JPS6346014B2 - - Google Patents

Info

Publication number
JPS6346014B2
JPS6346014B2 JP8591184A JP8591184A JPS6346014B2 JP S6346014 B2 JPS6346014 B2 JP S6346014B2 JP 8591184 A JP8591184 A JP 8591184A JP 8591184 A JP8591184 A JP 8591184A JP S6346014 B2 JPS6346014 B2 JP S6346014B2
Authority
JP
Japan
Prior art keywords
photodetector
base material
light source
light
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8591184A
Other languages
Japanese (ja)
Other versions
JPS60231438A (en
Inventor
Shigeki Sakaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8591184A priority Critical patent/JPS60231438A/en
Publication of JPS60231438A publication Critical patent/JPS60231438A/en
Publication of JPS6346014B2 publication Critical patent/JPS6346014B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02736Means for supporting, rotating or feeding the tubes, rods, fibres or filaments to be drawn, e.g. fibre draw towers, preform alignment, butt-joining preforms or dummy parts during feeding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光フアイバ母材を光学的に非接触で位
置決めする装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for optically positioning an optical fiber base material in a non-contact manner.

〔従来の技術〕[Conventional technology]

石英系光フアイバ母材を管状線引き炉を用いて
加熱軟化させて光フアイバに線引きするめには、
母材の中心軸を線引き炉中心軸と一致させること
が肝要である。その理由は、母材を円周方向に均
一に加熱して、フアイバの線径変動と円化を抑制
しなければならないためであり、また、母材自身
がが必ずしも真直でないめ、線引き中、徐々に位
置ずれが生じるためである。また、線引き後にお
いて形成されるプラスチツク被覆に関し、均一な
被覆層を形するため被覆装置の中心軸とフアイバ
軸とを一致させる必要がある。
In order to heat and soften the quartz-based optical fiber base material using a tubular drawing furnace and draw it into optical fiber,
It is important to align the central axis of the base material with the central axis of the drawing furnace. The reason for this is that the base material must be heated uniformly in the circumferential direction to suppress variations in the fiber diameter and rounding.Also, since the base material itself is not necessarily straight, during drawing, This is because positional deviation occurs gradually. Further, regarding the plastic coating formed after drawing, it is necessary to align the central axis of the coating device with the fiber axis in order to form a uniform coating layer.

従来、この種の位置決め装置には特定のものが
なく、通常、線引き炉直下に設置された外径測定
器によつて線引きされたフアイバの走行位置がモ
ニタされていた。母材の位置決めはこのモニタ出
力のフイードバツクにより制御されていた。その
ため、走行フアイバの振動などにより位置決め精
度が悪いことや、フイードバツクの時間遅れが大
きいなどの制御性に難点があつた。
Conventionally, there is no specific positioning device of this type, and the traveling position of the drawn fiber is usually monitored by an outer diameter measuring device installed directly below the drawing furnace. The positioning of the base material was controlled by the feedback of this monitor output. Therefore, there were problems with controllability, such as poor positioning accuracy due to vibrations of the traveling fiber, and large feedback time delays.

一方、線径測定に用いられているしや光法によ
り位置決めを行なおうとした場合、母材径が数10
mmと大きいことから、光ビームの走査幅を大きく
するかまたは2軸で操作しなければならなず、装
置が複雑となるなどの欠点があつた。
On the other hand, when attempting to position using the laser light method used for wire diameter measurement, the base material diameter is several 10
Since it is large (mm), it is necessary to increase the scanning width of the light beam or operate on two axes, which has the disadvantage of complicating the device.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、母材の心出しを非接触状態
で、簡便かつ高精度に行うことができ、しかも装
置の構成が簡単でる光フアイバ母材心出し装置を
提供することである。
An object of the present invention is to provide an optical fiber preform centering device that can easily and highly accurately center a preform in a non-contact state and has a simple configuration.

〔発明の構成〕[Structure of the invention]

この発明は、棒状の石英系光フアイバ母材を非
接触で光学的に位置決めする装置において、同一
光軸上に光源および光検出器を配置し、光源から
細く絞つた光ビームを光検出器に向けて出射し、
光源および光検出器の中間で光ビームを横切るよ
う母材を配置したことを特徴とするものである。
This invention is an apparatus for optically positioning a rod-shaped silica-based optical fiber base material in a non-contact manner, in which a light source and a photodetector are arranged on the same optical axis, and a narrowly focused light beam is directed from the light source to the photodetector. Emits light toward
It is characterized in that the base material is arranged so as to cross the light beam between the light source and the photodetector.

〔実施例〕〔Example〕

第1図は本発明の実施例を示したものであり、
1の光源(He−Neレーザ)から出射された光
は、光路アを経て半透鏡1により光路イ及びエに
分岐される。光路イを通る光は、4aのレンズで
絞られて細経のビームとなり、6の光フアイバ母
材を貫通して、光路ウを経てレンズ4bを通り光
検出器5aに至る。光源1、半透鏡2、レンズ4
a,4b、光検出器5aは同一光軸上に配置され
ている。一方、半透鏡2により分岐された光は、
光路エを経て、反射鏡3a,3bにより、光路カ
に導かれ、レンズ4c、母材6、光路キ、レンズ
4dを経て、光検出器5bに至る。反射鏡3bか
ら光検出器5bまでの各素子は同一光軸上に設置
され、この光軸は、光源1から光検出器5bに至
る光軸と直交し、かつ、その交点は8の管状ヒー
タの中心軸と一致するように配置されている。
FIG. 1 shows an embodiment of the present invention,
Light emitted from one light source (He--Ne laser) passes through optical path A and is branched into optical paths A and D by a semi-transparent mirror 1. The light passing through the optical path A is narrowed down by the lens 4a to become a narrow beam, passes through the optical fiber base material 6, passes through the optical path C, passes through the lens 4b, and reaches the photodetector 5a. Light source 1, semi-transparent mirror 2, lens 4
a, 4b, and the photodetector 5a are arranged on the same optical axis. On the other hand, the light split by the semi-transparent mirror 2 is
After passing through optical path D, it is guided to optical path F by reflecting mirrors 3a and 3b, passing through lens 4c, base material 6, optical path K, and lens 4d, to reach photodetector 5b. Each element from the reflector 3b to the photodetector 5b is installed on the same optical axis, and this optical axis is perpendicular to the optical axis from the light source 1 to the photodetector 5b, and the intersection point is at the point of intersection of the eight tubular heaters. is arranged to coincide with the central axis of

この実施例による心出しの原理を第2図によつ
て説明する。6は母材で、6aはコア部であり、
5は光検出器である。母材6の側方から直角に光
ビームをクの光路により当てる。光路クが母材中
心軸を横切る場合、光ビームは光路ケを経て光軸
が曲がることなく5の光検出器まで直進する。一
方、母材が点線で示した6′の位置にまで移動し
た場合、クの光路を通る光は2点鎖線で示した光
路コにように曲げられる。位置ずれが大きくなる
と、光路コは5の光検出器からそれ、受光されな
くなる。ここで、光ビームにはある径の広がりが
あるものとし、また、光検出器の受光面を限定す
ると、光検出器出力は、母材位置ずれがほとんど
ない場合に最大となり、位置ずれが増加するにつ
れて出力は減少する。従つて、検出器出力が最大
となるように母材位置を調節することで心出しが
できる。
The principle of centering according to this embodiment will be explained with reference to FIG. 6 is the base material, 6a is the core part,
5 is a photodetector. A light beam is applied from the side of the base material 6 at right angles through the optical path. When the optical path K crosses the central axis of the base material, the light beam passes straight through the optical path K to the photodetector 5 without bending the optical axis. On the other hand, when the base material moves to the position 6' shown by the dotted line, the light passing through the optical path H is bent into the optical path C shown by the two-dot chain line. When the positional shift becomes large, the optical path deviates from the photodetector 5 and no light is received. Here, it is assumed that the light beam has a certain diameter spread, and if the light-receiving surface of the photodetector is limited, the photodetector output will be maximum when there is almost no displacement of the base material, and as the displacement increases. As the output increases, the output decreases. Therefore, centering can be performed by adjusting the base material position so that the detector output is maximized.

一方、光検出器に一次元のアレイを用いた場
合、位置ずれの方向およびずれの量も検出するこ
とが可能となる。
On the other hand, when a one-dimensional array is used as a photodetector, it becomes possible to detect the direction and amount of positional deviation.

第1図に示す本実施例において、光検出器に
1024個のシリコンフオトダイオードアレイを用
い、母材位置ずれ許容幅(従つて、アレイの受光
角)を±2mmとした場合、母材の楕円率、(長軸
−短軸)×2/(長軸+短軸)×100、が5%以下
であれば、±0.1mm以下の精度で心出しできた。
In this embodiment shown in Fig. 1, the photodetector
When a 1024 silicon photodiode array is used and the allowable width for base material positional deviation (therefore, the acceptance angle of the array) is ±2 mm, the ellipticity of the base material is (long axis - short axis) x 2/(long axis). If axis + short axis) x 100 was less than 5%, centering could be achieved with an accuracy of ±0.1 mm or less.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、光源
と光検出器を同一光軸上に配置とた構成であるた
め、母材の心出しを非接触状態で簡便かつ高精度
ででき、装置の構成も簡単である等の効果が得ら
れる。
As explained above, according to the present invention, since the light source and the photodetector are arranged on the same optical axis, centering of the base material can be performed easily and with high precision in a non-contact state, and the device can be easily and accurately centered. Effects such as a simple configuration can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略図、第2
図は本発明の原理を示す図である。 1……光源、2……半透鏡、3a,3b……反
射鏡、4a,4b,4c,4d……レンズ、5
a,5b……光検出器、6……母材、7……フア
イバ、8……管状ヒータ。
FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG.
The figure is a diagram illustrating the principle of the present invention. 1...Light source, 2...Semi-transparent mirror, 3a, 3b...Reflector, 4a, 4b, 4c, 4d...Lens, 5
a, 5b...photodetector, 6...base material, 7...fiber, 8...tubular heater.

Claims (1)

【特許請求の範囲】[Claims] 1 棒状の石英系光フアイバ母材を非接触で光学
的に位置決めする装置において、同一光軸上に光
源および光検出器を配置し、光源から細く絞つた
光ビームを光検出器に向けて出射し、光源および
光検出器の中間で光ビームを横切るよう母材を配
置しことを特徴とする光フアイバ母材心出し装
置。
1 In a device that optically positions a rod-shaped quartz-based optical fiber base material without contact, a light source and a photodetector are placed on the same optical axis, and a narrowly focused light beam is emitted from the light source toward the photodetector. An optical fiber preform centering device characterized in that the preform is arranged so as to cross a light beam between a light source and a photodetector.
JP8591184A 1984-04-27 1984-04-27 Centering device of optical fiber base material Granted JPS60231438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8591184A JPS60231438A (en) 1984-04-27 1984-04-27 Centering device of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8591184A JPS60231438A (en) 1984-04-27 1984-04-27 Centering device of optical fiber base material

Publications (2)

Publication Number Publication Date
JPS60231438A JPS60231438A (en) 1985-11-18
JPS6346014B2 true JPS6346014B2 (en) 1988-09-13

Family

ID=13871996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8591184A Granted JPS60231438A (en) 1984-04-27 1984-04-27 Centering device of optical fiber base material

Country Status (1)

Country Link
JP (1) JPS60231438A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470507B1 (en) * 2001-11-02 2005-03-07 엘지전선 주식회사 An automatic aligning control apparatus of preform in the oversooting machine for outside vapor deposition method

Also Published As

Publication number Publication date
JPS60231438A (en) 1985-11-18

Similar Documents

Publication Publication Date Title
US4456330A (en) Optical coupling system and method for manufacturing same
US4603941A (en) Polarization-maintaining fiber system and method of manufacturing the same
JP2011123493A (en) Beam bending device and method of manufacturing the same
JPS6412362B2 (en)
JPH0138664B2 (en)
US7746914B2 (en) Waveguide retroreflector and method of fabricating the same
JPH0843647A (en) Sphering method of optical fiber end and device therefor
CN1541340A (en) Thermally-formed lensed fibers
US5701373A (en) Method for improving the coupling efficiency of elliptical light beams into optical waveguides
JPH0725565B2 (en) Optical fiber drawing device
US6374009B1 (en) TEMC fiber based optical switch
EP0234326A2 (en) Single mode optical fiber coupler and method of manufacture thereof
JPS6346014B2 (en)
JP2005519341A (en) Biconic lens for optical fiber and manufacturing method thereof
US6608276B2 (en) Apparatus for heating a small area of an object to a high temperature and for accurately maintaining this temperature
JPH10325917A (en) Optical receiver and its manufacture
JP2005156945A (en) Optical fiber type component and manufacturing method therefor
JPS6396609A (en) Optical connecting circuit
JP2001198690A (en) Laser machining device
JPH07199002A (en) Semiconductor laser array module
US6980364B2 (en) Projector lens
JP2620321B2 (en) Light switch
JPS62142206A (en) Measuring instrument for surface position of object
JPH09211274A (en) Manufacture of laser diode module
JP3083402B2 (en) Optical switch and coupling position recognition method in optical switch