JP3541291B2 - Egg test method and egg test device - Google Patents

Egg test method and egg test device Download PDF

Info

Publication number
JP3541291B2
JP3541291B2 JP04487799A JP4487799A JP3541291B2 JP 3541291 B2 JP3541291 B2 JP 3541291B2 JP 04487799 A JP04487799 A JP 04487799A JP 4487799 A JP4487799 A JP 4487799A JP 3541291 B2 JP3541291 B2 JP 3541291B2
Authority
JP
Japan
Prior art keywords
intensity
egg
wavelength
light
internal abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04487799A
Other languages
Japanese (ja)
Other versions
JP2000241347A (en
Inventor
宏信 西畠
紀子 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP04487799A priority Critical patent/JP3541291B2/en
Priority to PCT/JP2000/000998 priority patent/WO2000050873A1/en
Priority to KR1020007011745A priority patent/KR20010042925A/en
Priority to EP00904090A priority patent/EP1074831A4/en
Publication of JP2000241347A publication Critical patent/JP2000241347A/en
Application granted granted Critical
Publication of JP3541291B2 publication Critical patent/JP3541291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、卵の内部異常の有無を非破壊にて検査する方法、及びその実施に使用する装置に関する。
【0002】
【従来の技術】
養鶏場で生産される鶏卵には、卵殻内に小血塊が混入した血班卵、肉用物質が卵白中に浮遊した又はカラザに絡みついた肉班混入卵等の異常卵が混在しているため、食に供する正常卵を出荷すべく、集めた複数の卵が異常卵であるか否かを非破壊で検査している。
【0003】
卵を非破壊で検査するには、検査員が、蛍光灯等の光源から出射された光内に卵をかざし、目視することによって異常卵であるか否かを判断していた。しかし、このような検査には熟練した検査員が必要である一方、熟練した検査員であっても検査作業を長時間行うことはできないという問題があった。
【0004】
そのため、特公昭56−735 号公報には次のような検卵装置が開示されている。投光装置によって卵に投光し、その透過光を受光装置によって受光する。受光装置には、受光した光の強度に応じた電気信号を出力する2つのフォトトランジスタが設けてある。一方のフォトトランジスタの受光部には波長が575nmの光を透過する光学フィルタが、また他方のフォトトランジスタの受光部には波長が590nmの光を透過する光学フィルタが配設してあり、卵の透過光は両光学フィルタを経て対応するフォトトランジスタにそれぞれ入射され、そこで光電変換される。
【0005】
一方のフォトトランジスタから出力された第1信号、及び他方のフォトトランジスタから出力された第2信号は演算装置に与えられる。演算装置は、第1信号を第2信号で除算することによって第1信号を正規化し、正規化信号のレベルが予め定めたレベル以下である場合、血班卵であると判定する。
【0006】
このように、白色又は褐色等、卵殻の色によって変化する590nmの透過光の強度によって、血塊に吸収される575nmの透過光の強度を正規化するため、卵殻の色の影響を低減することができる。
【0007】
【発明が解決しようとする課題】
しかしながら、特公昭56−735 号公報に開示された検卵装置にあっては、前述した如く、正規化信号のレベルが予め定めたレベル以下である場合、血班卵であると判定するため、微小な血塊が混入していた場合、正規化信号のレベルがさほど低くないので、これを見落とす虞があった。また、575nmの透過光の強度は卵のサイズ(透過光路長)及び卵殻の色の濃淡によっても変化するため、異常卵検出の精度が低いという問題もあった。
【0008】
本発明はかかる事情に鑑みてなされたものであって、その目的とするところは卵の透過光を用いて、卵の内部異常による吸収が大きい第1波長の強度、卵殻の種類によって吸収が異なる第2波長の強度、及び内部異常による吸収が小さい第3波長の強度を測定し、得られた第3波長の強度及び第1波長の強度を第2波長の強度によってそれぞれ正規化し、正規化した第1波長の強度及び第3波長の強度の差分を算出し、得られた差分に基づいて卵が内部異常であるか否かを判断することによって、卵のサイズ及び卵殻の色の濃淡に拘わらず、高精度に異常卵を検出することができる検卵方法、及びその実施に使用する装置を提供することにある。
【0009】
【課題を解決するための手段】
第1発明に係る検卵方法は、光源から所要波長を含む光を卵に照射して透過光を得、その透過光を用いて、卵の内部異常を検出する検卵方法において、卵の内部異常による吸収が大きい第1波長の強度、及び前記内部異常による吸収が小さい第3波長の強度をそれぞれ測定し、前記内部異常による吸収が略皆無であり、しかも前記卵の大きさ及び卵殻の色によって吸収が異なる第2波長の強度を測定し、前記第1波長の強度及び前記第3波長の強度を前記第2波長の強度によってそれぞれ正規化し、正規化した第1波長の強度及び第3波長の強度の差分を算出し、得られた差分に基づいて前記卵が内部異常であるか否かを判断することを特徴とする。
【0010】
第2発明に係る検卵装置は、所要波長を含む光を卵に照射して得た透過光の複数波長の強度を測定する測定部と、前記強度に基づいて、卵の内部異常を検出する検出器とを備える検卵装置において、前記測定部は、前記透過光に含まれ、卵の内部異常による吸収が大きい第1波長の強度を測定する第1の測定手段と、前記透過光を用いて、前記内部異常による吸収が小さい第3波長の強度を測定する第2の測定手段と、前記透過光を用いて、前記内部異常による吸収が略皆無であり、しかも前記卵の大きさ及び卵殻の色によって吸収が異なる第2波長の強度を測定する第3の測定手段とを具備し、前記検出器は、前記第1強度及び前記第3強度を前記第2強度によってそれぞれ正規化する手段と、正規化した第1強度及び第3強度の差分を算出する手段とを具備することを特徴とする。
【0011】
ランプ又は自然光等の光源から所要波長を含む光を卵に照射して透過光を得、その透過光を用いて、卵の内部異常による吸収が大きい第1波長の強度、卵殻の種類によって吸収が異なる第2波長の強度、及び前記内部異常による吸収が小さい第3波長の強度を測定する。
【0012】
図2は、血液の吸収スペクトルと複数の卵の透過度の変動係数とを示すグラフであり、図中、左側縦軸は吸光度を、右側縦軸は光透過度の変動係数(標準偏差/平均値)を、また横軸は波長をそれぞれ示している。また、図中、a線は血液の吸収スペクトルを、b線は複数の波長に対する光透過度の変動係数をそれぞれ示している。
【0013】
図2に示したa線から明らかな如く、血液の吸光度は540nm付近及び575nm付近に極大値を、また560nm付近に極小値をそれぞれ有しており、610nmより長波長側では、血液による吸収はほとんどない。また、b線から明らかな如く、色の濃淡及びサイズが異なる複数の卵の光透過度の変動係数は、血液による吸収がほとんどない645nmで大きい。
【0014】
従って、内部異常が血塊である場合、前述した第2波長は645nm付近とし、第3波長は560nm付近とする。また、第1波長は、検出感度が高い575nm付近とする。
【0015】
なお、第1乃至第3波長の強度は、透過光を分光し、各波長の強度を測定してもよいし、また各波長を通過させる光学フィルタに透過光を入射し、その通過光の強度を測定してもよい。
【0016】
このようにして得られた第3波長の強度及び第1波長の強度を、例えば第2波長の強度によってそれぞれ除算することによってそれぞれ正規化し、正規化した第1波長の強度及び第3波長の強度の差分を算出し、得られた差分が予め設定した値より小さい場合、異常卵であると判定する。
【0017】
このように、内部異常による吸収が大きい第1波長の強度、及び内部異常による吸収が小さい第3波長の強度を、卵のサイズ及び卵殻の色の濃淡によって吸収が異なる第2波長の強度によって正規化するため、卵のサイズ及び卵殻の色の濃淡の影響を低減することができる。更に、正規化した第1波長の強度及び第3波長の強度の差分を求めるため、卵のサイズ及び卵殻の色の濃淡の影響を更に低減して、内部異常の存否を正確に判断することがきる。これによって、卵殻の色の濃淡及び卵のサイズに拘わらず、微少な内部異常を検出することができ、異常卵を高精度に検出することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて具体的に説明する。
図1は、本発明に係る検卵装置の構成を示すブロック図であり、図中、6は、ハロゲンランプ等、500nm〜700nmの波長を含む光を出射する光源である。光源6から所定距離を隔ててリフレクタ7が配置してあり、光源6から放射された光及びリフレクタ7によって反射された光は第1レンズ11に入射される。第1レンズ11は入射された光を卵Eの断面面積と略同じ断面面積の平行光とし、該第1レンズ11に対向配置した第2レンズ12へ出射する。
【0019】
第1レンズ11と第2レンズ12との間に卵Eが配置されおり、卵Eを透過した透過光は第2レンズ12で集光される。第2レンズ12から出射された光の光路には、第1及び第2ハーフミラー21,22が適宜距離を隔てて、光路に対して所定の角度になるように配置してあり、第1ハーフミラー21によって反射された光は、例えば、血塊による吸収が大きい575nm付近の波長の光を通過させる第1バンドパスフィルタ31を介して、第1光電変換器41に入射される。
【0020】
第1ハーフミラー21を通過し、第2ハーフミラー22によって反射された光は、卵殻の色によって吸収が異なる645nm付近の波長の光を通過させる第2バンドパスフィルタ32を介して、第2光電変換器42に入射され、第1ハーフミラー21及び第2ハーフミラー22を通過した光は、血塊による吸収が小さい560nm付近の波長の光を通過させる第3バンドパスフィルタ33を介して、第3光電変換器43に入射される。
【0021】
なお、第1ハーフミラー21及び第2ハーフミラー22は、第1ハーフミラー21によって反射された光の強度、第1ハーフミラー21を通過し、第2ハーフミラー22によって反射された光の強度、並びに第1ハーフミラー21及び第2ハーフミラー22を通過した光の強度はそれぞれ同じ値になるようになしてある。
【0022】
第1〜第3光電変換器41〜43は、入射光をその強度に応じた電気信号に変換し、得られた電気信号をアナログ/ディジタル変換器9,9,9を介して、演算装置1の正規化部2にそれぞれ与える。正規化部2は、第1光電変換器41から与えられた第1信号を、第2光電変換器42から与えられた第2信号で除算すると共に、第3光電変換器43から与えられた第3信号を前記第2信号で除算することによって、第1信号及び第3信号から卵殻による影響を除去する正規化処理を行い、正規化した第1信号及び第3信号を差分算出部3に与える。
【0023】
差分算出部3は、第3信号から第1信号を減じて両者の差分を算出し、それを判定部4に与える。判定部4には、卵の良否を判定する閾値が予め設定してあり、判定部4は与えられた差分と閾値とを比較し、閾値以下である場合、異常卵であると判定して信号を出力する。
【0024】
なお、本実施の形態では、血塊による吸収が大きい575nm付近の波長の光を通過させる第1バンドパスフィルタ31を介して得た第1信号を用いて卵Eを検査しているが、本発明はこれに限らず、第1信号に代えて、又は第1信号に加えて、肉用物質又は卵白の濁度等、他の内部異常に応じた波長の光を通過させるバンドパスフィルタを介して得た信号を用いて卵Eを検査するようになしてもよい。この場合、得られた信号を前述した第2信号を用いて正規化し、正規化した信号と、正規化した第3信号又は、当該内部異常による吸収が小さい他の波長の光を光電変換し、正規化した信号との差分を求める。これによって、卵殻の種類及び卵のサイズに拘わらず、微少な内部異常を検出することができ、異常卵を高精度に検査することができる。
【0025】
【実施例】
次に比較試験を行った結果について説明する。
図4は、特公昭56−735 号公報に開示された装置によって正常卵及び血塊が混入した異常卵を検査した結果を示すグラフであり、縦軸は第2信号で正規化した第1信号のレベルを示している。この場合、第1信号は、575nmの光を通過する光学フィルタを用いて得、第2信号は、590nmの光を透過する光学フィルタを用いて得た。
【0026】
また、図5は、第2信号を得るための光学フィルタの通過波長を異ならせた従来の装置によって正常卵及び血塊が混入した異常卵を検査した結果を示すグラフである。この場合、第1信号は、575nmの光を通過する光学フィルタを用いて得、第2信号は、645nmの光を透過する光学フィルタを用いて得た。
【0027】
一方、図3は、本発明装置によって正常卵及び血塊が混入した異常卵を検査した結果を示すグラフであり、縦軸は第2信号で正規化した第1信号と第2信号で正規化した第3信号との差分レベルを示している。本発明装置では、575nmの光を通過する光学フィルタを用いて第1信号を得、645nmの光を通過する光学フィルタを用いて第2信号を得、560nmの光を通過する光学フィルタを用いて第3信号を得た。
【0028】
図4及び図5から明らかな如く、従来の装置では、第2信号を得るための光学フィルタの通過波長に拘わらず、正常卵の検査結果の一部と異常卵の検査結果の一部とが重なっており、これによって誤検出又は異常卵の見逃しが発生する。一方、図3から明らかな如く、本発明装置では、正常卵の検査結果と異常卵の検査結果とは重なっておらず、例えば、閾値を0.10に定めておくことによって、異常卵を高精度に検出することができる。
【0029】
【発明の効果】
以上詳述した如く、本発明にあっては、卵殻の種類及び卵のサイズに拘わらず、微少な内部異常を検出することができ、卵の良否を高精度に検査することができる等、本発明は優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る検卵装置の構成を示すブロック図である。
【図2】血液の吸収スペクトルと複数の卵の透過度の変動係数とを示すグラフである。
【図3】本発明装置によって正常卵及び血塊が混入した異常卵を検査した結果を示すグラフである。
【図4】特公昭56−735 号公報に開示された装置によって正常卵及び血塊が混入した異常卵を検査した結果を示すグラフである。
【図5】第2信号を得るための光学フィルタの通過波長を異ならせた従来の装置によって正常卵及び血塊が混入した異常卵を検査した結果を示すグラフである。
【符号の説明】
1 演算装置
2 正規化部
3 差分算出部
4 判定部
6 光源
21 第1ハーフミラー
22 第2ハーフミラー
31 第1バンドパスフィルタ
32 第2バンドパスフィルタ
33 第3バンドパスフィルタ
41 第1光電変換器
42 第2光電変換器
43 第3光電変換器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for non-destructively testing for the presence or absence of an internal abnormality in an egg, and an apparatus used for performing the method.
[0002]
[Prior art]
Chicken eggs produced at chicken farms are mixed with abnormal eggs such as bloody eggs with small clots mixed in the eggshell, eggs with meats floating in the egg white or entangled with caraza. In order to ship normal eggs to be eaten, non-destructive inspection is performed to determine whether or not a plurality of collected eggs are abnormal eggs.
[0003]
In order to non-destructively inspect an egg, an inspector holds the egg over light emitted from a light source such as a fluorescent lamp and visually determines whether or not the egg is abnormal. However, while such an inspection requires a skilled inspector, there is a problem that even an experienced inspector cannot perform inspection work for a long time.
[0004]
For this reason, Japanese Patent Publication No. Sho 56-735 discloses the following egg testing apparatus. Light is emitted to the egg by the light emitting device, and the transmitted light is received by the light receiving device. The light receiving device is provided with two phototransistors that output an electric signal according to the intensity of the received light. An optical filter that transmits light having a wavelength of 575 nm is provided in the light receiving portion of one phototransistor, and an optical filter that transmits light having a wavelength of 590 nm is provided in the light receiving portion of the other phototransistor. The transmitted light is incident on the corresponding phototransistor via both optical filters, and is photoelectrically converted there.
[0005]
The first signal output from one of the phototransistors and the second signal output from the other of the phototransistors are supplied to an arithmetic unit. The arithmetic unit normalizes the first signal by dividing the first signal by the second signal, and determines that the egg is a bloody egg when the level of the normalized signal is equal to or less than a predetermined level.
[0006]
Thus, the intensity of the transmitted light of 590 nm, which changes depending on the color of the eggshell, such as white or brown, normalizes the intensity of the transmitted light of 575 nm absorbed by the clot, so that the effect of the color of the eggshell can be reduced. it can.
[0007]
[Problems to be solved by the invention]
However, in the egg testing apparatus disclosed in Japanese Patent Publication No. 56-735, as described above, when the level of the normalized signal is lower than a predetermined level, it is determined that the egg is a bloody egg. If a minute blood clot is mixed in, the level of the normalized signal is not so low, so that there is a risk of overlooking this. Further, since the intensity of the transmitted light at 575 nm also changes depending on the size of the egg (transmitted optical path length) and the shade of the color of the eggshell, there is a problem that the accuracy of detecting an abnormal egg is low.
[0008]
The present invention has been made in view of such circumstances, and it is an object of the present invention to use the transmitted light of an egg and to absorb light depending on the type of the eggshell, the intensity of the first wavelength in which the absorption due to the internal abnormality of the egg is large. The intensity of the second wavelength and the intensity of the third wavelength having a small absorption due to the internal abnormality were measured, and the obtained intensity of the third wavelength and the intensity of the first wavelength were normalized by the intensity of the second wavelength, respectively. By calculating the difference between the intensity of the first wavelength and the intensity of the third wavelength and determining whether or not the egg has an internal abnormality based on the obtained difference, regardless of the size of the egg and the shade of the eggshell, Another object of the present invention is to provide an egg detection method capable of detecting an abnormal egg with high accuracy, and an apparatus used for carrying out the method.
[0009]
[Means for Solving the Problems]
Candling method according to the first invention, the light including a required wavelength from a light source irradiating the egg to obtain a transmitted light, the internal in candling method, eggs by using the transmitted light, for detecting the internal egg abnormal The intensity of the first wavelength having a large absorption due to the abnormality and the intensity of the third wavelength having a small absorption due to the internal abnormality are measured, and there is substantially no absorption due to the internal abnormality, and the size of the egg and the color of the eggshell The intensity of the second wavelength having different absorptions is measured, the intensity of the first wavelength and the intensity of the third wavelength are normalized by the intensity of the second wavelength, respectively, and the normalized intensity of the first wavelength and the third wavelength are normalized. And calculating whether the egg has an internal abnormality or not based on the obtained difference.
[0010]
An egg testing apparatus according to a second aspect of the present invention provides a measuring unit that measures the intensity of a plurality of wavelengths of transmitted light obtained by irradiating light containing a required wavelength to an egg, and detects an internal abnormality of the egg based on the intensity. In an egg testing apparatus including a detector, the measurement unit includes a first measurement unit configured to measure an intensity of a first wavelength included in the transmitted light and having a large absorption due to an internal abnormality of the egg, and using the transmitted light. A second measuring means for measuring the intensity of the third wavelength having a small absorption due to the internal abnormality, and substantially no absorption due to the internal abnormality using the transmitted light, and the size and eggshell of the egg And a third measuring means for measuring the intensity of the second wavelength having different absorption depending on the color of the light, wherein the detector normalizes the first intensity and the third intensity with the second intensity, respectively. Calculates the difference between the normalized first and third intensities Characterized by comprising a means for.
[0011]
The transmitted light is obtained by irradiating the egg with light containing a required wavelength from a light source such as a lamp or natural light, and the transmitted light is used to absorb the first wavelength intensity, which is largely absorbed by the internal abnormality of the egg, depending on the type of eggshell. The intensity of a different second wavelength and the intensity of a third wavelength that is less absorbed by the internal abnormality are measured.
[0012]
FIG. 2 is a graph showing the absorption spectrum of blood and the coefficient of variation of the transmittance of a plurality of eggs. In the figure, the left vertical axis represents the absorbance, and the right vertical axis represents the variation coefficient of the light transmittance (standard deviation / average). Value), and the horizontal axis represents wavelength. In the figure, line a represents the absorption spectrum of blood, and line b represents the coefficient of variation of light transmittance for a plurality of wavelengths.
[0013]
As is clear from the a line shown in FIG. 2, the absorbance of blood has a local maximum near 540 nm and 575 nm, and a local minimum near 560 nm. rare. Further, as is apparent from the b-line, the coefficient of variation of the light transmittance of a plurality of eggs having different shades and sizes of color is large at 645 nm, which has almost no absorption by blood.
[0014]
Therefore, when the internal abnormality is a blood clot, the above-mentioned second wavelength is set to around 645 nm, and the third wavelength is set to around 560 nm. The first wavelength is set to around 575 nm where the detection sensitivity is high.
[0015]
The intensity of the first to third wavelengths may be measured by dispersing transmitted light and measuring the intensity of each wavelength. Alternatively, the transmitted light may be incident on an optical filter that transmits each wavelength, and the intensity of the transmitted light may be measured. May be measured.
[0016]
The intensity of the third wavelength and the intensity of the first wavelength obtained in this manner are normalized by, for example, respectively dividing by the intensity of the second wavelength, respectively, and the normalized intensity of the first wavelength and the intensity of the third wavelength are respectively normalized. Is calculated, and if the obtained difference is smaller than a preset value, it is determined that the egg is abnormal.
[0017]
As described above, the intensity of the first wavelength, which has a large absorption due to the internal abnormality, and the intensity of the third wavelength, which has a small absorption due to the internal abnormality, are normalized by the intensity of the second wavelength, whose absorption varies depending on the size of the egg and the color of the eggshell. Therefore, the effects of the size of the egg and the shade of the color of the eggshell can be reduced. Furthermore, in order to determine the difference between the normalized intensity of the first wavelength and the intensity of the third wavelength, it is possible to further reduce the influence of the size of the egg and the shade of the color of the eggshell to accurately determine the presence or absence of an internal abnormality. Wear. Thereby, regardless of the shade of the color of the eggshell and the size of the egg, a minute internal abnormality can be detected, and the abnormal egg can be detected with high accuracy.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of an egg test apparatus according to the present invention. In the figure, reference numeral 6 denotes a light source such as a halogen lamp for emitting light having a wavelength of 500 nm to 700 nm. A reflector 7 is arranged at a predetermined distance from the light source 6, and light emitted from the light source 6 and light reflected by the reflector 7 enter the first lens 11. The first lens 11 converts the incident light into parallel light having a cross-sectional area substantially equal to the cross-sectional area of the egg E, and emits the parallel light to the second lens 12 disposed opposite to the first lens 11.
[0019]
The egg E is disposed between the first lens 11 and the second lens 12, and the transmitted light transmitted through the egg E is collected by the second lens 12. In the optical path of the light emitted from the second lens 12, first and second half mirrors 21 and 22 are disposed at an appropriate distance from each other and at a predetermined angle with respect to the optical path. The light reflected by the mirror 21 is incident on the first photoelectric converter 41 via the first band-pass filter 31 that passes light having a wavelength around 575 nm, which is largely absorbed by the blood clot.
[0020]
The light passing through the first half mirror 21 and reflected by the second half mirror 22 passes through a second band-pass filter 32 that passes light having a wavelength of about 645 nm, which has different absorption depending on the color of the eggshell, and then passes through the second photoelectric converter. The light incident on the converter 42 and passing through the first half mirror 21 and the second half mirror 22 passes through the third band-pass filter 33 that passes light having a wavelength of about 560 nm, which is little absorbed by the blood clot, and passes through the third band-pass filter 33. The light enters the photoelectric converter 43.
[0021]
Note that the first half mirror 21 and the second half mirror 22 have the intensity of the light reflected by the first half mirror 21 and the intensity of the light passing through the first half mirror 21 and reflected by the second half mirror 22. In addition, the intensities of the light passing through the first half mirror 21 and the second half mirror 22 have the same value.
[0022]
The first to third photoelectric converters 41 to 43 convert the incident light into electric signals corresponding to the intensity thereof, and convert the obtained electric signals via the analog / digital converters 9, 9, 9 into the arithmetic unit 1 Are given to the normalization unit 2. The normalizing unit 2 divides the first signal supplied from the first photoelectric converter 41 by the second signal supplied from the second photoelectric converter 42, and divides the first signal supplied from the third photoelectric converter 43. By dividing the three signals by the second signal, a normalization process for removing the influence of the eggshell from the first signal and the third signal is performed, and the normalized first signal and the third signal are provided to the difference calculator 3. .
[0023]
The difference calculation unit 3 calculates the difference between the two by subtracting the first signal from the third signal, and supplies the difference to the determination unit 4. In the determination unit 4, a threshold value for determining the quality of the egg is set in advance, and the determination unit 4 compares the given difference with the threshold value. Is output.
[0024]
In the present embodiment, the egg E is inspected using the first signal obtained through the first band-pass filter 31 that passes light having a wavelength near 575 nm, which is largely absorbed by the blood clot. Is not limited to this, but instead of the first signal, or in addition to the first signal, through a band-pass filter that allows light having a wavelength according to other internal abnormalities, such as meat substances or egg white turbidity, The egg E may be inspected using the obtained signal. In this case, the obtained signal is normalized using the above-described second signal, and the normalized signal and the normalized third signal or the light of another wavelength whose absorption due to the internal abnormality is small are photoelectrically converted, Find the difference from the normalized signal. Thereby, regardless of the type of the eggshell and the size of the egg, a minute internal abnormality can be detected, and the abnormal egg can be inspected with high accuracy.
[0025]
【Example】
Next, the results of the comparison test will be described.
FIG. 4 is a graph showing the results of inspection of normal eggs and abnormal eggs mixed with blood clots using the apparatus disclosed in Japanese Patent Publication No. 56-735, with the vertical axis representing the first signal normalized by the second signal. Indicates a level. In this case, the first signal was obtained using an optical filter transmitting 575 nm light, and the second signal was obtained using an optical filter transmitting 590 nm light.
[0026]
FIG. 5 is a graph showing a result of inspecting a normal egg and an abnormal egg mixed with a blood clot by a conventional apparatus in which the passing wavelength of an optical filter for obtaining the second signal is changed. In this case, the first signal was obtained using an optical filter transmitting 575 nm light, and the second signal was obtained using an optical filter transmitting 645 nm light.
[0027]
On the other hand, FIG. 3 is a graph showing the results of inspection of normal eggs and abnormal eggs mixed with blood clots by the device of the present invention, and the vertical axis is normalized by the first signal and the second signal normalized by the second signal. The difference level with the third signal is shown. In the apparatus of the present invention, a first signal is obtained by using an optical filter that transmits light of 575 nm, a second signal is obtained by using an optical filter that transmits light of 645 nm, and an optical filter that transmits light of 560 nm is obtained. A third signal was obtained.
[0028]
As is clear from FIGS. 4 and 5, in the conventional apparatus, a part of the test result of the normal egg and a part of the test result of the abnormal egg are different regardless of the passing wavelength of the optical filter for obtaining the second signal. Overlap, which can lead to false detections or missed abnormal eggs. On the other hand, as is clear from FIG. 3, in the device of the present invention, the test result of the normal egg and the test result of the abnormal egg do not overlap, and for example, by setting the threshold to 0.10. It can be detected with high accuracy.
[0029]
【The invention's effect】
As described in detail above, in the present invention, regardless of the type of egg shell and the size of the egg, a minute internal abnormality can be detected, and the quality of the egg can be inspected with high accuracy. The invention has excellent effects.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an egg inspection apparatus according to the present invention.
FIG. 2 is a graph showing the absorption spectrum of blood and the coefficient of variation of the transmittance of a plurality of eggs.
FIG. 3 is a graph showing the results of examining normal eggs and abnormal eggs mixed with blood clots using the apparatus of the present invention.
FIG. 4 is a graph showing the results of inspection of normal eggs and abnormal eggs mixed with blood clots using the apparatus disclosed in Japanese Patent Publication No. 56-735.
FIG. 5 is a graph showing a result of examining a normal egg and an abnormal egg mixed with a blood clot by a conventional apparatus in which a passing wavelength of an optical filter for obtaining a second signal is changed.
[Explanation of symbols]
Reference Signs List 1 arithmetic unit 2 normalization unit 3 difference calculation unit 4 determination unit 6 light source 21 first half mirror 22 second half mirror 31 first bandpass filter 32 second bandpass filter 33 third bandpass filter 41 first photoelectric converter 42 second photoelectric converter 43 third photoelectric converter

Claims (2)

光源から所要波長を含む光を卵に照射して透過光を得、その透過光を用いて、卵の内部異常を検出する検卵方法において、卵の内部異常による吸収が大きい第1波長の強度、及び前記内部異常による吸収が小さい第3波長の強度をそれぞれ測定し、前記内部異常による吸収が略皆無であり、しかも前記卵の大きさ及び卵殻の色によって吸収が異なる第2波長の強度を測定し、前記第1波長の強度及び前記第3波長の強度を前記第2波長の強度によってそれぞれ正規化し、正規化した第1波長の強度及び第3波長の強度の差分を算出し、得られた差分に基づいて前記卵が内部異常であるか否かを判断することを特徴とする検卵方法。In an egg inspection method of irradiating light including a required wavelength to an egg from a light source to obtain transmitted light and detecting the internal abnormality of the egg using the transmitted light, the intensity of the first wavelength in which absorption due to the internal abnormality of the egg is large is large. And the intensity of the third wavelength whose absorption due to the internal abnormality is small is measured, and the intensity of the second wavelength whose absorption due to the internal abnormality is almost completely absent and which differs depending on the size of the egg and the color of the eggshell is determined. Measuring and normalizing the intensity of the first wavelength and the intensity of the third wavelength with the intensity of the second wavelength, respectively, and calculating the difference between the normalized intensity of the first wavelength and the intensity of the third wavelength, Determining whether the egg has an internal abnormality based on the difference. 所要波長を含む光を卵に照射して得た透過光の複数波長の強度を測定する測定部と、前記強度に基づいて、卵の内部異常を検出する検出器とを備える検卵装置において、前記測定部は、前記透過光に含まれ、卵の内部異常による吸収が大きい第1波長の強度を測定する第1の測定手段と、前記透過光を用いて、前記内部異常による吸収が小さい第3波長の強度を測定する第2の測定手段と、前記透過光を用いて、前記内部異常による吸収が略皆無であり、しかも前記卵の大きさ及び卵殻の色によって吸収が異なる第2波長の強度を測定する第3の測定手段とを具備し、前記検出器は、前記第1強度及び前記第3強度を前記第2強度によってそれぞれ正規化する手段と、正規化した第1強度及び第3強度の差分を算出する手段とを具備することを特徴とする検卵装置。A measuring unit that measures the intensity of a plurality of wavelengths of transmitted light obtained by irradiating the egg with light containing a required wavelength , based on the intensity, based on the intensity, in an egg testing apparatus including a detector that detects an internal abnormality of the egg, The measurement unit includes a first measurement unit that measures the intensity of a first wavelength that is included in the transmitted light and has a large absorption due to an internal abnormality of the egg, and a measurement unit that has a small absorption due to the internal abnormality using the transmitted light. A second measuring means for measuring the intensity of three wavelengths, and using the transmitted light, a second wavelength having substantially no absorption due to the internal abnormality and having a different absorption depending on the size of the egg and the color of the eggshell; A third measuring unit for measuring the intensity, wherein the detector is configured to normalize the first intensity and the third intensity by the second intensity, respectively, and the first intensity and the third intensity are normalized. Means for calculating an intensity difference Candling apparatus according to claim.
JP04487799A 1999-02-23 1999-02-23 Egg test method and egg test device Expired - Fee Related JP3541291B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04487799A JP3541291B2 (en) 1999-02-23 1999-02-23 Egg test method and egg test device
PCT/JP2000/000998 WO2000050873A1 (en) 1999-02-23 2000-02-21 Method and device for candling eggs
KR1020007011745A KR20010042925A (en) 1999-02-23 2000-02-21 Egg inspecting method and egg inspecting device
EP00904090A EP1074831A4 (en) 1999-02-23 2000-02-21 Method and device for candling eggs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04487799A JP3541291B2 (en) 1999-02-23 1999-02-23 Egg test method and egg test device

Publications (2)

Publication Number Publication Date
JP2000241347A JP2000241347A (en) 2000-09-08
JP3541291B2 true JP3541291B2 (en) 2004-07-07

Family

ID=12703734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04487799A Expired - Fee Related JP3541291B2 (en) 1999-02-23 1999-02-23 Egg test method and egg test device

Country Status (1)

Country Link
JP (1) JP3541291B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858838B2 (en) 2006-06-29 2012-01-18 株式会社ナベル Egg quality index inspection device
JP5169190B2 (en) * 2007-12-13 2013-03-27 東亜ディーケーケー株式会社 Light oil identification method and light oil monitor
JP4858863B2 (en) * 2009-11-14 2012-01-18 株式会社ナベル Egg inspection equipment
US10575830B2 (en) * 2015-02-25 2020-03-03 Outsense Diagnostics Ltd. Bodily emission analysis
EP3915488A1 (en) 2016-08-30 2021-12-01 Outsense Diagnostics Ltd. Bodily emission analysis

Also Published As

Publication number Publication date
JP2000241347A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
JPH0256B2 (en)
JPS6332352A (en) Fiber optical device
JPH07190959A (en) Method and equipment for automatically characterizing, optimizing and checking analysis method by permeation flaw detection
JPH10510362A (en) Equipment for analyzing blood and other samples
JP3541291B2 (en) Egg test method and egg test device
JP2001513892A (en) Method and apparatus for measuring blood substitute
JP4714822B2 (en) Non-destructive measuring device for light scatterers
JP2012189390A (en) Hair detector
JPS617445A (en) Oxidizing degree judging apparatus of copper oxide film
JP2000097873A (en) Surface defect inspecting device
JP2010032259A (en) Foreign matter detector and detecting method
JPH05288674A (en) Sacchari meter
JP2019011992A (en) Inspection device for inside of egg
US4591723A (en) Optical egg inspecting apparatus
US20210315459A1 (en) System and method for providing an indication of a person's gum health
JP4201237B2 (en) Blood egg tester
JP2675915B2 (en) Egg inspection method and apparatus
JPH0125017B2 (en)
JP2001041882A (en) Egg testing apparatus
JP4591064B2 (en) Nondestructive detection method for blood eggs
WO2000050873A1 (en) Method and device for candling eggs
Swatland An investigation of UV meat probe optics, comparing fluorescence, reflectance and colorimetry
JPH11133025A (en) Urine-inspection apparatus
JP2000292359A (en) Internal quality inspection method of vegetable and fruit and its device
RU2016671C1 (en) Method of evaluating the quality of fruit and apparatus for carrying out the method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees