is that in the case of 2450 MHz, even if multiple antennas are used to excite, the number of modes excited by each antenna is extremely large, and as a result, the number of modes excited by each antenna is very large. A major reason for this is that specific interference conditions do not hold between the modes excited by each antenna. In other words, even if excited with multiple oscillation sources and antennas,
This results in a state where they can be considered as mutually independent power supply systems.

これに対し、915MH2帯の周波数の場合励振される
モード数が極端に少ないということが本質的な差となっ
て表われる。例えば、2つの高周波発生装置とそれに対
応する2つのアンテナで第3図a、bに示す構成を考え
る。この構成によれば、アンテナ3a、3bがそれぞれ
TE2゜1モードの2つの電界最大点に位置しているの
で、TE2o1が効率よく励振されるかに思われる。し
かしアンテナ3a、3bを含む断面での電界強度分布は
電界の方向も含めて示すと第3図すで示されるものにな
るから、TE2゜1が効率よく励振されるには、アンテ
ナ3a、3bに流れる励振電流の位相差が励振点で常に
1800になっている必要のあることがわかる。それに
はまず2つの高周波発生装置の発振位相が相互に固定さ
れていることが必要で、さらにその上で両者の位相差を
適当に設定しなければならない。従って従来の2450
MHz帯でのマグネトロンの場合のような電力合成の手
段を取ることはできない。
On the other hand, in the case of the frequency of the 915 MH2 band, the essential difference appears to be that the number of excited modes is extremely small. For example, consider the configuration shown in FIGS. 3a and 3b with two high-frequency generators and two corresponding antennas. According to this configuration, since the antennas 3a and 3b are located at the two maximum electric field points of the TE2°1 mode, it appears that TE2o1 is efficiently excited. However, since the electric field strength distribution in the cross section including the antennas 3a and 3b, including the direction of the electric field, becomes as shown in Figure 3, in order for TE2゜1 to be excited efficiently, the antennas 3a, 3b It can be seen that the phase difference between the excitation currents flowing in the excitation current must always be 1800 at the excitation point. To do this, it is first necessary that the oscillation phases of the two high-frequency generators be fixed to each other, and then the phase difference between the two must be set appropriately. Therefore, the conventional 2450
It is not possible to use power combining methods as in the case of magnetrons in the MHz band.

以上説明のとおり、915MHz帯を使用した高周波加
熱装置の場合、加熱室で励振されるモードが極端に少な
いために、加熱むらが生じたり、あるいは複数の高周波
発生装置の電力の合成が困難になるといった問題があっ
た。
As explained above, in the case of high-frequency heating devices that use the 915 MHz band, there are extremely few modes excited in the heating chamber, which may cause uneven heating or make it difficult to combine the power of multiple high-frequency generators. There was such a problem.

発明の目的 本発明はかかる従来の問題点を解消するもので、915
MH2帯を使用した高周波加熱装置での、加熱むらの解
消とさらには複数の高周波発生器による簡便な電力合成
手段を提供することを目前としたものである。
OBJECTS OF THE INVENTION The present invention solves the problems of the prior art.
The aim is to eliminate heating unevenness in a high-frequency heating device using the MH2 band, and to provide a simple means for combining power using a plurality of high-frequency generators.

発明の構成 上記目的を達成するため、本発明は高周波発生装置で発
生した高周波を加熱室へ導くアンテナを2つ以上設け、
それぞれが異なるモードを励振する構成になっている。
Structure of the Invention In order to achieve the above object, the present invention provides two or more antennas that guide high frequency waves generated by a high frequency generator to a heating chamber,
Each is configured to excite different modes.

そして、異なるモードが励振される結果、それぞれのモ
ードの電界分布が重畳されて加熱分布が均一化される。
As a result of the different modes being excited, the electric field distributions of the respective modes are superimposed and the heating distribution is made uniform.

上記構成に加えさらに個々のアンテナをそれぞれ別々の
高周波発生装置で給電する構成とすれば、それぞれのア
ンテナの励振するモードが異なっているだめ、互いに独
立して作用し、従って相互の発振位相差等にかかわらず
、個々の電力が合成されることになる。
In addition to the above configuration, if a configuration is adopted in which each antenna is powered by a separate high-frequency generator, each antenna has a different excitation mode, so they act independently of each other, and therefore the mutual oscillation phase difference etc. Regardless, the individual powers will be combined.

実施例の説明 以下本発明の一実施例を第4図a、b、aを用いて説明
する。第4図は加熱室2内の電磁界分布と2つのアンテ
ナ3a、3bの位置を示している。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 4a, b, and a. FIG. 4 shows the electromagnetic field distribution inside the heating chamber 2 and the positions of the two antennas 3a and 3b.

平面図における破線は磁力線の基本的な方向を示してお
り、各断面図における実線は電界強度分布をその極性も
含めて示している。本実施例の場合、加熱室2はW:D
、=365”、H=240” という従来例と同様の寸
法でTE TE という22011 102 つのモードが励振可能である。これに対し電波給電は2
つの励振用アンテナ3a、3bを2つのモードTE T
E の電界最大点近傍に設けてお201’ 102 す、アンテナ3aばTE2゜1を、アンテナ3bはTE
 をそれぞれ励振する構成になっている。
Broken lines in the plan view indicate the basic direction of magnetic lines of force, and solid lines in each cross-sectional view indicate the electric field strength distribution including its polarity. In the case of this embodiment, the heating chamber 2 is W:D
, = 365'', H = 240'', which are the same dimensions as the conventional example, and 22011102 modes called TE can be excited. On the other hand, radio wave feeding is 2
The two excitation antennas 3a and 3b are connected to two modes TE T
The antenna 3a is provided near the maximum electric field point of E, and the antenna 3a is provided with TE2゜1, and the antenna 3b is provided with TE.
It is configured to excite each of them.

02 TE2o1.TE1o2モードの電界の電力密度分布は
第2図にそれぞれ実線及び破線で示されるようなもので
ある。この分布図かられかるように、TE2o1モード
のみ一つ励振するのに対し、本実施例のように2つのア
ンテナでTE とTEl。201 の両モードを励振すれば、両モードの加熱パターンが重
畳されるので加熱分布は大巾に改善される。
02 TE2o1. The power density distribution of the electric field in the TE1o2 mode is as shown in FIG. 2 by solid lines and broken lines, respectively. As can be seen from this distribution diagram, only one TE2o1 mode is excited, whereas in this example two antennas are used to excite TE and TEl. If both modes of 201 are excited, the heating patterns of both modes will be superimposed, and the heating distribution will be greatly improved.

ここで注意すべきことは、各断面図から理解できるよう
にアンテナ3bはTE モードの電界01 零の位置にあり、アンテナ3aはTEl。2モードの電
界零の位置にあるため、アンテナ3a、3bがそれぞれ
TE TE を励振することはなく、102グ 201 従って基本的に両モードは互いに独立に励振される。従
ってアンテナ3a、3bへの高周波電力については一つ
の高周波発生装置の電力を2つに分割して供給しても良
いのは当然として、各々別々の高周波発生装置を2つ使
って給電しても良い。後者の場合は、2つの高周波発生
装置の電力が合成されるので、大電力化が困難なトラン
ジスタを利用した高周波発生装置を用いた場合等の大電
力化に有効な手段となる。
What should be noted here is that, as can be understood from each cross-sectional view, the antenna 3b is at the zero position of the electric field 01 in the TE mode, and the antenna 3a is at the position where the electric field is 01 in the TE mode. Since the antennas 3a and 3b are at the zero electric field position of the two modes, each of the antennas 3a and 3b does not excite TE TE , and therefore both modes are basically excited independently of each other. Therefore, regarding the high-frequency power to the antennas 3a and 3b, it goes without saying that the power of one high-frequency generator may be divided into two and supplied, but it is also possible to supply power using two separate high-frequency generators for each. good. In the latter case, the power of the two high-frequency generators is combined, so it is an effective means for increasing the power when using a high-frequency generator using transistors, which is difficult to increase the power.

父上記の実施例ではTE TE という22011 1
02 つのモードを同時にかつ独立に励振する場合のものであ
るが、当然性の加熱室寸法で他の励振モードの場合にも
同様の構成が可能で、例えばTE4゜1とTE という
2つのモードの組み合せが考え04 られる。さらに3つ以上のアンテナによる励振も可能で
、上記の実施例から最もわかり易い例としてはW=D=
H=36s”とすればTEl。2.TE2゜1゜TE 
TE TE TE という独立 120’ 210+ 0121 021した6つのモー
ドが励振可能で、加熱室側面も含めて最大6コのアンテ
ナで励振可能である。
Father In the above example TE TE 22011 1
Although this is a case where two modes are excited simultaneously and independently, a similar configuration is possible for other excitation modes with the natural heating chamber dimensions.For example, when two modes, TE4゜1 and TE, Combinations can be considered. Furthermore, excitation using three or more antennas is also possible, and the easiest example from the above example is W=D=
If H=36s”, TEL.2.TE2゜1゜TE
Six independent modes called TE TE TE can be excited, and can be excited by up to six antennas including the side of the heating chamber.

又上述の例では1つのアンテナにそれぞれ対応する1つ
の給電点を有する場合の実施例についてのみ述べだが、
例えば、給電点は1つで、電波放射体となる複数のアン
テナ素子を連結した多素子のアンテナを使用し、個々の
アンテナ素子により異なるモードを励振させるという構
成も可能であることは言うまでもない。
Furthermore, in the above example, only an embodiment in which one feeding point corresponding to one antenna is provided is described.
For example, it goes without saying that it is also possible to use a multi-element antenna in which there is one feeding point and a plurality of antenna elements that serve as radio wave radiators are connected, and different modes are excited by each antenna element.

発明の詳細 な説明のとおり、2つ以上のアンテナで相異なるモード
を励振するという本発明の手段によれば、一つのアンテ
ナで励振すると、加熱分布が励振される数少ないモード
パターンで決まるだめ、加熱分布が不均一となるという
従来の問題を大巾に改善できる他、各々のアンテナにそ
れぞれ別々の高周波発生装置で給電しても相互の干渉が
少なく、従って出力も各々の高周波発生装置の和となり
、簡単に高周波加熱装置の大電力化をはかることができ
る。
As described in the detailed description of the invention, according to the means of the present invention in which two or more antennas excite different modes, when one antenna is excited, the heating distribution is determined by a few excited mode patterns; In addition to greatly improving the conventional problem of uneven distribution, even if each antenna is fed with a separate high-frequency generator, there is little mutual interference, and the output is the sum of each high-frequency generator. , it is possible to easily increase the power of the high-frequency heating device.

又たとえ一つの高周波発生装置の出力を分配して給電し
た場合も、アンテナ相互の励振位相を調整する必要がな
く、簡便な構成が可能となる。
Furthermore, even if the output of one high-frequency generator is distributed and fed, there is no need to adjust the excitation phases of the antennas, and a simple configuration is possible.

父上記の説明において使用周波数帯として、1、S、M
周波数帯の1つである915MHz帯を考えたが、この
周波数帯は各国の電波利用状況により法律的に割当てら
れたもので、一般にその帯域中として916J=13 
MHzを採用している場合が多い。
In the above explanation, the frequency bands used are 1, S, M.
We considered the 915MHz band, which is one of the frequency bands, but this frequency band is legally allocated depending on the radio wave usage situation in each country, and generally 916J = 13
MHz is often used.

本発明において、916MHz帯と特に指定しているの
は、こうした法律上の背景によるもので、純技術的には
915MHzの1.S、M周波数帯から離れだ915丑
100 M Hz程度の範囲まで本発明の構成は適用で
きる。従って一部これ(915MHz )と多少異なる
周波数帯域を採用している国もあるが、こうした周波数
帯でも全く同様に本M−tpf3が成り立つことは言う
までもない。
In the present invention, the reason why the 916 MHz band is specifically specified is due to this legal background, and technically it is 915 MHz band. The configuration of the present invention can be applied to a range of about 915 to 100 MHz, which is far from the S and M frequency bands. Therefore, although some countries have adopted a frequency band that is somewhat different from this (915 MHz), it goes without saying that the present M-tpf3 holds true in exactly the same way even in such frequency bands.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高周波加熱装置の構成図、第2図は本発
明の一実施例の高周波加熱装置を説明するだめの加熱室
内の電界の電力密度分布図、第3図aは従来の2アンテ
ナ励振手段を示すだめの電磁界分布図、第3図すは第3
図aのA−8線断面図、第4図aは本発明の高周波加熱
装置の電磁界分布図、第4図すは第4図aのB−B’線
断面図、第4図Cは第4図aのA、A4線断面図である
。 1・・・・高周波発生装置、2−・・・加熱室、3・・
アンテナ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1 第3図 α
Fig. 1 is a configuration diagram of a conventional high-frequency heating device, Fig. 2 is a power density distribution diagram of an electric field in a heating chamber for explaining a high-frequency heating device according to an embodiment of the present invention, and Fig. 3a is a diagram of a conventional high-frequency heating device. Figure 3 shows the electromagnetic field distribution diagram showing the antenna excitation means.
FIG. 4a is a sectional view taken along the line A-8 in FIG. It is a sectional view taken along line A and A4 in FIG. 4a. 1... High frequency generator, 2-... Heating chamber, 3...
antenna. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Figure 3 α

Claims (2)

【特許請求の範囲】[Claims] (1)高周波発生装置と、被加熱物を収納する加熱室と
を備え、前記高周波発生装置で発生した高周波を少くと
も2つのアンテナで前記加熱室へ放射し、それぞれのア
ンテナで異なるモードを励振させた高周波加熱装置。
(1) Equipped with a high frequency generator and a heating chamber that stores an object to be heated, radiates the high frequency generated by the high frequency generator to the heating chamber using at least two antennas, and excites different modes with each antenna. high frequency heating device.
(2)各々のアンテナに給電する少くとも2つの高周波
発生装置を備えだ特許請求の範囲第1項記載の高周波加
熱装置。
(2) The high-frequency heating device according to claim 1, comprising at least two high-frequency generators that feed power to each antenna.
JP10708483A 1983-06-15 1983-06-15 High frequency heater Pending JPS6092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10708483A JPS6092A (en) 1983-06-15 1983-06-15 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10708483A JPS6092A (en) 1983-06-15 1983-06-15 High frequency heater

Publications (1)

Publication Number Publication Date
JPS6092A true JPS6092A (en) 1985-01-05

Family

ID=14450067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10708483A Pending JPS6092A (en) 1983-06-15 1983-06-15 High frequency heater

Country Status (1)

Country Link
JP (1) JPS6092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662301A (en) * 1985-10-28 1987-05-05 Wolfe Henry S Floating platform for decorative articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662301A (en) * 1985-10-28 1987-05-05 Wolfe Henry S Floating platform for decorative articles

Similar Documents

Publication Publication Date Title
US3571644A (en) High frequency oscillator for inductive heating
Condon Forced oscillations in cavity resonators
WO1999014784A3 (en) Vacuum plasma processor having coil with added conducting segments to its peripheral part
GB2215524B (en) Radio antennas
US4240010A (en) Electrodeless fluorescent light source having reduced far field electromagnetic radiation levels
KR20060009408A (en) Plasma processor for large workpieces
JPS6171702A (en) Small-sized antenna
HUP0100153A2 (en) Inductively coupled electrodeless lamp, excitation coil and integrated lamp-mead for it, oscillator, double-walled lamp body, method for producing of double-walled lamp body and lamp device
US4400822A (en) X-Ray diagnostic generator comprising two high voltage transformers feeding the X-ray tube
JPS6092A (en) High frequency heater
JPS6091A (en) High frequency heater
JP2003032027A (en) Slot radiating element
US3543136A (en) High voltage direct current generator
JPH0628321B2 (en) Circularly polarized antenna
JPS643039B2 (en)
JP3037959B2 (en) Antenna device
US3317839A (en) Closed-circular annular tank circuit for spark gap transmitter
CN111183708A (en) Microwave processing apparatus
JPS59228395A (en) High frequency heater
US2314083A (en) Low capacity filament transformer system
Penkin et al. Dual-Band Combined Vibrator-Slot Radiating Structures
WO2023074704A1 (en) Microwave heating device
JPH06232616A (en) Loop antenna
JPH03235505A (en) Circularly polarized wave slot antenna
GB1562976A (en) Diode and dielectric resonator microwave oscillator