JPH0725565B2 - Optical fiber drawing device - Google Patents

Optical fiber drawing device

Info

Publication number
JPH0725565B2
JPH0725565B2 JP61149787A JP14978786A JPH0725565B2 JP H0725565 B2 JPH0725565 B2 JP H0725565B2 JP 61149787 A JP61149787 A JP 61149787A JP 14978786 A JP14978786 A JP 14978786A JP H0725565 B2 JPH0725565 B2 JP H0725565B2
Authority
JP
Japan
Prior art keywords
optical fiber
outer diameter
cross
optical
diameter measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61149787A
Other languages
Japanese (ja)
Other versions
JPS638233A (en
Inventor
和憲 千田
壽一 野田
至 横浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61149787A priority Critical patent/JPH0725565B2/en
Publication of JPS638233A publication Critical patent/JPS638233A/en
Publication of JPH0725565B2 publication Critical patent/JPH0725565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/40Monitoring or regulating the draw tension or draw rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は断面が各種形状の光ファイバ母材から光ファイ
バを線引きする光ファイバ線引き装置に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to an optical fiber drawing device for drawing an optical fiber from an optical fiber preform having various cross sections.

(従来の技術) ガラス棒状の光ファイバ母材の一端部を加熱溶融すると
同時に、紡糸して線状の光ファイバとし、その表面に液
状の被覆材料を被覆し、ドラムに巻き取る従来の光ファ
イバ線引き装置の構成を第4図に示す。
(Prior Art) A conventional optical fiber in which one end of a glass rod-shaped optical fiber preform is melted by heating and at the same time spun into a linear optical fiber, the surface of which is coated with a liquid coating material and wound on a drum. The construction of the wire drawing device is shown in FIG.

第4図において、1は抵抗加熱炉、等の加熱溶融炉で、
その内部には約2000℃の高温となる発熱体2がある。発
熱体2の内側に光ファイバ母材3の一端を一定速度で挿
入し、加熱溶融して光ファイバ4とする。この光ファイ
バの外径を外径測定器5で測定し、ついで被覆装置6で
プラスチック、等を光ファイバの外周に被覆し、硬化炉
7で硬化させ巻取りドラム8に巻き取る。光ファイバの
外径は外径設定器9であらかじめ設定しておき、外径測
定器5で測定した値との差分をPIDコントローラ10を介
して巻取りドラム駆動回路11にフィードバックをかけ、
外径が設定値となるようにドラムの回転を制御する。
In FIG. 4, 1 is a heating and melting furnace such as a resistance heating furnace,
Inside the heating element 2, there is a high temperature of about 2000 ° C. One end of the optical fiber preform 3 is inserted inside the heating element 2 at a constant speed, and heated and melted to form an optical fiber 4. The outer diameter of the optical fiber is measured by the outer diameter measuring device 5, and then the outer circumference of the optical fiber is coated with the coating device 6 and the outer periphery of the optical fiber is cured by the curing furnace 7 and wound on the winding drum 8. The outer diameter of the optical fiber is preset by the outer diameter setting device 9, and the difference from the value measured by the outer diameter measuring device 5 is fed back to the winding drum drive circuit 11 via the PID controller 10.
The rotation of the drum is controlled so that the outer diameter becomes the set value.

このような光ファイバ線引き装置の構成は、中原基博、
他(NTT研究実用化報告Vol.26,No.9,p2557,1977)に記
載されている。
The configuration of such an optical fiber drawing device is based on Motohiro Nakahara,
Others (NTT Research Practical Report Vol.26, No.9, p2557, 1977).

断面が円形状の通常の光ファイバ母材を線引きする場合
には、第4図の構成で何ら問題なく光ファイバに線引き
可能であり、外径変動幅が±1μm以内に制御された高
精度の光ファイバが量産化されている。
When an ordinary optical fiber preform having a circular cross section is drawn, the optical fiber can be drawn without any problem with the configuration shown in FIG. 4, and the outer diameter fluctuation range is controlled within ± 1 μm and is highly accurate. Optical fibers have been mass-produced.

しかし、光ファイバを用いて各種光ファイバセンサ部品
を構成するために、光ファイバ母材の断面形状が円形で
はない形状(例えば特願昭59−98337)が提案されてい
る。
However, in order to form various optical fiber sensor parts using optical fibers, a shape (for example, Japanese Patent Application No. 59-98337) in which the cross-sectional shape of the optical fiber base material is not circular has been proposed.

このような光ファイバを第4図に示した従来の光ファイ
バ線引き装置で線引きすると、被覆装置6の部分や巻取
りドラム8の部分での光ファイバの捩れ、振動に起因し
た光ファイバの回転が生じる。この結果、外径測定器の
検出信号は変動し、この信号を用いるドラム駆動回路は
誤動作を行うという欠点があった。このため、矩形光フ
ァイバの線引き時にはドラム駆動回路を介したフィード
バックは使用できず、光ファイバ外径測定器の信号は単
なるモニタ用として用い、長時間に亘って人間の手で線
引き速度を調整せざるを得なかった。
When such an optical fiber is drawn by the conventional optical fiber drawing device shown in FIG. 4, the rotation of the optical fiber due to the twisting and vibration of the optical fiber in the covering device 6 portion and the winding drum 8 portion occurs. Occurs. As a result, the detection signal of the outer diameter measuring device fluctuates, and the drum drive circuit using this signal has a drawback that it malfunctions. Therefore, when drawing a rectangular optical fiber, feedback through the drum drive circuit cannot be used, and the signal from the optical fiber outer diameter measuring device is used only for monitoring, and the drawing speed can be adjusted manually by a human for a long time. I had no choice.

(発明が解決しようとする問題点) 本発明は、各種形状の断面を有する光ファイバ母材から
長手方向に均一で、断面が各種形状の光ファイバを製造
することができる光ファイバ線引き装置を提供すること
にある。
(Problems to be Solved by the Invention) The present invention provides an optical fiber drawing device capable of manufacturing an optical fiber having various shapes in cross section, which is uniform in the longitudinal direction, from an optical fiber preform having various shapes of cross sections. To do.

(問題点を解決するための手段) 本発明の光ファイバ線引き装置は、各種形状の断面を有
する光ファイバ母材から光ファイバに線引きする際に、
光ファイバの外径を複数方向から測定し、光ファイバの
断面積を線引き中に算出し、光ファイバの断面積が一定
となるように制御することにより、長手方向に均一で、
断面が各種形状の光ファイバを製造可能とする。
(Means for Solving Problems) The optical fiber drawing device of the present invention, when drawing an optical fiber from an optical fiber preform having cross sections of various shapes,
The outer diameter of the optical fiber is measured from a plurality of directions, the cross-sectional area of the optical fiber is calculated during drawing, and the cross-sectional area of the optical fiber is controlled to be constant, so that it is uniform in the longitudinal direction,
It makes it possible to manufacture optical fibers having various cross sections.

従来の光ファイバ線引き装置では、矩形や楕円形状の断
面を有する光ファイバ母材から長手方向に均一な光ファ
イバを製造することはできなかった。
In the conventional optical fiber drawing apparatus, it was not possible to manufacture a uniform optical fiber in the longitudinal direction from an optical fiber preform having a rectangular or elliptical cross section.

以下、本発明の光ファイバ線引き装置を実施例に基づい
て説明する。
Hereinafter, the optical fiber drawing apparatus of the present invention will be described based on Examples.

(実施例) 第1図は本発明の一実施例の構成図であって、30は断面
が矩形の光ファイバ母材、40は断面が矩形の光ファイ
バ、50は光ファイバ40の外径を光ファイバの半径方向か
ら測定する回転式外径測定器、20は断面積算出用計算機
である。
(Embodiment) FIG. 1 is a configuration diagram of an embodiment of the present invention, in which 30 is an optical fiber preform having a rectangular cross section, 40 is an optical fiber having a rectangular cross section, and 50 is an outer diameter of the optical fiber 40. A rotary outer diameter measuring device for measuring from the radial direction of the optical fiber, and 20 is a cross-sectional area calculating computer.

光ファイバ母材31は、第2図(a)に示す断面形状をして
おり、第2図(b)に示す通常のPANDA型と呼ばれている偏
波保持光ファイバの外周の一部を研磨加工によって作製
した。
The optical fiber preform 31 has a cross-sectional shape shown in FIG. 2 (a), and a part of the outer circumference of a normal PANDA type polarization-maintaining optical fiber shown in FIG. 2 (b). It was made by polishing.

第3図(a),(b)に、回転式外径測定器50の構造を示す。
第3図(a)は回転式外径測定器の正面図、第3図(b)はそ
の側面図であり、51は回転円板、52は回転円板の駆動モ
ータ、53は光源、54は半透鏡、55,56は光路変更鏡、57,
58は受光素子、59は光線を平衡光線とするコリメータレ
ンズである。
3A and 3B show the structure of the rotary outer diameter measuring device 50.
FIG. 3 (a) is a front view of the rotary outer diameter measuring instrument, and FIG. 3 (b) is a side view thereof. 51 is a rotating disc, 52 is a drive motor for the rotating disc, 53 is a light source, 54 Is a semi-transparent mirror, 55, 56 are optical path changing mirrors, 57,
Reference numeral 58 is a light receiving element, and 59 is a collimator lens that makes light rays a balanced light ray.

第3図(c),(d)は受光素子57,58で受光した外径信号を
示し、D1,D2が光ファイバの外径である。
3 (c) and 3 (d) show the outer diameter signals received by the light receiving elements 57 and 58, and D 1 and D 2 are the outer diameters of the optical fibers.

第3図(e)は回転式外径測定器の動作を説明するための
図であり、回転式外径測定器50は、駆動モータ52によっ
て光ファイバを中心とした回転運動を行いながら、回転
角度信号検出器60と外径信号処理器61を介して、断面積
算出用計算機20に回転角度信号、外径信号を転送できる
構成となっている。
FIG. 3 (e) is a diagram for explaining the operation of the rotary outer diameter measuring device. The rotary outer diameter measuring device 50 is rotated by the drive motor 52 while rotating around the optical fiber. The rotation angle signal and the outer diameter signal can be transferred to the cross-sectional area calculating computer 20 via the angle signal detector 60 and the outer diameter signal processor 61.

断面積算出用計算機20は、回転式外径測定器50から転送
されてきた回転角度信号と外径信号を用い、オンライン
で光ファイバの断面積を算出すると同時に、第1図に示
す断面積設定器90であらかじめ設定された目標値と一致
するように、差分をPIDコントローラ10を介して巻取り
ドラム駆動回路11にフィードバックして、ドラムの回転
を制御する。
The cross-sectional area calculating computer 20 calculates the cross-sectional area of the optical fiber online by using the rotation angle signal and the outer diameter signal transferred from the rotary outer diameter measuring device 50, and at the same time, sets the cross-sectional area setting shown in FIG. The difference is fed back to the winding drum drive circuit 11 via the PID controller 10 so as to match the preset target value in the device 90, and the rotation of the drum is controlled.

このような構成となっているので、光ファイバの断面積
が常に測定でき、また一定値に制御することができる。
With such a configuration, the cross-sectional area of the optical fiber can be constantly measured and can be controlled to a constant value.

以下、諸元例について示す。The following is an example of specifications.

第2図(a)に示した矩形PANDA光ファイバ母材は、コア部
31の外径が1.3mm、比屈折率差Δ=0.24%、クラッド部3
3の長軸方向(x方向)の外径が26mmφ、クラッド部33
の短軸方向(y方向)の外径が15mm、応力付与部32の直
径が8mmである。
The rectangular PANDA optical fiber preform shown in Fig. 2 (a) has a core
31 outer diameter is 1.3 mm, relative refractive index difference Δ = 0.24%, clad part 3
The outer diameter of 3 in the major axis direction (x direction) is 26 mmφ, and the clad part 33
The outer diameter in the short axis direction (y direction) is 15 mm, and the diameter of the stress applying portion 32 is 8 mm.

この光ファイバ母材を線引き炉の中に挿入し、通常の線
引き温度(2100℃)よりも低温(1800℃±5℃)で加熱
溶融し、線引き速度20m/分で線引きした。光ファイバの
断面積は1×10-2mm2となるように設定した。
This optical fiber preform was inserted into a drawing furnace, heated and melted at a temperature (1800 ° C ± 5 ° C) lower than the normal drawing temperature (2100 ° C), and drawn at a drawing speed of 20 m / min. The cross-sectional area of the optical fiber was set to be 1 × 10 -2 mm 2 .

一方、回転式外径測定器は、波長0.63μmの半導体レー
ザを光源とし、コリメータレンズ59でビーム幅/mmφに
拡大した平行光線とし、光ファイバの側面の直交する2
方向から光ファイバを照射し、遮光法によって光ファイ
バに遮光された幅を1024個の直線状シリコン受光素子57
で1μm精度で読み取った。また回転式外径測定器全体
は、パルスモータを用いて1゜/1パルスの分解能で駆動
し、回転角度±45゜の往復回転をさせた。周期は2秒で
ある。1往復の間の角度信号、外径信号を用い、オンラ
インで計算機により断面積を計算させた。
On the other hand, the rotary outer diameter measuring device uses a semiconductor laser having a wavelength of 0.63 μm as a light source, and collimates the collimator lens 59 to a parallel light beam expanded to a beam width / mmφ.
The optical fiber is irradiated from the direction, and the width of the light shielded by the optical fiber is 1024 linear silicon photodetectors 57.
Was read with 1 μm accuracy. The entire rotary type outer diameter measuring device was driven by a pulse motor with a resolution of 1 ° / 1 pulse and reciprocally rotated at a rotation angle of ± 45 °. The cycle is 2 seconds. Using the angle signal and the outer diameter signal during one round trip, the cross-sectional area was calculated online by a computer.

測定値は1×10-6mm2の範囲で誤差を生じたが、通常の
半径に換算すると±1μmの誤差範囲となり、円形断面
の光ファイバを線引きする際の精度±1μmと同等の値
が得られた。なおこの誤差範囲は受講素子の分解能が1
μmであることに起因していると考えられる。
The measured value had an error in the range of 1 × 10 -6 mm 2 , but when converted to a normal radius, it became an error range of ± 1 μm, which is equivalent to the accuracy of ± 1 μm when drawing an optical fiber with a circular cross section. Was obtained. Note that this error range has a resolution of one element
It is considered that this is due to the fact that it is μm.

以上説明したように、本発明の光ファイバ線引き装置に
よれば、円形以外の断面を有する光ファイバ母材を高寸
法精度で光ファイバとすることができる。この実施例で
は、断面積を算出して、断面積が一定となるようにフィ
ードバックをかけた場合について説明した。
As described above, according to the optical fiber drawing device of the present invention, an optical fiber preform having a cross section other than a circle can be formed into an optical fiber with high dimensional accuracy. In this embodiment, the case where the cross-sectional area is calculated and the feedback is applied so that the cross-sectional area is constant has been described.

他の実施例としては、回転式外径測定器からの外径信号
のうち、最大値または最小値を検出し、光ファイバの外
径の最大値または最小値を常に検出するように、回転式
外径測定器のモータにフィードバックをかけて、光ファ
イバの回転に追従させることも可能であり、この場合に
は、断面積の計算が実施例1に比較して容易になる。
As another embodiment, among the outer diameter signals from the rotary outer diameter measuring device, the maximum value or the minimum value is detected, and the maximum value or the minimum value of the outer diameter of the optical fiber is always detected. It is also possible to feed back the motor of the outer diameter measuring device so as to follow the rotation of the optical fiber. In this case, the calculation of the cross-sectional area becomes easier than in the first embodiment.

(発明の効果) 以上説明したように、本発明の光ファイバ線引き装置
は、各種形状の断面を有する光ファイバ母材を細い光フ
ァイバとして線引きする際に、光ファイバの外径を複数
方向から測定し、光ファイバの断面積を線引き中に算出
して長手方向に均一な光ファイバを精度よく製造するこ
とができる。
(Effects of the Invention) As described above, the optical fiber drawing device of the present invention measures the outer diameter of an optical fiber from a plurality of directions when drawing an optical fiber preform having cross sections of various shapes as a thin optical fiber. However, the cross-sectional area of the optical fiber can be calculated during drawing, and an optical fiber that is uniform in the longitudinal direction can be manufactured accurately.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構成図、 第2図(a)は断面が矩形の光ファイバ母材の断面図、 第2図(b)は通常のPANDA型光ファイバ母材の断面図、 第3図(a),(b)は回転式外径測定器のそれぞれ正面図、
側面図、 第3図(c),(d)は受光素子57,58でそれぞれ受光した外
径信号を示す図、 第3図(e)は回転式外径測定器の動作説明図、 第4図は従来の光ファイバ線引き装置の構成図である。 1……加熱溶融炉、2……発熱体 3……光ファイバ母材、4……光ファイバ 5……外径測定器、6……被覆装置 7……硬化炉、8……巻取りドラム 9……外径設定器、10……PIDコントローラ 11……巻取りドラム駆動回路 20……断面積算出用計算機 30……断面が矩形の光ファイバ母材 31……断面が矩形の光ファイバの母材のコア部 32……断面が矩形の光ファイバ母材の応力付与部 33……断面が矩形の光ファイバ母材のクラッド部 40……断面が矩形の光ファイバ 50……回転式外径測定器、51……回転円板 52……回転円板の駆動モータ 53……光源、54……半透鏡 55,56……光炉変更鏡、57,58……受光素子 59……コリメータレンズ 60……回転角度信号検出器、61……外径信号処理器 90……断面積設定器
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 (a) is a cross-sectional view of an optical fiber preform having a rectangular cross section, and FIG. 2 (b) is a cross-section of an ordinary PANDA type optical fiber preform. Figures 3 (a) and 3 (b) are front views of the rotary outer diameter measuring instrument,
A side view, FIGS. 3 (c) and 3 (d) are diagrams showing outer diameter signals received by the light receiving elements 57 and 58, and FIG. 3 (e) is an operation explanatory diagram of a rotary outer diameter measuring device. The figure is a block diagram of a conventional optical fiber drawing apparatus. 1 ... Heating / melting furnace, 2 ... Heating element 3 ... Optical fiber base material, 4 ... Optical fiber 5 ... Outer diameter measuring device, 6 ... Coating device 7 ... Curing furnace, 8 ... Winding drum 9 …… Outer diameter setting device, 10 …… PID controller 11 …… Winding drum drive circuit 20 …… Calculator for calculating cross-sectional area 30 …… Optical fiber base material with rectangular cross section 31 …… For optical fiber with rectangular cross section Core part of base material 32 …… Stress applying part of optical fiber base material with rectangular cross section 33 …… Clad part of optical fiber base material with rectangular cross section 40 …… Optical fiber with rectangular cross section 50 …… Rotary outer diameter Measuring instrument, 51 …… Rotating disc 52 …… Rotating disc drive motor 53 …… Light source, 54 …… Semi-transparent mirror 55,56 …… Photo furnace changing mirror, 57,58 …… Light receiving element 59 …… Collimator lens 60 …… Rotation angle signal detector, 61 …… Outer diameter signal processor 90 …… Cross-sectional area setting device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横浜 至 茨城県那珂郡東海村大字白方字白根162番 地 日本電信電話株式会社茨城電気通信研 究所内 (56)参考文献 特開 昭61−40836(JP,A) 特開 昭61−146729(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yokohama Itaru, Tokai-mura, Naka-gun, Ibaraki Prefecture, Shirahoji 162 Shirane, Nippon Telegraph and Telephone Corporation, Ibaraki Telecommunications Research Institute (56) Reference JP 61-40836 (JP, A) JP-A-61-146729 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光ファイバ母材の端部を支持し、他の端部
を加熱溶融する線引き炉と、その加熱溶融された光ファ
イバ母材を細い光ファイバとして線引き炉から引き出し
た際の光ファイバの外径を複数の方向から計測するため
の回転機構を有する外径測定系と、光ファイバの表面に
プラスチックの保護膜を被覆する被覆装置と、光ファイ
バを巻取るドラムとを備えた光ファイバ線引き装置にお
いて、 該外径測定系は、光ファイバの外径および回転角度を測
定する回転式外径測定器と、該外径測定器からの外径信
号と回転角度信号とを用いて光ファイバの断面積及び/
又は光ファイバの外径の最大値或いは最小値を算出する
計算機系と、算出されたそれぞれの値とあらかじめ所望
の値に設定されたそれぞれの目標値との差異を検出する
制御系と、制御系からの信号に応じて光ファイバの線引
き速度を制御する巻取り系とを備えたことを特徴とする
光ファイバ線引き装置。
1. A drawing furnace for supporting an end of an optical fiber preform and heating and melting the other end, and a light when the heated and melted optical fiber preform is drawn out from the drawing furnace as a thin optical fiber. An optical system including an outer diameter measuring system having a rotating mechanism for measuring the outer diameter of the fiber from a plurality of directions, a coating device for coating the surface of the optical fiber with a plastic protective film, and a drum for winding the optical fiber. In the fiber drawing apparatus, the outer diameter measuring system uses a rotary outer diameter measuring instrument for measuring the outer diameter and rotation angle of the optical fiber, and an optical diameter using the outer diameter signal and the rotation angle signal from the outer diameter measuring instrument. Fiber cross section and /
Alternatively, a computer system for calculating the maximum value or the minimum value of the outer diameter of the optical fiber, a control system for detecting a difference between each calculated value and each target value set in advance to a desired value, and a control system And a winding system that controls the drawing speed of the optical fiber according to the signal from the optical fiber drawing device.
JP61149787A 1986-06-27 1986-06-27 Optical fiber drawing device Expired - Fee Related JPH0725565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61149787A JPH0725565B2 (en) 1986-06-27 1986-06-27 Optical fiber drawing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149787A JPH0725565B2 (en) 1986-06-27 1986-06-27 Optical fiber drawing device

Publications (2)

Publication Number Publication Date
JPS638233A JPS638233A (en) 1988-01-14
JPH0725565B2 true JPH0725565B2 (en) 1995-03-22

Family

ID=15482703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149787A Expired - Fee Related JPH0725565B2 (en) 1986-06-27 1986-06-27 Optical fiber drawing device

Country Status (1)

Country Link
JP (1) JPH0725565B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709729B2 (en) * 1988-11-04 1998-02-04 東レ・ダウコーニング・シリコーン株式会社 Straight oil composition for fibrous filaments
US5314517A (en) * 1992-12-31 1994-05-24 Corning Incorporated Method controlling the draw rate in the drawing of a glass feedstock
JPH07238472A (en) * 1994-02-25 1995-09-12 Toray Dow Corning Silicone Co Ltd Straight finishing oil composition for fibrous material
EP0701105A1 (en) * 1994-09-12 1996-03-13 AT&T Corp. Method and apparatus for controlling the cross-sectional dimensions of optical fibers during fabrication
JP3314906B2 (en) 1995-07-05 2002-08-19 住友電気工業株式会社 Optical fiber drawing furnace
JP4076702B2 (en) 1999-05-14 2008-04-16 株式会社フジクラ Optical fiber twist measurement method
EP1233285B1 (en) * 1999-11-10 2012-07-25 Hamamatsu Photonics K.K. Manufacturing method of optical lens
JP4197956B2 (en) 2001-05-09 2008-12-17 浜松ホトニクス株式会社 Manufacturing method of optical lens
DE60231037D1 (en) 2001-05-09 2009-03-19 Hamamatsu Photonics Kk
JP4247001B2 (en) 2001-05-09 2009-04-02 浜松ホトニクス株式会社 Manufacturing method of optical lens
US7145724B2 (en) 2001-05-09 2006-12-05 Hamamatsu Photonics K.K. Optical lens and semiconductor laser device
US7016582B2 (en) 2002-03-04 2006-03-21 Sumitomo Electric Industries, Ltd. Polarized wave holding optical fiber, and method of producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140836A (en) * 1984-07-31 1986-02-27 Furukawa Electric Co Ltd:The Process for controlling dimension of optical fiber

Also Published As

Publication number Publication date
JPS638233A (en) 1988-01-14

Similar Documents

Publication Publication Date Title
JPH0725565B2 (en) Optical fiber drawing device
US4042723A (en) Method for monitoring the properties of plastic coatings on optical fibers
CA1071858A (en) Method for monitoring the concentricity of plastic coatings on optical fibers
AU592889B2 (en) Method of measuring the refractive index profile of optical fibers
US6643428B2 (en) Optical fiber collimator and method for fabricating the same
HU181215B (en) Method for automatic centring optical fibre in primer protective layer and apparatus for implementing this method
JPH0641882B2 (en) Device for detecting radial intensity distribution of laser beam
US6371394B1 (en) Method for winding a fibre element having different longitudinal portions
JP3777627B2 (en) Glass fiber manufacturing method and manufacturing apparatus
CA1264960A (en) Method and device for measuring coupling losses in single mode optical fibres
JPH01277731A (en) Method and apparatus for measuring eccentricity of waveguide buried in cylindrical connector pin
JP2521801B2 (en) Optical fiber carrying spacer reversal angle measuring method and apparatus
JP2683267B2 (en) Sensor part of optical fiber temperature sensor
JP2946651B2 (en) Anomaly point detection method for cladding for optical fiber coating
JP3603368B2 (en) Glass fiber twist detection method
JP4234280B2 (en) Stretching method and stretching apparatus for translucent object
KR100416800B1 (en) Assembly apparatus for fabricating gain flattening filter
JPS6346014B2 (en)
JPH0788241B2 (en) Optical fiber coating method and coating apparatus
JPH0338207Y2 (en)
JPS6017326A (en) Optical fiber fabry-perot interferometer
JPH06235830A (en) Production of optical fiber having nonconcentric circular sectional structure
JPH06174965A (en) Mode scramble method for multimode optical fiber
JPH04319642A (en) Method and device for measuring eccentricity of coating
JPH09126946A (en) Measurement of eccentric thickness of coated optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees