JPS6346127B2 - - Google Patents

Info

Publication number
JPS6346127B2
JPS6346127B2 JP22748483A JP22748483A JPS6346127B2 JP S6346127 B2 JPS6346127 B2 JP S6346127B2 JP 22748483 A JP22748483 A JP 22748483A JP 22748483 A JP22748483 A JP 22748483A JP S6346127 B2 JPS6346127 B2 JP S6346127B2
Authority
JP
Japan
Prior art keywords
disc spring
spring material
molding die
frequency coil
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22748483A
Other languages
Japanese (ja)
Other versions
JPS60121216A (en
Inventor
Isao Matsumoto
Masakatsu Yamamuro
Norimasa Furuta
Masaji Kawahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP22748483A priority Critical patent/JPS60121216A/en
Publication of JPS60121216A publication Critical patent/JPS60121216A/en
Publication of JPS6346127B2 publication Critical patent/JPS6346127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は皿バネ部材の製造装置に関し、特に、
自動車用クラツチ構成部品である皿バネ部材(ダ
イアフラム)の製造に用いて好適な製造装置に関
する。 従来、上述の如き皿バネ部材を製造するに際し
ては、第1図に示す製造装置1が用いられてい
る。この製造装置1によれば、第2図及び第3図
に示すように中央孔2及び複数の放射状孔3を有
する円板状の薄肉鋼板から成る皿バネ素材4が、
脱炭防止のためRXガスを雰囲気とする連続炉5
にて加熱される。なお、この際の加熱温度は約
830゜、加熱時間は約10分間である。 加熱終了後、皿バネ素材4は連続炉5の導出口
6から導出され、勾配のついたローラーコンベア
7によつて成型装置8の側へ搬送される。そして
成型装置8の受け台9上に皿バネ素材4が載置さ
れ、しかる後に、ロツド10の上方への移動に伴
い皿バネ素材4がロツド上部に固着されたリフト
板11にて上方に持上げられる。次に、受け台9
が上下金型12,13間から外れるように水平移
動され、その後にロツド10が下方に移動されて
皿バネ素材4が下金型13上に載置される。そし
て、上方より上金型12が下降して皿バネ素材4
が上下金型12,13により第4図に示す如く皿
状にプレス成型され、その後に成型装置8内に注
入される焼入油にて焼入冷却が行われる。このよ
うな一連動作により、皿バネ部材14を得るよう
にしている。 しかしながら、このような製造装置1を用いた
場合には、脱炭防止のため雰囲気ガスを使用する
連続炉5で加熱を行うため、加熱効率が悪く、消
耗に対する保守及び数年に一度の炉壁の改修等の
ため多額の出費を要し経済性の点で不利であつ
た。また、皿バネ素材4が連続炉5から導出され
てからプレス成型及び焼入冷却する迄に時間を要
するため、その間に皿バネ素材4の温度低下を来
たし、その結果、焼入れ不良を生じて強度の低下
を招来するという大きな問題点があつた。 本発明は、上述の如き問題点に鑑みて発明され
たものであつて、高品質の皿バネ部材を経済的に
得るための製造装置を提供しようとするものであ
る。 本発明の特徴は、皿バネ素材を第1の位置で加
熱し、次いで第2の位置で成型熱処理を行なうよ
うにした皿バネ素材の製造装置において、 (a) 前記皿バネ素材を所要の焼入温度に高周波誘
導加熱するための高周波コイル、 (b) 高周波誘導加熱に前記皿バネ素材を回転駆動
させるための回転駆動手段、及び、加熱終了後
に前記第1の位置から前記第2の位置に前記皿
バネ素材を移送するための移送手段を有する皿
バネ素材取扱機構、 (c) 前記第2の位置において前記皿バネ素材を成
型熱処理するための上部成型金型及び下部成型
金型、 (d) 加熱終了後に、前記高周波コイルを前記上部
成型金型と、前記下部成型金型との間から外れ
た位置であつて前記皿バネ素材と干渉しない位
置に移動するための高周波コイル移動手段、 (e) 前記上部成型金型及び/又は前記下部成型金
型を駆動する金型加圧シリンダ、 (f) 前記上部成型金型と前記下部成型金型との間
に挾持された状態にある前記皿バネ素材を焼入
冷却するために、焼入冷却油を前記上部成型金
型と前記下部成型金型との間に供給する焼入冷
却油供給手段、 をそれぞれ具備し、前記上部成型金型と前記下部
成型金型との間の前記第1の位置において前記皿
バネ素材を前記高周波コイルにて所要の焼入れ温
度に高周波誘導加熱し、加熱された前記皿バネ素
材を前記第2の位置において直ちに成型熱処理す
るようにしたことにある。 以下、本発明を適用した皿バネ部材の製造装置
に付き第2図〜第8図を参照して説明する。 第5図は、本実施例の皿バネ部材製造装置16
を概略的に示すものである。この製造装置16
は、上部及び下部成型金型17a,17b並びに
皿バネ素材取扱機構18を有するプレス成型装置
19と、プレス成型装置19の側部に配置された
焼入冷却油槽20と、高周波コイル21に所定の
高周波電流を供給する高周波変成器22と、この
高周波コイル21及び変成器22を水平方向に移
動させるための移動手段23とをそれぞれ具備し
ている。 上述のプレス成型装置19において、上部成型
金型17aはその下面すなわち加圧面40の中央
部が円形に成形され、その中央部には第8図に示
すように中央孔41が設けられている。また上記
中央部の外周部は傘状に成形されており、第8図
に示すようにこの外周部には複数の放射状に延び
る溝部42が設けられている。そして、上部成型
金型17aは、図外の駆動装置により金型加圧シ
リンダ24にて移動されるように構成されてい
る。 一方、下部成型金型17bは所定の下方位置に
固定されており、その上面すなわち受面43が上
述の上部成型金型17aの加圧面40に対応した
形状に成形されている。またこの下部成型金型1
7bの軸心部に貫通孔25が設けられており、そ
の受面43の傘状部には上部成型金型17aの溝
部42に対応するように複数の放射状の溝部44
が設けられている。 また第8図に明示するように、下部成型金型1
7bを固定支持するための固定板26にも前記貫
通孔25に連通する貫通孔27が設けられてお
り、固定板26に設けられた供給管路33及び貫
通孔25,27をそれぞれ介して焼入冷却油槽2
0から焼入冷却油が供給されるようになつてい
る。また、皿バネ素材取扱機構18には、前記貫
通孔25,27に対応して、セラミツク製例えば
窒化珪素材の皿バネ素材保持治具32が設けられ
ており、保持治具32によつて保持された皿バネ
素材4がこの保持治具32と共に取扱機構18の
昇降シリンダ51により上下方向に移動され、か
つ所定位置において取扱機構18のインダクシヨ
ンモータ50にて回転駆動されるようになつてい
る。 なお、第8図において、34は油漏れ防止板で
ある。また、高周波変成器22には、コイルリー
ド28が設けられており、このコイルリード28
の先端に高周波コイル21が取付けられれてい
る。なおこの高周波コイル21は、第6図に示す
ように互いに対向している一対のコイルリード部
29a,29bと、皿バネ素材4のほぼ半分が挿
入配置され得る寸法形状の半円盤状部30とをそ
れぞれ有し、半円盤状部30の上面板30a及び
下面板30bの中央部分には、皿バネ素材4の中
央孔2部分に対応するように半円状の切欠き31
a,31bがそれぞれ形成されている。また第6
図に示すように、上述の下面板31bには、加熱
による皿バネ素材4の塑性変形を防止して高周波
コイル21との接触を防止するために、非導電性
部材例えば窒化珪素等のセラミツク材から成る複
数の突起部52が設けられている。 また、変成器22は高周波コイル21と共に移
動手段23により水平方向に移動可能になつてお
り、この移動に伴ない高周波コイル21が上下成
型金型17a,17b間の所定位置に挿入配置さ
れ或いはその所定位置から外れる方向に往復移動
されるように構成されている。 以上の如く、製造装置16は、皿バネ素材4を
所要の焼入温度に高周波加熱するための高周波コ
イル21と、高周波誘導加熱時に皿バネ素材を回
転駆動するインダクシヨンモータ50及び皿バネ
素材4を移送するための昇降シリンダ51を有す
る皿バネ素材取扱機構18と、皿バネ素材4を成
型熱処理するための上部及び下部成型金型17
a,17bと、上記高周波コイルを上部及び下部
成型金型17a,17b間から外れた位置であつ
て皿バネ素材4と干渉しない位置に移動するため
の高周波コイル移動手段23と、上部成型金型1
7aを下部成型金型17bに向けて駆動する金型
加圧シリンダ24と、皿バネ素材4を焼入冷却す
るために焼入冷却油槽20から焼入冷却油を上部
及び下部金型17a,17b間に供給する焼入冷
却油供給手段とから構成されている。 次に、上述の如き構成の皿バネ部材製造装置1
6の動作に付き説明する。 まず、薄肉鋼板をプレス打抜加工することによ
つて、第2図及び第3図に示す如く中央孔2及び
この中央孔2に一端がそれぞれ連通する複数の放
射状孔3を有する円盤状の皿バネ素材4を得る。
そしてこの皿バネ素材4を皿バネ素材取扱手段1
8の保持治具32上に載置固定する。なおこの場
合、保持治具32は、予め、上部及び下部成型金
型17a,17b間であつてかつ高周波コイル2
1と同じ高さ位置(加熱位置)に配置されている
ため、この保持治具32に載置固定された皿バネ
素材4は所定の加熱位置に配置されることにな
る。 しかる後、高周波変成器22と共に高周波コイ
ル21が移動手段23によりプレス成型装置19
の側へ水平移動され、上記金型17a,17b間
に挿入されると共に保持治具32上の皿バネ素材
4に対応した位置に配置される。即ち、第6図及
び第7図に示すように、高周波コイル21は、そ
の上面板30aと下面板30bとの間であつて半
円板状部30内に皿バネ素材4のほぼ半分が回転
可能な状態で収納配置されるような位置に配置さ
れる。 次いで、皿バネ素材4は保持治具32と一緒に
インダクシヨンモータ50によつて回転駆動され
る。これと同時に、図外の高周波電源から高周波
変成器22に高周波大電流が供給され、高周波コ
イル21においては例えば第6図にて矢印Aで示
す方向に高周波大電流が流される。なお高周波電
源は皿バネ素材4の肉厚に応じて30kHz〜400kHz
の周波数範囲で選択される。この結果、皿バネ素
材4は各部均一に高周波誘導加熱されることにな
る。 なおこの際、皿バネ素材4の保持治具32はセ
ラミツク材例えば窒化珪素材を用いているため、
皿バネ素材4は保持治具32に熱をうばわれるこ
となく、従つて保持治具32に接している皿バネ
素材4の内径部分まで均一な温度分布状態の下で
迅速に所定の焼入温度に加熱される。また皿バネ
素材4の加熱時に塑性変形により皿バネ素材4が
傘状に変形しても、皿バネ素材4の外周縁部が高
周波コイル21の複数の窒化珪素製突起52によ
つて受けられるため高周波コイル21に接触する
おそれがない。従つて、加熱時において高周波コ
イル21と皿バネ素材との接触により、これら双
方の間にスパークが発生し、これら双方が溶解し
て破損する等の不都合を生じることがない。 皿バネ素材4が所定の焼入温度に達すると、高
周波コイル21への高周波大電流の供給が遮断さ
れて加熱工程が終了し、この高周波コイル21は
移動手段23により高周波変成器22と共に元の
位置に復動されて上記金型17a,17b間から
外れた位置に配置される。これと同時に、皿バネ
素材4及び保持治具32の回転は停止され、昇降
シリンダ51により下降される。その結果、皿バ
ネ素材4は、その中央孔2が下部成型金型17b
の貫通孔25に対応した状態で、下部成型金型1
7b上に載置される。 一方、高周波コイル21が上記成型17a,1
7b間から外れると同時に、上部成型金型17a
が図外の駆動装置により金型加圧シリンダ24と
共に下部成型金型17bの方へ向かつて下降移動
される。しかして、皿バネ素材4が下部成型金型
17b上に載置された直後に、上方から下降移動
されてきた上部成型金型17aと下部成型金型1
7bとの間で第4図に示す如く皿型状(傘型状)
に加圧成型される。この際、皿バネ素材4は中央
孔2及び放射状孔3を有するため、シワや変形が
生じることなく皿バネ部材14が成型される。 そしてこの加圧成型の直後に、焼入冷却油が第
8図において矢印Bで示すように固定板26の供
給路33を通つて上記金型17a,17bの中央
孔25,27に供給される。供給された焼入冷却
油は、上記金型17a,17bの加圧面40及び
受面43にそれぞれ設けられた放射状の溝42,
44を通つて流れつつ皿バネ素材を冷却して金型
外へ流出する。そして金型外へ流出した焼入冷却
油は図外の焼入冷却油排出管路を通つて焼入冷却
油槽20に返送されて再利用される。 焼入冷却が完了すると、焼入冷却油の供給が停
止される一方、上部成型金型17aが加圧成型シ
リンダ24にて上方へ復動される。 以上の如き一連の動作により、皿型状の焼入れ
された皿バネ部材14が製造される。 次に、上述の製造装置16の利点を明確にする
ために、以下に示すような試験を行つた。 実施例 外径210mmφ、内径55mmφ、板厚2.33mm、材質
SK5種の皿バネ素材4を表−1に示す各種条件に
より製造した。
The present invention relates to a manufacturing device for a disc spring member, and in particular,
The present invention relates to a manufacturing apparatus suitable for manufacturing a disc spring member (diaphragm) which is a component of an automobile clutch. Conventionally, a manufacturing apparatus 1 shown in FIG. 1 has been used to manufacture the disc spring member as described above. According to this manufacturing apparatus 1, as shown in FIGS. 2 and 3, a disc spring material 4 made of a disc-shaped thin steel plate having a central hole 2 and a plurality of radial holes 3 is
Continuous furnace 5 with RX gas atmosphere to prevent decarburization
is heated. The heating temperature at this time is approximately
830°, heating time is about 10 minutes. After heating, the disc spring material 4 is led out from the outlet 6 of the continuous furnace 5 and conveyed to the molding device 8 by a sloped roller conveyor 7. Then, the disc spring material 4 is placed on the pedestal 9 of the molding device 8, and then, as the rod 10 moves upward, the disc spring material 4 is lifted upward by the lift plate 11 fixed to the upper part of the rod. It will be done. Next, the cradle 9
is horizontally moved so as to be removed from between the upper and lower molds 12 and 13, and then the rod 10 is moved downward and the disc spring material 4 is placed on the lower mold 13. Then, the upper mold 12 is lowered from above and the disc spring material 4 is
is press-molded into a dish shape as shown in FIG. 4 by upper and lower molds 12 and 13, and then quenched and cooled with quenching oil injected into the molding device 8. Through such a series of operations, the disc spring member 14 is obtained. However, when such a manufacturing apparatus 1 is used, heating is performed in a continuous furnace 5 that uses atmospheric gas to prevent decarburization, so the heating efficiency is poor, and maintenance for wear and tear and furnace wall maintenance is required once every few years. It was disadvantageous from an economic point of view, as it required a large amount of expenditure for repairs. In addition, since it takes time from the time the disc spring material 4 is taken out from the continuous furnace 5 until it is press-formed and quenched and cooled, the temperature of the disc spring material 4 decreases during that time, resulting in poor quenching and strength. There was a major problem in that it led to a decline in The present invention was devised in view of the above-mentioned problems, and it is an object of the present invention to provide a manufacturing apparatus for economically obtaining high-quality disc spring members. The present invention is characterized in that an apparatus for manufacturing a disc spring material is configured to heat the disc spring material at a first position and then perform a molding heat treatment at a second position. a high-frequency coil for performing high-frequency induction heating to the input temperature; (b) rotational driving means for rotationally driving the disc spring material during high-frequency induction heating; a disc spring material handling mechanism having a transfer means for transporting the disc spring material; (c) an upper mold and a lower mold for heat-treating the disc spring material at the second position; (d ) A high-frequency coil moving means for moving the high-frequency coil to a position removed from between the upper molding die and the lower molding die and not interfering with the disc spring material after heating is completed; ( e) a mold pressure cylinder that drives the upper mold and/or the lower mold; (f) the plate held between the upper mold and the lower mold; quenching cooling oil supply means for supplying quenching cooling oil between the upper molding die and the lower molding die in order to quench and cool the spring material; The disc spring material is high-frequency induction heated to a required hardening temperature by the high-frequency coil at the first position between the lower molding die, and the heated disc spring material is immediately returned to the second position. The reason is that it is molded and heat treated. Hereinafter, an apparatus for manufacturing a disc spring member to which the present invention is applied will be explained with reference to FIGS. 2 to 8. FIG. 5 shows a disc spring member manufacturing apparatus 16 of this embodiment.
This is a schematic diagram. This manufacturing device 16
The press molding device 19 has upper and lower molding molds 17a, 17b and a disc spring material handling mechanism 18, a quenching cooling oil tank 20 disposed on the side of the press molding device 19, and a high frequency coil 21 with a predetermined temperature. A high frequency transformer 22 for supplying a high frequency current, and a moving means 23 for horizontally moving the high frequency coil 21 and the transformer 22 are provided. In the press molding apparatus 19 described above, the lower surface of the upper molding die 17a, that is, the center part of the pressurizing surface 40, is formed into a circular shape, and a central hole 41 is provided in the center part, as shown in FIG. Further, the outer circumferential portion of the central portion is shaped like an umbrella, and as shown in FIG. 8, a plurality of radially extending grooves 42 are provided in this outer circumferential portion. The upper molding die 17a is configured to be moved by a die pressurizing cylinder 24 by a drive device (not shown). On the other hand, the lower molding die 17b is fixed at a predetermined lower position, and its upper surface, that is, the receiving surface 43 is formed into a shape corresponding to the pressure surface 40 of the upper molding die 17a described above. Also, this lower molding mold 1
A through hole 25 is provided in the axial center of the upper mold 7b, and a plurality of radial grooves 44 are formed in the umbrella-shaped portion of the receiving surface 43 so as to correspond to the grooves 42 of the upper mold 17a.
is provided. In addition, as shown in Fig. 8, the lower molding die 1
The fixing plate 26 for fixing and supporting the fixing plate 26 is also provided with a through hole 27 that communicates with the through hole 25. Inlet cooling oil tank 2
Quenching cooling oil is supplied from zero. Further, the disc spring material handling mechanism 18 is provided with a disc spring material holding jig 32 made of ceramic, for example, a silicon nitride material, corresponding to the through holes 25 and 27, and is held by the holding jig 32. The disc spring material 4 is moved in the vertical direction together with the holding jig 32 by an elevating cylinder 51 of the handling mechanism 18, and is rotated at a predetermined position by an induction motor 50 of the handling mechanism 18. . In addition, in FIG. 8, 34 is an oil leakage prevention plate. Further, the high frequency transformer 22 is provided with a coil lead 28.
A high frequency coil 21 is attached to the tip. As shown in FIG. 6, this high-frequency coil 21 includes a pair of coil lead portions 29a and 29b facing each other, and a semi-disc-shaped portion 30 having a size and shape into which approximately half of the disc spring material 4 can be inserted. The upper surface plate 30a and the lower surface plate 30b of the semi-disc-shaped portion 30 have a semi-circular notch 31 in the center thereof so as to correspond to the center hole 2 of the disc spring material 4.
a and 31b are formed respectively. Also the 6th
As shown in the figure, the lower plate 31b is made of a non-conductive material, such as a ceramic material such as silicon nitride, in order to prevent plastic deformation of the disc spring material 4 due to heating and to prevent contact with the high-frequency coil 21. A plurality of projections 52 are provided. Further, the transformer 22 can be moved in the horizontal direction by a moving means 23 together with the high frequency coil 21, and as the high frequency coil 21 moves, the high frequency coil 21 is inserted into a predetermined position between the upper and lower molding molds 17a and 17b, or It is configured to be moved back and forth in a direction away from a predetermined position. As described above, the manufacturing device 16 includes the high-frequency coil 21 for high-frequency heating the disc spring material 4 to a required hardening temperature, the induction motor 50 for rotationally driving the disc spring material during high-frequency induction heating, and the disc spring material 4. A disc spring material handling mechanism 18 having an elevating cylinder 51 for transferring the disc spring material 4, and upper and lower molding molds 17 for molding and heat treating the disc spring material 4.
a, 17b, a high-frequency coil moving means 23 for moving the high-frequency coil to a position removed from between the upper and lower molding molds 17a and 17b and not interfering with the disc spring material 4, and an upper molding mold. 1
7a toward the lower molding die 17b, and the upper and lower molds 17a, 17b supply quenching cooling oil from the quenching cooling oil tank 20 to quench and cool the disc spring material 4. and a quenching cooling oil supply means for supplying between the two. Next, the disc spring member manufacturing apparatus 1 having the above-described configuration will be explained.
The operation of step 6 will be explained below. First, by press-punching a thin steel plate, a disk-shaped dish having a central hole 2 and a plurality of radial holes 3 each communicating with the central hole 2 at one end, as shown in FIGS. 2 and 3, is formed. Obtain spring material 4.
Then, this disc spring material 4 is transferred to the disc spring material handling means 1.
It is placed and fixed on the holding jig 32 of No.8. In this case, the holding jig 32 should be placed between the upper and lower molding molds 17a and 17b and between the high-frequency coil 2.
1 is placed at the same height position (heating position), the disc spring material 4 placed and fixed on this holding jig 32 is placed at a predetermined heating position. Thereafter, the high-frequency coil 21 and the high-frequency transformer 22 are transferred to the press molding device 19 by the moving means 23.
is horizontally moved to the side, inserted between the molds 17a and 17b, and placed at a position corresponding to the disc spring material 4 on the holding jig 32. That is, as shown in FIGS. 6 and 7, the high-frequency coil 21 has approximately half of the disk spring material 4 rotating within the semicircular plate-shaped portion 30 between the upper surface plate 30a and the lower surface plate 30b. It is placed in such a position that it can be stored and arranged in a state where it can be stored. Next, the disc spring material 4 is rotated together with the holding jig 32 by the induction motor 50. At the same time, a high frequency large current is supplied from a high frequency power source (not shown) to the high frequency transformer 22, and a high frequency large current is caused to flow in the high frequency coil 21, for example, in the direction indicated by arrow A in FIG. The high frequency power source is 30kHz to 400kHz depending on the thickness of the disc spring material 4.
selected in the frequency range of As a result, all parts of the disc spring material 4 are uniformly heated by high frequency induction. At this time, since the holding jig 32 for the disc spring material 4 is made of ceramic material, for example, silicon nitride material,
The disc spring material 4 is not subjected to heat by the holding jig 32, and therefore, the inner diameter portion of the disc spring material 4 that is in contact with the holding jig 32 is quickly heated to a predetermined quenching temperature under a uniform temperature distribution state. heated to. Further, even if the disc spring material 4 is deformed into an umbrella shape due to plastic deformation when the disc spring material 4 is heated, the outer peripheral edge of the disc spring material 4 is supported by the plurality of silicon nitride protrusions 52 of the high frequency coil 21. There is no risk of contact with the high frequency coil 21. Therefore, there is no possibility that sparks are generated between the high-frequency coil 21 and the disc spring material due to contact with the disc spring material during heating, causing problems such as melting and damage of both of them. When the disc spring material 4 reaches a predetermined hardening temperature, the supply of high frequency large current to the high frequency coil 21 is cut off and the heating process is completed. It is moved back to the position and placed at a position removed from between the molds 17a and 17b. At the same time, the disc spring material 4 and the holding jig 32 stop rotating and are lowered by the lifting cylinder 51. As a result, the center hole 2 of the disc spring material 4 is formed in the lower molding die 17b.
In a state corresponding to the through hole 25 of the lower molding die 1
7b. On the other hand, the high frequency coil 21 is
At the same time, the upper molding die 17a
is moved downwardly toward the lower molding die 17b together with the mold pressurizing cylinder 24 by a drive device (not shown). Immediately after the disc spring material 4 is placed on the lower molding die 17b, the upper molding die 17a and the lower molding die 1 are moved downward from above.
7b as shown in Figure 4.
Pressure molded. At this time, since the disc spring material 4 has the central hole 2 and the radial holes 3, the disc spring member 14 is molded without wrinkles or deformation. Immediately after this pressure molding, quenching cooling oil is supplied to the central holes 25, 27 of the molds 17a, 17b through the supply path 33 of the fixed plate 26, as shown by arrow B in FIG. . The supplied quenching cooling oil is applied to the radial grooves 42 and 42 provided on the pressure surface 40 and receiving surface 43 of the molds 17a and 17b, respectively.
While flowing through 44, the disc spring material is cooled and flows out of the mold. The quenching cooling oil that has flowed out of the mold is returned to the quenching cooling oil tank 20 through a quenching cooling oil discharge pipe (not shown) and is reused. When the quenching cooling is completed, the supply of quenching cooling oil is stopped, and the upper molding die 17a is moved back upward by the pressure molding cylinder 24. Through the series of operations described above, a disk-shaped hardened disk spring member 14 is manufactured. Next, in order to clarify the advantages of the above-described manufacturing apparatus 16, the following tests were conducted. Example: Outer diameter 210mmφ, inner diameter 55mmφ, plate thickness 2.33mm, material
SK5 types of disc spring materials 4 were manufactured under various conditions shown in Table 1.

【表】 以下の表−2は、皿バネ素材4の加熱終了後、
加圧成型処理するまでに要する時間を示してい
る。
[Table] Table 2 below shows that after heating the disc spring material 4,
It shows the time required until the pressure molding process is performed.

【表】 前記表−2において明らかなように、加熱終了
後から加圧成型熱処理する迄の時間は、本装置に
よれば従来の装置に比べて半分以下の時間で済
む。従つて、加圧成型熱処理する際の皿バネ素材
4の温度低下は少なく、完全な焼入を行うことが
できる。 本実施例で得られた皿バネ部材14の品質特性
結果を表−3に示す。
[Table] As is clear from Table 2 above, the time from the end of heating until the pressure molding heat treatment is performed is less than half the time according to the present apparatus compared to the conventional apparatus. Therefore, the temperature drop of the disc spring material 4 during pressure molding heat treatment is small, and complete hardening can be performed. Table 3 shows the quality characteristics of the disc spring member 14 obtained in this example.

【表】 前記表−3から明らかなように、本装置によれ
ば、大気中で加熱しているにも拘わらず、高周波
誘導による短時間加熱のため、皿バネ素材4表面
の脱炭現象は全く認められない。短時間加熱であ
るが、焼入硬さ、及び焼入組織共に従来の装置に
よるものと差異はない。またオーステナイト結晶
粒度は、短時間加熱のため、従来の装置によるも
のに比べて本装置による方が多少微細であり、機
械的強度上好ましい。 本実施例で得られた皿バネ部材14を焼戻しし
た後、単体高速ストローキング耐久試験を行つ
た。耐久試験回数50万回で特に異常は認められ
ず、耐久性については従来の装置によるものと同
様であり、良好な結果が得られた。ただし、前記
表−3に示すようにオーステナイト結晶粒度は本
発明の装置によるものの方が従来の装置によるも
のより微細であるため、耐久限界試験を行つた場
合には、本発明の装置によるものの方が良好な結
果を得るものと推定できる。 以上の如く本発明の皿バネ部材製造装置によれ
ば、高周波誘導により皿バネ素材を加熱するよう
にしているため、比較的短時間で皿バネ素材を所
要の焼入温度に加熱することができる。従つて、
たとえ雰囲気ガスを用いることなく大気中で加熱
処理したとしても、皿バネ素材の表層に脱炭が生
じることがない。しかも、加熱処理後に、この加
熱処理位置(第1の位置)の近傍位置(第2の位
置)において直ちに成型加工するようにしている
ので、皿バネ素材が温度低下を来たしてしまうよ
うな不都合を生じることがなく、完全な焼入れの
施こされた高品質の皿バネ部材を得ることが可能
である。 従つて、本発明の装置によれば、高品質の皿バ
ネ部材を得ることができる上に、従来の装置に比
べて、作業能率の向上、製造のコストダウン及び
保守消耗費の大巾な軽減化を図ることが可能とな
り、当該産業界に貢献するところ大なるものがあ
る。
[Table] As is clear from Table 3, according to this device, even though it is heated in the atmosphere, the decarburization phenomenon on the surface of the disc spring material 4 does not occur due to the short-time heating caused by high frequency induction. Totally unacceptable. Although the heating is for a short time, both the quenched hardness and the quenched structure are the same as those made using conventional equipment. Furthermore, since the austenite crystal grain size is heated for a short time, the present apparatus has a slightly finer grain size than the conventional apparatus, which is preferable in terms of mechanical strength. After tempering the disc spring member 14 obtained in this example, a single high-speed stroking durability test was conducted. No particular abnormality was observed after 500,000 durability tests, and the durability was the same as that of conventional equipment, and good results were obtained. However, as shown in Table 3 above, the austenite crystal grain size obtained by the apparatus of the present invention is finer than that obtained by the conventional apparatus. It can be assumed that good results will be obtained. As described above, according to the disc spring member manufacturing apparatus of the present invention, since the disc spring material is heated by high frequency induction, the disc spring material can be heated to the required hardening temperature in a relatively short time. . Therefore,
Even if heat treatment is performed in the atmosphere without using atmospheric gas, decarburization does not occur on the surface layer of the disc spring material. Furthermore, after the heat treatment, the molding process is immediately performed at a position (second position) near the heat treatment position (first position), which prevents the disadvantage that the temperature of the disc spring material may drop. It is possible to obtain a high-quality disc spring member that is completely quenched. Therefore, according to the apparatus of the present invention, it is possible to obtain a high-quality disc spring member, and in addition, compared to conventional apparatuses, it is possible to improve work efficiency, reduce manufacturing costs, and significantly reduce maintenance and consumption costs. This will greatly contribute to the industry in question.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は皿バネ部材の従来の製造装置の概略系
統図、第2図は皿バネ素材の平面図、第3図は第
2図における−断面図、第4図は成型熱処理
後における皿バネ部材の第3図と同様の断面図で
ある。第5図〜第8図は本発明による皿バネ部材
の製造装置の一実施例を説明するためのものであ
つて、第5図は皿バネ部材の製造装置の概略側面
図、第6図は高周波コイル内に皿バネ素材の一部
が挿入配置された状態を示す拡大斜視図、第7図
は第6図における−線断面図、第8図はプレ
ス成型後における皿バネ素材の焼入冷却時の上下
金型と皿バネ素材との関係を示す要部拡大断面図
である。 4……皿バネ素材、17a……上部成型金型、
17b……下部成型金型、18……皿バネ素材取
扱機構、20……焼入冷却油槽、21……高周波
コイル、23……高周波コイル移動手段、24…
…金型加圧シリンダ、32……皿バネ素材保持治
具、33……供給管路、50……インダクシヨン
モータ、51……昇降シリンダ、52……突起
部。
Fig. 1 is a schematic system diagram of a conventional manufacturing apparatus for disc spring members, Fig. 2 is a plan view of the disc spring material, Fig. 3 is a cross-sectional view in Fig. 2, and Fig. 4 is a disc spring after heat treatment for molding. FIG. 4 is a cross-sectional view similar to FIG. 3 of the member; 5 to 8 are for explaining an embodiment of the apparatus for manufacturing a disc spring member according to the present invention, FIG. 5 is a schematic side view of the apparatus for manufacturing a disc spring member, and FIG. 6 is a schematic side view of the apparatus for manufacturing a disc spring member. An enlarged perspective view showing a state in which a part of the disc spring material is inserted into the high-frequency coil, Fig. 7 is a sectional view taken along the - line in Fig. 6, and Fig. 8 is quenching and cooling of the disc spring material after press forming. FIG. 6 is an enlarged cross-sectional view of a main part showing the relationship between the upper and lower molds and the disc spring material at the time. 4...disc spring material, 17a...upper mold,
17b... Lower molding die, 18... Belleville spring material handling mechanism, 20... Quenching cooling oil tank, 21... High frequency coil, 23... High frequency coil moving means, 24...
... Mold pressure cylinder, 32 ... Disc spring material holding jig, 33 ... Supply pipe line, 50 ... Induction motor, 51 ... Lifting cylinder, 52 ... Projection.

Claims (1)

【特許請求の範囲】 1 皿バネ素材を第1の位置で加熱し、次いで第
2の位置で成型熱処理を行なうようにした皿バネ
素材の製造装置において、 (a) 前記皿バネ素材を所要の焼入温度に高周波誘
導加熱するための高周波コイル、 (b) 高周波誘導加熱時に前記皿バネ素材を回転駆
動させるための回転駆動手段、及び、加熱終了
後に前記第1の位置から前記第2の位置に前記
皿バネ素材を移送するための移送手段を有する
皿バネ素材取扱機構、 (c) 前記第2の位置において前記皿バネ素材を成
型熱処理するための上部成型金型及び下部成型
金型、 (d) 加熱終了後に、前記高周波コイルを前記上部
成型金型と前記下部成型金型との間から外れた
位置であつて前記皿バネ素材と干渉しない位置
に移動するための高周波コイル移動手段、 (e) 前記上部成型金型及び/又は前記下部成型金
型を駆動する金型加圧シリンダ、 (f) 前記上部成型金型と前記下部成型金型との間
に挾持された状態にある前記皿バネ素材を焼入
冷却するために、焼入冷却油を前記上部成型金
型と前記下部成型金型との間に供給する焼入冷
却油供給手段、 をそれぞれ具備し、前記上部成型金型と前記下部
成型金型との間の前記第1の位置において前記皿
バネ素材を前記高周波コイルにて所要の焼入れ温
度に高周波誘導加熱し、加熱された前記皿バネ素
材を前記第2の位置において直ちに成型熱処理す
るように構成したことを特徴とする皿バネ部材の
製造装置。 2 前記皿バネ素材取扱機構における皿バネ素材
保持部をセラミツク材にて構成したことを特徴と
する特許請求の範囲第1項に記載の皿バネ部材の
製造装置。
[Scope of Claims] 1. An apparatus for manufacturing a disc spring material in which the disc spring material is heated at a first position and then subjected to molding heat treatment at a second position, comprising: (a) heating the disc spring material at a required position; (b) a high-frequency coil for high-frequency induction heating to a quenching temperature; (b) a rotation drive means for rotationally driving the disc spring material during high-frequency induction heating; (c) an upper molding die and a lower molding die for heat-treating the disc spring material at the second position; d) After heating, a high-frequency coil moving means for moving the high-frequency coil to a position removed from between the upper mold and the lower mold and where it does not interfere with the disc spring material; e) a mold pressure cylinder that drives the upper mold and/or the lower mold; (f) the plate held between the upper mold and the lower mold; quenching cooling oil supply means for supplying quenching cooling oil between the upper molding die and the lower molding die in order to quench and cool the spring material; The disc spring material is high-frequency induction heated to a required hardening temperature by the high-frequency coil at the first position between the lower molding die, and the heated disc spring material is immediately returned to the second position. A manufacturing device for a disc spring member, characterized in that it is configured to perform molding heat treatment. 2. The disc spring member manufacturing apparatus according to claim 1, wherein the disc spring material holding portion in the disc spring material handling mechanism is made of ceramic material.
JP22748483A 1983-12-01 1983-12-01 Apparatus for producing belleville spring member Granted JPS60121216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22748483A JPS60121216A (en) 1983-12-01 1983-12-01 Apparatus for producing belleville spring member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22748483A JPS60121216A (en) 1983-12-01 1983-12-01 Apparatus for producing belleville spring member

Publications (2)

Publication Number Publication Date
JPS60121216A JPS60121216A (en) 1985-06-28
JPS6346127B2 true JPS6346127B2 (en) 1988-09-13

Family

ID=16861603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22748483A Granted JPS60121216A (en) 1983-12-01 1983-12-01 Apparatus for producing belleville spring member

Country Status (1)

Country Link
JP (1) JPS60121216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232861A (en) * 2013-06-06 2014-12-24 天龙科技炉业(无锡)有限公司 All-automatic annular flexible quenching machine
CN104338820A (en) * 2014-10-20 2015-02-11 重庆长安离合器制造有限公司 Continuous punching method of diaphragm spring

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785711B (en) * 2014-01-02 2015-12-09 浙江龙华汽配制造有限公司 A kind of press of diaphragm spring
CN104060064B (en) * 2014-06-30 2016-03-09 安庆谢德尔汽车零部件有限公司 A kind of spring hot pressing processing unit (plant)
CN106755898B (en) * 2016-12-26 2018-07-24 长春一东离合器股份有限公司 Compressed air quenching device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232861A (en) * 2013-06-06 2014-12-24 天龙科技炉业(无锡)有限公司 All-automatic annular flexible quenching machine
CN104338820A (en) * 2014-10-20 2015-02-11 重庆长安离合器制造有限公司 Continuous punching method of diaphragm spring
CN104338820B (en) * 2014-10-20 2016-04-27 重庆长安离合器制造有限公司 Diaphragm spring continuous stamping method

Also Published As

Publication number Publication date
JPS60121216A (en) 1985-06-28

Similar Documents

Publication Publication Date Title
US4832764A (en) Process for the low-distortion thermomechanical treatment of workpieces in mass production as well as application of the process
US20050218538A1 (en) Press molding apparatus and press molding method
KR100426799B1 (en) Method and apparatus for high frequency induction tempering of crankshaft
JP2007138223A (en) Method and apparatus for die-quenching ring type article
JP3572618B2 (en) Method and apparatus for correcting tempering of rolling parts
JPS6346127B2 (en)
JP2013124416A (en) Method for manufacturing bearing ring of rolling bearing
JPH0533059A (en) Device for restrict-quenching outer diameter of thin ring
JP2013216959A (en) Thermal treatment equipment for ring-shaped member
US20040212109A1 (en) Press-molding apparatus, press-molding method and method of producing an optical element
JP5036165B2 (en) Mold quenching method and restraint type device for ring-shaped product
JP2007327110A (en) Method for manufacturing bearing ring of rolling bearing
JPH0468365B2 (en)
JP5036169B2 (en) Mold quenching method and restraint type device for ring-shaped product
JPH09235618A (en) Heat treatment apparatus for correcting deformation of annular body
JP2020158828A (en) Method and apparatus for producing sintered product
CN1765786A (en) Press molding apparatus and press molding method
JPH0533060A (en) Device and method for continuously quenching thin rings
JP2005330520A (en) High frequency induction hardening method and its apparatus
KR102503739B1 (en) High frequency heat treatment system equipped with sloped rollers
CN108866302A (en) A kind of heat setting process of butterfly spring
JP2005330543A (en) High frequency induction heat-treatment apparatus
JP4354975B2 (en) High frequency induction heating device for tempering crankshaft
JP3853311B2 (en) High frequency induction heating method for tempering a crankshaft
JP2005330544A (en) High frequency induction hardening apparatus