JPS634642B2 - - Google Patents

Info

Publication number
JPS634642B2
JPS634642B2 JP5161081A JP5161081A JPS634642B2 JP S634642 B2 JPS634642 B2 JP S634642B2 JP 5161081 A JP5161081 A JP 5161081A JP 5161081 A JP5161081 A JP 5161081A JP S634642 B2 JPS634642 B2 JP S634642B2
Authority
JP
Japan
Prior art keywords
screw
signal
thread
measuring
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5161081A
Other languages
Japanese (ja)
Other versions
JPS57165705A (en
Inventor
Takeo Yamada
Mitsuaki Uesugi
Masaru Okamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP5161081A priority Critical patent/JPS57165705A/en
Publication of JPS57165705A publication Critical patent/JPS57165705A/en
Publication of JPS634642B2 publication Critical patent/JPS634642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2425Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures of screw-threads

Description

【発明の詳細な説明】 この発明は、一端部にネジが形成されたネジ部
材の検査装置に関し、非接触で、ネジ山の頂部に
黒皮が付着した不完全ネジ部の有無を検出し、ま
たは、ネジ山に黒皮が付着していない完全ネジ部
の長さ(完全山長さ)、不完全ネジ部の長さ(不
完全山長さ)、およびネジ全長の少なくとも1つ
を求めることができるネジ部材の検査装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inspection device for a threaded member having a thread formed at one end, and detects, in a non-contact manner, the presence or absence of an incompletely threaded part with black skin attached to the top of the thread. Or, find at least one of the length of the complete thread without black skin attached to the thread (complete thread length), the length of the incomplete thread (incomplete thread length), and the total length of the thread. The present invention relates to an inspection device for screw members that can be used to inspect screw members.

従来、例えば、パイプの端部に形成されたパイ
プネジ部の黒皮検出及び完全山長さ測長等の検査
は、検査員の目視に頼つていたため以下のような
問題があつた。
Conventionally, for example, inspections such as detecting black scale and measuring the complete thread length of a pipe thread formed at the end of a pipe have relied on visual inspection by an inspector, which has caused the following problems.

(1) 黒皮残量の少ないネジ山に対して黒皮を見落
す可能性があり、不完全ネジ山を完全ネジ山と
誤判定することが多々ある。
(1) There is a possibility of overlooking the black skin on a screw thread with a small amount of black skin remaining, and incomplete threads are often misjudged as complete threads.

(2) 注意力を要する単純作業である為検査員の疲
労度は大きく、長時間にわたつて作業を継続で
きない。
(2) Since the work is simple and requires attentiveness, inspectors are highly fatigued and cannot continue working for long periods of time.

(3) 黒皮検出及び完全山長さ測長を厳密におこな
つた場合非常に多くの時間を要する。
(3) It takes a very long time to strictly perform black scale detection and complete peak length measurement.

以上のような問題点を解決すべく次のようなネ
ジ部材のネジ検査装置が提案されている。
In order to solve the above problems, the following screw inspection device for screw members has been proposed.

(a) 特公昭53−45708号公報に記載されたネジの
黒皮検出装置: この装置の内容は次の通りである。即ち、ネ
ジ軸方向に移動可能でネジ周方向に回転する移
動リングに黒皮検出センサー(スポツト光投光
器及び受光装置)と、黒皮検出センサーが正し
くネジ山の頂部であることを確認する測定子と
が固定されている。測定に先立つてまず移動リ
ングを測定子がネジフランクに接するまで移動
させる。測定子がネジフランクに接した時スポ
ツト光投光器及び受光装置はネジ山頂部にセツ
トされ、その反射率を測定することができる。
次に測定を開始すると移動リングは回転しなが
らネジ山に沿つて進み、同時に黒皮の有無をス
ポツト光投光器及び受光装置を用いて反射光量
の違いにより検出する。この時初めて黒皮を検
出した位置を完全ネジ部と不完全ネジ部の境界
位置と考え、その時の移動リング移動量と別途
接触子によつて検出するネジ端面位置とから完
全山長さを求める。
(a) Screw black skin detection device described in Japanese Patent Publication No. 53-45708: The contents of this device are as follows. That is, a movable ring that is movable in the direction of the screw axis and rotates in the circumferential direction of the screw is equipped with a black skin detection sensor (spot light projector and light receiving device), and a measuring element that confirms that the black skin detection sensor is correctly located at the top of the screw thread. is fixed. Prior to measurement, the moving ring is first moved until the measuring head touches the screw flank. When the probe contacts the screw flank, the spot light projector and light receiving device are set on the top of the screw thread, and the reflectance can be measured.
Next, when the measurement is started, the moving ring moves along the screw thread while rotating, and at the same time, the presence or absence of black skin is detected by the difference in the amount of reflected light using a spot light projector and a light receiving device. At this time, the position where the black crust is detected for the first time is considered to be the boundary position between the fully threaded part and the incompletely threaded part, and the complete thread length is calculated from the movement of the moving ring at that time and the thread end face position detected separately by a contactor. .

しかしこの公報に記載のネジの黒皮検出装置
の問題点として以下の事が挙げられる。
However, the following problems are listed as problems with the black scale detection device for screws described in this publication.

(1) 黒皮の検出をスポツト状のセンサーを用い
て行なつており、完全山長さ測長に際しては
黒皮検出センサーをネジに沿つて回転させな
がら全てのネジ山を倣う必要があり、従つて
測定に要する時間が長い。
(1) Black skin is detected using a spot-shaped sensor, and when measuring the complete thread length, it is necessary to trace all the threads while rotating the black skin detection sensor along the thread. Therefore, the time required for measurement is long.

(2) 黒皮検出センサー及び倣いセンサー(測定
子)をネジ表面に近接乃至接触して設置しな
ければならない為測定に際してパイプの鼻曲
り等に起因するネジ表面の位置変動の影響を
受けやすい。又単一の装置で径の異なる多種
のネジを検査することは困難である。
(2) Since the black skin detection sensor and tracing sensor (measuring element) must be installed close to or in contact with the screw surface, they are susceptible to positional fluctuations on the screw surface due to bending of the pipe nose, etc. during measurement. Furthermore, it is difficult to inspect various types of screws with different diameters using a single device.

(3) 黒皮検出センサーと倣いセンサーとの距離
は半固定であり、従つて単一の装置でネジピ
ツチの異なる多種のネジを検査することは困
難である。
(3) The distance between the black skin detection sensor and the copying sensor is semi-fixed, so it is difficult to inspect various types of screws with different screw pitches with a single device.

(b) 特開昭54−150163号公報に記載されたネジ部
材の自動検査装置: この装置の内容は次の通りである。即ち、ボ
ルト、管継手等のネジ部材のネジ部仕上がり状
態、端部のバリの有無等の外観形状を自動的に
検査する装置であり、被検査ネジ部材にネジ谷
部に光が入射しない角度から光を照明し、その
被照明面をネジ軸心に直交する角度から光電変
換装置を用いて撮像し、ネジ軸心に沿つた輝度
分布の電気信号を得る。この時ネジ部が正常で
ある場合には、得られた輝度分布はネジ谷部か
らの反射がない為その部分の輝度は低く、ネジ
山部に相当する極大点だけをを有するパターン
となる。これに対して偏肉不良、片ネジ不良に
ついてはネジ切り加工が施されていない部分
(黒皮)から乱反射が生じる為、輝度分布にお
ける極大点間隔は、ネジ部が正常である場合の
極大点間隔と異る。極大点間隔を測定しそれと
基準の間隔とを比較することによつて黒皮の有
無を検出する。さらにネジ部材を等速回転する
とともに上記の処理を繰り返し行うことによつ
てネジ部材の全領域について黒皮の有無を検出
する。
(b) Automatic inspection device for screw members described in JP-A-54-150163: The contents of this device are as follows. In other words, it is a device that automatically inspects the external appearance of threaded parts such as bolts and pipe fittings, including the finished state of threaded parts and the presence or absence of burrs at the ends. A photoelectric conversion device is used to image the illuminated surface from an angle perpendicular to the screw axis to obtain an electric signal with a brightness distribution along the screw axis. At this time, if the threaded portion is normal, the obtained brightness distribution has low brightness at that portion because there is no reflection from the threaded valley, resulting in a pattern having only maximum points corresponding to the threaded threaded portion. On the other hand, for uneven thickness defects and single thread defects, diffuse reflection occurs from the unthreaded part (black skin), so the distance between the maximum points in the brightness distribution is the maximum point when the thread part is normal. Different from interval. The presence or absence of melasma is detected by measuring the maximum point interval and comparing it with the reference interval. Furthermore, by rotating the screw member at a constant speed and repeating the above process, the presence or absence of black skin is detected over the entire area of the screw member.

しかしこの公報に記載のネジ部材の自動検査
装置には次のような問題がある。
However, the automatic inspection device for screw members described in this publication has the following problems.

(1) 照明をネジ部に対して、ネジ軸心と直交し
ない角度から照射することによつて、ネジ谷
に影をつくり、ネジ谷からの反射光がない状
態でネジ部を観察することを前提とした方式
である。ネジの切り終り点附近では、一般
に、ネジ谷が浅いため、ネジ谷に光が入射
し、その反射光が観察されるため、これを完
全ネジ山と誤認識することがある。
(1) By illuminating the threaded part from an angle that is not perpendicular to the screw axis, a shadow is created on the threaded valley, making it possible to observe the threaded part without light reflected from the threaded valley. This is the method based on the premise. Near the end of thread cutting, the thread valley is generally shallow, so light enters the thread valley and the reflected light is observed, which may be mistakenly recognized as a complete thread.

(2) 不完全ネジ部のネジ山両肩部では、ネジ切
削時に、バリ状の突起が生じ易く、バリ状突
起からの反射が観察されることによつて、不
完全ネジ山を完全ネジ山と誤認識する虞れが
ある。
(2) On both shoulders of the thread of an incomplete thread, burr-like protrusions are likely to occur during thread cutting, and by observing reflections from the burr-like protrusions, it is possible to convert an incomplete thread to a complete thread. There is a risk of misunderstanding.

(3) ネジ表面からの反射光に照度むらが生じや
すく、さらに、照度むらの影響によつて、完
全ネジ部と不完全ネジ部との境界を誤認識す
る可能性が高いため、安定した測定が困難で
ある。
(3) Uneven illuminance tends to occur in the light reflected from the screw surface, and furthermore, there is a high possibility that the boundary between a fully threaded part and an incompletely threaded part will be mistakenly recognized due to the influence of the unbalanced illuminance, so stable measurements cannot be achieved. is difficult.

そこでこの発明は以上のような問題を解消
すべくなされたもので、一端部にネジが形成
されたネジ部材に対して、前記ネジの頂部お
よび底部に照明光が直接当る位置に配置され
た照明手段と、前記ネジ部材に対して、前記
ネジの頂部および底部からの前記照明光の反
射光が直接入射する位置に配置された撮像手
段とを基本的に備え、さらに、 前記撮像手段によつて得られた反射光検
出信号を2値化する手段と、前記2値化さ
れた信号の間隔を測定し、前記ネジのピツ
チに対応した間隔を持つ2値化信号を検出
することによつて、前記ネジに不完全ネジ
部分があることを検出する検出手段、また
は、 (a)基準位置に対する前記ネジ部材の一端
面の位置を測定する端面位置測定手段、(b)
前記撮像手段によつて得られた反射光検出
信号を2値化する手段と、前記基準位置に
対する、前記ネジのピツチの1/2に対応し
た間隔の2値化信号と前記ネジのピツチに
対応した間隔の2値化信号との境界位置、
および前記ネジの切終りに相当する切終り
位置の少なくとも1つを測定する位置測定
回路、並びに、前記位置測定回路からの位
置測定信号、および前記端面位置測定手段
からの端面位置測定信号にもとづいて、前
記境界位置と前記端面位置との間の間隔に
対応する前記ネジ部材の一端面からの完全
山長さ、前記端面位置と前記切終り位置と
の間の間隔に対応する前記ネジ部材の一端
面からのネジ全長、および前記切終り位置
と前記境界位置との間の間隔に対応する不
完全山長さの少なくとも1つを演算する演
算回路を有する信号処理手段を備えたネジ
部材の検査装置としたことに特徴を有す
る。
Therefore, the present invention has been made to solve the above-mentioned problems.The present invention has been made in order to solve the above-mentioned problems.The present invention is directed to a screw member having a screw formed at one end thereof, and an illumination lamp disposed at a position where the illumination light directly hits the top and bottom of the screw. and an imaging means disposed at a position where reflected light of the illumination light from the top and bottom of the screw directly enters the screw member, further comprising: By means of binarizing the obtained reflected light detection signal, measuring an interval between the binarized signals, and detecting a binarized signal having an interval corresponding to the pitch of the screw, Detection means for detecting that the screw has an incompletely threaded portion, or (a) end face position measuring means for measuring the position of one end face of the screw member with respect to a reference position; (b)
means for binarizing the reflected light detection signal obtained by the imaging means; and a binarized signal having an interval corresponding to 1/2 of the pitch of the screw with respect to the reference position and corresponding to the pitch of the screw. The boundary position between the binarized signal and the interval
and a position measuring circuit for measuring at least one of the cutting end positions corresponding to the cutting ends of the screw, based on a position measuring signal from the position measuring circuit and an end face position measuring signal from the end face position measuring means. , a complete thread length from one end surface of the threaded member corresponding to the interval between the boundary position and the end face position, and a length of one of the threaded members corresponding to the interval between the end face position and the cut end position. A screw member inspection device comprising a signal processing means having an arithmetic circuit for calculating at least one of the total length of the screw from the end face and the length of the incomplete thread corresponding to the interval between the cut end position and the boundary position. It is characterized by the following.

以下この発明の実施例を図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明にかかるネジ部材の検査装置
の一態様を示す概略構成図である。図において、
1は一端部にネジを形成したパイプ、1aはその
ネジ部であり、パイプ1は、図示しない検査台上
を、図示しない移動手段によつて、検査のための
所定位置まで移動して、図示しないストツパにそ
の一端が当ることによつて停止している(パイプ
1の一端はストツパに接触して停止していること
もあるが、ストツパからある程度の間隔をもつて
停止していることもある)。2はパイプの下面に
接したパイプ回転装置、3はパイプ下面に接した
ローラ3aに接続したネジ(パイプ)回転角検出
装置であり、パイプ回転装置2の駆動によつてパ
イプ1は軸心を中心に回転(回動)し、その回転
角は、ネジ回転角検出装置3によつて検出され
る。4は、マイクロメータの接触子であり、この
接触子4は、パイプ1の移動停止後、パイプ1の
一端面に接触するまで移動し、かくして、マイク
ロメータによつて基準となるストツパ(図示せ
ず)に対するパイプ1の一端面の位置(距離)が
測定され、その結果が端面位置検出装置5によつ
て電気信号に変換される。6は、パイプ1のネジ
部1aのネジの頂部および底部に照明光が直接当
る位置に配置された照明手段としての拡散照明装
置である。即ち、パイプネジ部1aは、広い照明
面6aをもつ拡散照明装置6によつて、パイプ1
の軸心l1と拡散照明装置6の照明中心軸l2とが実
質的に90゜の角度をなす方向から照明され、その
ネジの頂部および底部に直接照明光が当る(被照
明面を6bで示す)。
FIG. 1 is a schematic configuration diagram showing one embodiment of a screw member inspection device according to the present invention. In the figure,
Reference numeral 1 denotes a pipe with a thread formed at one end, and 1a is the threaded part of the pipe. It is stopped by one end of the pipe hitting a stopper that does not hold the pipe (one end of the pipe 1 may come into contact with the stopper and stop, but it may also stop with a certain distance from the stopper). ). 2 is a pipe rotation device in contact with the lower surface of the pipe, and 3 is a screw (pipe) rotation angle detection device connected to a roller 3a in contact with the lower surface of the pipe.By driving the pipe rotation device 2, the pipe 1 is moved around its axis. It rotates (rotates) around the center, and the rotation angle is detected by the screw rotation angle detection device 3. Reference numeral 4 denotes a contact of a micrometer. After the pipe 1 stops moving, the contact 4 moves until it contacts one end surface of the pipe 1. Thus, the micrometer detects a reference stopper (not shown). The position (distance) of one end surface of the pipe 1 with respect to the pipe 1 is measured, and the result is converted into an electrical signal by the end surface position detection device 5. Reference numeral 6 denotes a diffused illumination device as an illumination means arranged at a position where the illumination light directly hits the top and bottom of the threaded portion 1a of the pipe 1. That is, the pipe threaded portion 1a is illuminated by the pipe 1 by the diffused illumination device 6 having a wide illumination surface 6a.
is illuminated from a direction in which the axis l 1 of the lamp and the illumination center axis l 2 of the diffused illumination device 6 substantially form a 90° angle, and the illumination light directly hits the top and bottom of the screw (the surface to be illuminated is ).

7はパイプ1のネジ部1aのネジの頂部および
底部からの前記照明光の反射光が直接入射する位
置に配置された撮像手段としての光電変換装置で
あり、この光電変換装置7は、この光軸l3とパイ
プ1の軸心l1とが実質的に90゜の角度をなす方向か
ら撮像する。
Reference numeral 7 denotes a photoelectric conversion device as an imaging means, which is arranged at a position where reflected light of the illumination light from the top and bottom of the thread of the threaded portion 1a of the pipe 1 directly enters. The image is taken from a direction in which the axis l 3 and the axis l 1 of the pipe 1 substantially form an angle of 90°.

なお、上述のような照明を用いることによつて
以下の2条件を満足する照明が実現される。
Note that by using the above-mentioned lighting, lighting that satisfies the following two conditions can be realized.

(1) ネジ周方向に巾の広い、かつ軸心方向に一様
な帯状の被照明面6bが得られる。
(1) A strip-shaped illuminated surface 6b that is wide in the circumferential direction of the screw and uniform in the axial direction can be obtained.

(2) 照明ムラが非常に小さい。(2) Very little uneven lighting.

従つて、ラインセンサーなど直線状に撮像する
光電変換装置を用いた場合にもネジ部の撮像位置
の変動に対して十分に安定性の高い撮像が可能で
ある。また、照明装置6の中心軸l2と光軸l3は拡
散照明装置6及び光電変換装置7が重ならない程
度に離すものとする。
Therefore, even when using a photoelectric conversion device that captures images in a straight line, such as a line sensor, it is possible to capture images with sufficiently high stability against fluctuations in the imaging position of the screw portion. Further, the central axis l 2 and the optical axis l 3 of the illumination device 6 are separated from each other to such an extent that the diffused illumination device 6 and the photoelectric conversion device 7 do not overlap.

第2図に上記の構成で照明し撮像した時に得ら
れる反射光検出信号のネジ部1aの軸方向の反射
輝度分布の一例を示し、以下に説明する。図中曲
線8はネジのプロフイールであり、8aはフラン
ク部、8bは頂部、8cは底部、8dは黒皮を示
す。ネジ部1aをパイプ1の軸心に対して90゜の
方向から照明・撮像している為にネジのフランク
部8aからの反射はなく、その部分の輝度は低
い。また黒皮8dの反射率が極めて小さいことか
ら黒皮8dの残つたネジ山即ち不完全ネジ部のネ
ジの頂部8bの輝度もまた低い。これに対して完
全ネジ部のネジ山では反射率が高いため輝度は高
くまた底部8cでは完全ネジ部と不完全ネジ部と
に拘らず、高い輝度を有する。従つて第2図に示
す輝度分布パターンにおいて輝度のピーク間隔が
完全ネジ部ではネジのピツチの1/2となるのに対
して、不完全ネジ部ではネジのピツチに相当する
間隔となる。
FIG. 2 shows an example of the reflection brightness distribution in the axial direction of the threaded portion 1a of the reflected light detection signal obtained when illuminating and imaging with the above configuration, and will be described below. Curve 8 in the figure is the profile of the screw, with 8a representing the flank, 8b the top, 8c the bottom, and 8d the black skin. Since the threaded portion 1a is illuminated and imaged from a direction 90° with respect to the axis of the pipe 1, there is no reflection from the flank portion 8a of the thread, and the brightness of that portion is low. Furthermore, since the reflectance of the black skin 8d is extremely low, the brightness of the remaining screw thread of the black skin 8d, that is, the top portion 8b of the screw that is an incomplete threaded portion, is also low. On the other hand, the thread of the fully threaded portion has a high reflectance, so the brightness is high, and the bottom portion 8c has high brightness regardless of whether it is a fully threaded portion or an incompletely threaded portion. Therefore, in the brightness distribution pattern shown in FIG. 2, the brightness peak interval is 1/2 the pitch of the screw in the fully threaded portion, whereas it is an interval corresponding to the pitch of the screw in the incompletely threaded portion.

この特徴に着目して第1図に示すように、信号
処理装置10は、光電変換装置7からのネジ部1
aの反射光検出信号を2値化し、この2値化信号
に基づいて黒皮(不完全ネジ部)の有無を検出
し、さらに、端面位置検出装置5からの信号に基
づいて端面位置に対する完全ネジ部と不完全ネジ
部の境界位置及びネジ切り終り位置を演算するこ
とによつて完全山長さ、不完全山長さ及びネジ全
長の少なくとも1つを求める。
Focusing on this feature, as shown in FIG.
The reflected light detection signal of a is binarized, the presence or absence of black skin (incomplete threaded part) is detected based on this binarized signal, and the completeness of the end face position is detected based on the signal from the end face position detection device 5. At least one of the complete thread length, the incomplete thread length, and the total thread length is determined by calculating the boundary position between the threaded part and the incompletely threaded part and the thread cutting end position.

ネジ部1aの反射光検出信号を2値化する手段
としては、周知技術である2値化回路(コンパレ
ータ)を使用することができる。本実施例では、
信号処理装置10は、第3図イ,ロに示すよう
に、2値化に際しノイズの影響を排除した処理を
するよう装置構成されている。
As a means for binarizing the reflected light detection signal of the threaded portion 1a, a well-known binarization circuit (comparator) can be used. In this example,
As shown in FIG. 3A and FIG. 3B, the signal processing device 10 is configured to perform processing that eliminates the influence of noise during binarization.

図示されるように、信号処理装置10は前処理
回路16及び本処理回路17からなり、前処理回
路16を本処理回路17の周知技術である2値化
回路18の前段に配置したことに特徴を有する。
前処理回路16は反射光検出信号から、ネジの頂
部および底部からの反射光によるパルスを強調し
安定したネジ信号強調信号を得る機能を有し、本
処理回路17はこの信号を処理することによつて
パイプ1のネジ部1aに黒皮があるか否かを検出
する機能を有している。前処理回路16の処理方
法についてその詳細を第4図イ〜ホに示し、以下
に説明する。第4図イは光電変換装置7による画
像の一例を示し、11aは反射光受光部、11b
はネジフランク部11cは黒皮部、11dはネジ
周方向のサンプリングラインを示す。第1ステツ
プとして移動平均回路13によりネジ軸方向の移
動平均処理を行なつて反射光検出信号中の高周波
ノイズを除去する(第4図ハ)。第2ステツプと
して2点平均回路14によりネジピツチの1/2に
相当する間隔を有する2点の信号値を平均しその
平均値を2点の中央の点の信号値とする2点平均
処理を行う(第4図ニ)。さらに第3ステツプと
して差演算回路15により前に求めた移動平均信
号から2点平均信号を引いてネジ信号強調信号を
得る。以上の処理の結果光電変換装置7によつて
得られる反射光検出信号からネジ表面形状による
異常反射、照明ムラ及び照明強度の変化による輝
度レベル変動が除去され、完全ネジ山の頂部、及
び全ネジの底部からの反射によるパルス信号だけ
が強調された安定した信号だけが強調された安定
した信号を得ることができる。ただし上記の処理
に際して加算平均巾及び移動平均巾については、
十分にノイズを除去しうる平均巾を用いるものと
する。
As shown in the figure, the signal processing device 10 consists of a preprocessing circuit 16 and a main processing circuit 17, and is characterized in that the preprocessing circuit 16 is arranged before the binarization circuit 18, which is a well-known technique of the main processing circuit 17. has.
The pre-processing circuit 16 has a function of emphasizing the pulses caused by the reflected light from the top and bottom of the screw from the reflected light detection signal to obtain a stable screw signal emphasis signal, and the main processing circuit 17 processes this signal. Therefore, it has a function of detecting whether or not there is a black crust on the threaded portion 1a of the pipe 1. Details of the processing method of the preprocessing circuit 16 are shown in FIGS. 4A to 4E, and will be described below. FIG. 4A shows an example of an image obtained by the photoelectric conversion device 7, in which 11a is a reflected light receiving section, 11b is
The screw flank portion 11c is a black skin portion, and 11d is a sampling line in the circumferential direction of the screw. As a first step, the moving average circuit 13 performs moving average processing in the direction of the screw axis to remove high frequency noise in the reflected light detection signal (FIG. 4C). As a second step, the two-point averaging circuit 14 averages the signal values of two points having an interval corresponding to 1/2 of the screw pitch, and performs two-point averaging processing in which the average value is used as the signal value of the center point of the two points. (Figure 4 d). Furthermore, as a third step, the two-point average signal is subtracted from the previously obtained moving average signal by the difference calculation circuit 15 to obtain a screw signal emphasis signal. As a result of the above processing, abnormal reflections due to the screw surface shape, illumination unevenness, and brightness level fluctuations due to changes in illumination intensity are removed from the reflected light detection signal obtained by the photoelectric conversion device 7. It is possible to obtain a stable signal in which only the pulse signal due to reflection from the bottom of the cell is emphasized. However, regarding the addition average width and moving average width during the above processing,
An average width that can sufficiently remove noise shall be used.

次に上記の処理によつて得られたネジ信号強調
信号は本処理回路17に入力され、まず2値化回
路18によつて2値化される。この時得られるパ
ルス信号は、検出回路19によつてパルス間の間
隔がパイプ1の一端側に該当するパルスから順次
測定され、パイプ1のネジ部1aに黒皮部分があ
ると、パイプ1のネジ部1aのネジのピツチに対
応した間隔のパルス(即ち、黒皮部分)が検出さ
れてこれが黒皮検出信号として出力される。
Next, the screw signal emphasis signal obtained by the above processing is input to the main processing circuit 17, and is first binarized by the binarization circuit 18. The pulse signal obtained at this time is sequentially measured by the detection circuit 19, starting from the pulse corresponding to one end of the pipe 1. Pulses at intervals corresponding to the thread pitch of the threaded portion 1a (that is, black skin portions) are detected and output as black skin detection signals.

次に、第3図ロに示す、ネジの長さ検出(測
定)における信号処理装置10について説明す
る。前記処理回路16および本処理回路17の2
値化回路18は上記と全く同一である。
Next, the signal processing device 10 for screw length detection (measurement) shown in FIG. 3B will be explained. 2 of the processing circuit 16 and main processing circuit 17
The value conversion circuit 18 is exactly the same as described above.

2値化回路18によつて2値化されたパルス信
号はパルス間隔測定回路20によつてパルス間の
間隔がパイプ1の一端側に該当するパルスから順
次測定され、次の2つのうち少なくとも1つの処
理が行なわれる。完全ネジ部と不完全ネジ部と
がそれらのパルス間隔の違いから分離され、基準
位置(ストツパに対する)に対する、その境界位
置が出力される。またはネジ切り終り点より以
後にはパルスがないことからパルス間隔測定回路
20によつて基準位置に対するネジ切り終り位置
が求められて出力される。
The pulse signal binarized by the binarization circuit 18 is sequentially measured by the pulse interval measuring circuit 20 starting from the pulse corresponding to one end of the pipe 1, and is determined to have at least one of the following two pulse intervals. Two processes are performed. Completely threaded portions and incompletely threaded portions are separated based on the difference in their pulse intervals, and their boundary positions relative to the reference position (relative to the stopper) are output. Alternatively, since there is no pulse after the threading end point, the pulse interval measuring circuit 20 determines and outputs the threading end position with respect to the reference position.

第1演算回路21はこれらの位置測定信号と、
端面位置検出装置5からの端面位置測定信号とに
基づいて、境界位置と端面位置との間の間隔に対
応するパイプ1の一端面からの完全山長さ(完全
ネジ部の長さ)、端面位置と切終り位置との間の
間隔に対応するパイプ1の一端面からのネジ全長
および前記切終り位置と前記境界位置との間の間
隔に対応する不完全山長さの少なくとも1つを演
算し、その結果を出力する。
The first arithmetic circuit 21 receives these position measurement signals and
Based on the end face position measurement signal from the end face position detection device 5, the complete thread length (full thread length) from one end face of the pipe 1 corresponding to the interval between the boundary position and the end face position, and the end face Calculate at least one of the total thread length from one end surface of the pipe 1 corresponding to the interval between the cutting end position and the cutting end position, and the incomplete thread length corresponding to the interval between the cutting end position and the boundary position. and output the result.

次に、本発明の第2の実施例について説明す
る。第2の実施例は、第1の実施例に加えて、さ
らにパイプ回転装置2を用いてネジ部を回転させ
ながらネジ周方向の多数箇所について上記の測定
をおこないネジ全体としての完全山長さ、不完全
山長さ及びネジ全長の少なくとも1つを測定す
る。以上の一連の処理(黒皮の検出処理は除く)
に際して、第1図のコントローラ9はネジ周方向
のサンプリング及びネジ全体としての測定のタイ
ミングを制御するものである。即ちコントローラ
9はネジ回転角検出装置3によつて得られるネジ
回転角が所定のサンプリング角度に達する毎に信
号処理装置10に対して反射光検出信号の入力及
び端面位置検出信号の入力を指示するとともに信
号処理の開始を指令し、さらにネジが1回転する
と個々のサンプリング角における処理・演算結果
からネジ全体としての完全山長さ、不完全山長さ
及びネジ全長の少なくとも1つを測定させる。
Next, a second embodiment of the present invention will be described. In the second embodiment, in addition to the first embodiment, the pipe rotation device 2 is used to rotate the threaded portion, and the above-mentioned measurements are performed at multiple points in the circumferential direction of the thread, thereby determining the complete thread length of the thread as a whole. , at least one of the incomplete thread length and the total thread length is measured. The above series of processing (excluding black skin detection processing)
At this time, the controller 9 in FIG. 1 controls the timing of sampling in the circumferential direction of the screw and measurement of the screw as a whole. That is, the controller 9 instructs the signal processing device 10 to input a reflected light detection signal and an end face position detection signal every time the screw rotation angle obtained by the screw rotation angle detection device 3 reaches a predetermined sampling angle. At the same time, the start of signal processing is commanded, and when the screw makes one rotation, at least one of the complete thread length, incomplete thread length, and overall thread length of the thread as a whole is measured from the processing and calculation results at each sampling angle.

即ち、第3図ロにおける第2演算回路22はネ
ジ周方向多数箇所の測定によつて得られた完全山
長さ及びネジ全長から、完全山長さに関してはそ
れらのうちの最小値ネジ全長に関しては最大値を
演算することによつてネジ全体としての完全山長
さ、ネジ全長を求めて出力する。さらにネジ全長
から完全山長さを差引くことによつて不完全山長
さ(不完全ネジ部の長さ)を演算・出力する。
That is, the second arithmetic circuit 22 in FIG. calculates the maximum value to determine and output the complete thread length and total thread length of the screw as a whole. Furthermore, by subtracting the complete thread length from the total thread length, the incomplete thread length (length of the incomplete thread portion) is calculated and output.

また、これに加え、ネジ周方向の加算平均処理
を用いることにより、周方向の微少領域内での異
常反射によるノイズを低減させることもできる。
即ち、第3図イにおいて、移動平均回路13の前
に加算平均回路12を配置し、パイプ1の回転に
合わせた検出により得られた反射光検出信号デー
タをネジ周方向に加算平均して、ノイズを除去す
る。加算平均巾は、前述した移動平均巾と同様、
充分にノイズを除去し得る平均巾を用いるものと
する。
In addition to this, by using the averaging process in the screw circumferential direction, it is also possible to reduce noise due to abnormal reflection within a small area in the circumferential direction.
That is, in FIG. 3A, an adding and averaging circuit 12 is placed before the moving averager circuit 13, and the reflected light detection signal data obtained by detection in accordance with the rotation of the pipe 1 is added and averaged in the circumferential direction of the screw. Remove noise. The additive average width is the same as the moving average width mentioned above.
An average width that can sufficiently remove noise shall be used.

本発明により以下に示すような効果が得られ
る。
The present invention provides the following effects.

(1) 測定対象であるネジの外径及びネジの種類に
制限されることなく、またネジ部曲がりなどの
外乱要因に対しても十分に対処して、黒皮検
出、または完全山長さ、ネジ全長、不完全山長
さなどを測定することができる。
(1) Not limited by the outer diameter of the screw to be measured or the type of screw, and by fully dealing with disturbance factors such as bending of the screw part, it is possible to detect black skin, complete thread length, etc. It is possible to measure the total screw length, incomplete thread length, etc.

(2) 非接触式であるため装置の故障が少なく、装
置の操作乃至維持が容易である。
(2) Since it is a non-contact type, there are fewer failures of the device and it is easy to operate and maintain the device.

(3) 対象のネジを1回転させる間に完全山長さ、
不完全山長さ及びネジ全長を測長することが可
能であり、測定に要する時間が短い。
(3) Complete thread length during one rotation of the target screw,
It is possible to measure the length of an incomplete thread and the total length of a screw, and the time required for measurement is short.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかるネジ部材の検査装置
の一態様を示す概略構成図、第2図は反射光検出
信号の輝度分布パターンを示す図、第3図イ,ロ
は信号処理装置のブロツク図、第4図イは、光電
変換装置による画像の一例を示す図、第4図ロ〜
ホは前処理回路の各部における信号波形の一例を
示す図である。 1……パイプ、1a……ネジ部、2……パイプ
回転装置、3……ネジ回転角検出装置、3a……
ローラ、4……接触子、5……端面位置検出装
置、6……拡散照明装置、7……光電変換装置、
8……曲線、9……コントローラ、10……信号
処理装置、12……加算平均回路、13……移動
平均回路、14……2点平均回路、15……差演
算回路、16……前処理回路、17……本処理回
路、18……2値化回路、19……検出回路、2
0……パルス間隔測定回路、21……第1演算回
路、22……第2演算回路。
FIG. 1 is a schematic configuration diagram showing one embodiment of a screw member inspection device according to the present invention, FIG. 2 is a diagram showing a brightness distribution pattern of a reflected light detection signal, and FIG. 3 A and B are blocks of a signal processing device. Figure 4A shows an example of an image produced by a photoelectric conversion device;
E is a diagram showing an example of signal waveforms in each part of the preprocessing circuit. DESCRIPTION OF SYMBOLS 1...Pipe, 1a...Thread part, 2...Pipe rotation device, 3...Screw rotation angle detection device, 3a...
Roller, 4... contact, 5... end face position detection device, 6... diffused illumination device, 7... photoelectric conversion device,
8...Curve, 9...Controller, 10...Signal processing device, 12...Additional averaging circuit, 13...Moving average circuit, 14...2-point averaging circuit, 15...Difference calculation circuit, 16...Previous Processing circuit, 17... Main processing circuit, 18... Binarization circuit, 19... Detection circuit, 2
0... Pulse interval measuring circuit, 21... First arithmetic circuit, 22... Second arithmetic circuit.

Claims (1)

【特許請求の範囲】 1 一端部にネジが形成されたネジ部材に対し
て、前記ネジの頂部および底部に照明光が直接当
る位置に配置された照明手段と、 前記ネジ部材に対して、前記ネジの頂部および
底部からの前記照明光の反射光が直接入射する位
置に配置された撮像手段と、 前記撮像手段によつて得られた反射光検出信号
を2値化する手段と、前記2値化された信号の間
隔を測定し、前記ネジのピツチに対応した間隔を
持つ2値化信号を検出することによつて、前記ネ
ジに不完全ネジ部分があることを検出する検出手
段とを備えたことを特徴とするネジ部材の検査装
置。 2 一端部にネジが形成されたネジ部材に対し
て、前記ネジの頂部および底部に照明光が直接当
る位置に配置された照明手段と、 前記ネジ部材に対して、前記ネジの頂部および
底部からの前記照明光の反射光が直接入射する位
置に配置された撮像手段と、 基準位置に対する前記ネジ部材の一端面の位置
を測定する端面位置測定手段と、 前記撮像手段によつて得られた反射光検出信号
を2値化する手段と、前記基準位置に対する、前
記ネジのピツチの1/2に対応した間隔の2値化信
号と前記ネジのピツチに対応した間隔の2値化信
号との境界位置、および前記ネジの切終りに相当
する切終り位置の少なくとも1つを測定する位置
測定回路、並びに、前記位置測定回路からの位置
測定信号、および前記端面位置測定手段からの端
面位置測定信号に基づいて、前記境界位置と前記
端面位置との間の間隔に対応する前記ネジ部材の
一端面からの完全山長さ、前記端面位置と前記切
終り位置との間の間隔に対応する前記ネジ部材の
一端面からのネジ全長、および前記切終り位置と
前記境界位置との間の間隔に対応する不完全山長
さの少なくとも1つを演算する演算回路を有する
信号処理手段とを備えたことを特徴とするネジ部
材の検査装置。
[Scope of Claims] 1. For a screw member having a screw formed at one end thereof, an illumination means disposed at a position where the illumination light directly hits the top and bottom of the screw; an imaging means disposed at a position where the reflected light of the illumination light from the top and bottom of the screw directly enters; means for binarizing the reflected light detection signal obtained by the imaging means; and detecting means for detecting that the screw has an incompletely threaded portion by measuring the interval between the encoded signals and detecting a binary signal having an interval corresponding to the pitch of the screw. An inspection device for screw members, characterized in that: 2. For a screw member having a screw formed at one end, an illumination means arranged at a position where the illumination light directly hits the top and bottom of the screw; an imaging means disposed at a position where the reflected light of the illumination light directly enters; an end face position measuring means for measuring the position of one end surface of the screw member with respect to a reference position; and a reflection obtained by the imaging means. means for binarizing a photodetection signal, and a boundary between a binarized signal having an interval corresponding to 1/2 of the pitch of the screw and a binarized signal having an interval corresponding to the pitch of the screw with respect to the reference position; and a position measuring circuit that measures at least one of a cutting end position corresponding to the cutting end of the screw, a position measuring signal from the position measuring circuit, and an end face position measuring signal from the end face position measuring means. Based on the complete thread length from one end surface of the threaded member corresponding to the distance between the boundary position and the end face position, and the threaded member corresponding to the distance between the end face position and the cut end position. and a signal processing means having an arithmetic circuit for calculating at least one of the total length of the screw from one end surface and the length of the incomplete thread corresponding to the interval between the cutting end position and the boundary position. Features: Inspection device for screw members.
JP5161081A 1981-04-06 1981-04-06 Tester for screw member Granted JPS57165705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5161081A JPS57165705A (en) 1981-04-06 1981-04-06 Tester for screw member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5161081A JPS57165705A (en) 1981-04-06 1981-04-06 Tester for screw member

Publications (2)

Publication Number Publication Date
JPS57165705A JPS57165705A (en) 1982-10-12
JPS634642B2 true JPS634642B2 (en) 1988-01-29

Family

ID=12891667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5161081A Granted JPS57165705A (en) 1981-04-06 1981-04-06 Tester for screw member

Country Status (1)

Country Link
JP (1) JPS57165705A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3306194A1 (en) * 1982-02-25 1983-09-08 Mitsubishi Denki K.K., Tokyo METHOD FOR TESTING SCREW SURFACES FOR FAULTS AND DEVICE FOR IMPLEMENTING THEM
JPS6175204A (en) * 1984-09-20 1986-04-17 Nippon Kokan Kk <Nkk> Method for inspecting thread of male screw
JPS61167807A (en) * 1985-01-21 1986-07-29 Sumitomo Metal Ind Ltd Inspecting instrument for surface of screw
JPS61218906A (en) * 1985-03-25 1986-09-29 Sumitomo Metal Ind Ltd Surface inspecting device for screw
DE102007017747B4 (en) * 2007-04-12 2009-05-07 V & M Deutschland Gmbh Method and device for the optical measurement of external threads

Also Published As

Publication number Publication date
JPS57165705A (en) 1982-10-12

Similar Documents

Publication Publication Date Title
US4775889A (en) Bottle mouth defect inspection apparatus
US5148375A (en) Soldering appearance inspection apparatus
US3749496A (en) Automatic quality control surface inspection system for determining the character of a surface by measuring the shape and intensity of a modulated beam
US4544268A (en) Method and apparatus for detecting flaw on threads of male screw
JPS634642B2 (en)
JPH06241740A (en) Electro-resistance welded tube weld beam defective cutting and defect detecting method
JPH0453255B2 (en)
CN111721229B (en) Wire section shape defect detection system and detection method thereof
JPH08168102A (en) Pantagraph and inspection device thereof
JP3541291B2 (en) Egg test method and egg test device
JPS63269006A (en) Apparatus for inspecting flatness
JPH0422444B2 (en)
JP5022007B2 (en) Defect detection apparatus and method
JPS6175204A (en) Method for inspecting thread of male screw
JPH0334578B2 (en)
KR100268975B1 (en) Pattern inspection apparatus
CN218034715U (en) Ring gauge measuring jaw
JPH05188010A (en) Surface inspecting device
JP2929096B2 (en) Surface inspection device for inspection object having curved surface
JPS62229054A (en) Defect inspection of pellet end face for nuclear fuel
JPH07306157A (en) Method and device for defect inspection
JPH01216237A (en) Automatic flaw detecting method for screw part
JPS6310780B2 (en)
JPS6375545A (en) Appearance inspection device
JPS6355655B2 (en)