JPS6346012B2 - - Google Patents
Info
- Publication number
- JPS6346012B2 JPS6346012B2 JP3251284A JP3251284A JPS6346012B2 JP S6346012 B2 JPS6346012 B2 JP S6346012B2 JP 3251284 A JP3251284 A JP 3251284A JP 3251284 A JP3251284 A JP 3251284A JP S6346012 B2 JPS6346012 B2 JP S6346012B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- cladding
- melting section
- mold
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002844 melting Methods 0.000 claims description 21
- 230000008018 melting Effects 0.000 claims description 21
- 239000013307 optical fiber Substances 0.000 claims description 20
- 238000005253 cladding Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000000155 melt Substances 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 229910052737 gold Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910017855 NH 4 F Inorganic materials 0.000 description 3
- 239000005383 fluoride glass Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000156 glass melt Substances 0.000 description 2
- 239000000075 oxide glass Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000010106 rotational casting Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000005387 chalcogenide glass Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01265—Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
- C03B37/01268—Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt by casting
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/80—Non-oxide glasses or glass-type compositions
- C03B2201/82—Fluoride glasses, e.g. ZBLAN glass
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
〔技術分野〕
本発明は光フアイバ用プリフオームの製造装置
に関するものである。
〔従来技術〕
光フアイバ用のコア−クラツドの導波構造を有
するプリフオームを作製する方法としては、石英
系光フアイバではVAD法(気相軸付け法)や
MCVD法があり、0.2dB/Kmの理論的限界値が達
成されている(T.Miya、et al.、Electron.Lett.、
15、106)。また、ケイ酸塩酸化物多成分ガラスを
用いる際には二重るつぼ法が用いられている。
一方、フツ化物ガラスは石英系ガラスに比べて
より長波長の光を透過できることから、3μm帯
ではレーリー散乱も小さくなると考えられ、石英
フアイバよりもさらに低損失な値が期待されてい
る。しかしながら、フツ化物ガラスは酸化物ガラ
スと異なり、温度−粘性曲線が極めて急峻であ
り、高温域では結晶化しやすいものである。従つ
て、石英系ガラスのプリフオームを形成するため
に用いられるVAD法やCVD法は適用不可能であ
り、また、二重るつぼ線引き法の適用も困難であ
つた。
そのために、ビルドインキヤステイング
(Build−in casting)法やローテーシヨナルキヤ
ステイング(Rotational casting)法が開発され
た。しかし、これらの手法を用いても、散乱中心
の発生を完全に除去することはできず、100m以
上の長尺フアイバでの低損失化は未だ成し得てい
ない。従つて、長尺化−低損失化の上では散乱中
心発生の少ないプリフオームの作製法の開発が要
望されている。また、Build−in casting法や
Rotational Casting法では、コア−クラツド界面
形成の際に雰囲気中の水蒸気が混入する余地があ
り、OH基の吸収は波長3μmにおいて2000〜
5000dB/Kmに達する。従つて、OH基混入の余地
のないプリフオームの作製法も同時に要望されて
いる。
〔目 的〕
本発明はこのような状況に鑑みてなされたもの
であり、その目的は、低粘性のガラスを用いる光
フアイバを製造するにあたつて、低散乱−低OH
の長尺−低損失光フアイバを形成するためのプリ
フオームを製造する装置を提供することにある。
〔発明の構成〕
かかる目的を達成するために、本発明は、コア
溶融部および該コア溶融部を取り囲むクラツド溶
融部から成る二重構造の容器を有し、該容器をあ
らかじめ定めた雰囲気内に配置し、前記コアおよ
びクラツド溶融部の周囲には前記コアおよびクラ
ツド溶融部を加熱する加熱部材を配置し、前記コ
アおよびクラツド溶融部の下流側にはこれらコア
およびクラツド溶融部にそれぞれ連なる二重ノズ
ルを設け、該二重ノズルの開閉を制御する部材を
配設し、前記二重ノズルの下流側には光フアイバ
用プリフオームを形成するための鋳型を配置して
前記二重ノズルから流出するコアおよびクラツド
の融液を受容するようになし、前記鋳型の周囲に
は前記鋳型内の前記融液を冷却固化させる温度調
節部材を配置して、前記鋳型内にコア−クラツド
の導波構造をもつ光フアイバ用プリフオームを形
成するようにしたことを特徴とする。
〔実施例〕
以下、本発明を図面を参照して詳細に説明す
る。
第1図は本発明による光フアイバ用プリフオー
ムの製造装置の一実施例を示す。
第1図において、1はるつぼ台であり、このる
つぼ台1上には、コアガラス溶融部2およびこの
コアガラス溶融部2を取り囲むクラツドガラス溶
融部3の二重構造を形成した金製二重るつぼ4を
配設する。5はこのるつぼ4の金製のふたであ
る。コアおよびクラツドガラス溶融部2および3
の各底部にはコアおよびクラツド流出部としての
ノズル6および7をそれぞれ形成する。8はこれ
らノズル6および7の開閉を制御して融液の流出
を制御する金製の栓である。
上述した金製二重るつぼ4を石英容器9内に収
容して密閉し、この容器9内に乾燥Arガスを導
入する。容器9の周囲にはコアおよびクラツドガ
ラス溶融部2および3の内にそれぞれ充填したコ
アおよびクラツドガラス用原料を加熱して溶融さ
せるためのヒータ10を配置する。
るつぼ台1の内側、すなわち二重るつぼ4の下
流側には、栓8を取り囲んで、縦方向に3分割可
能な中空円筒形状の黄銅製鋳型11を、リング1
2および底リング13によつて一体化して固定支
持して配設する。さらに、この鋳型11を取り囲
んで温度調節部材としての鋳型加熱用ヒータ14
を配置して、ノズル6および7から流出落下して
鋳型11に受容されるコアおよびクラツドの融液
を冷却固化させる。15はるつぼ台1、底リング
13およびヒータ14を支持する基台であり、そ
の中央にあけた開口16から上述した栓8の先端
を突出させて、栓8を上下に移能可能となし、そ
れによりノズル6および7に対する栓8の開閉を
行うようにする。
以上に示した本発明製造装置を用いてプリフオ
ームを作製した実施例を以下に示す。
まず、32.01BaF2−3.88GdF3−61.11ZrF4−
3AlF3(mol%)の組成よりなる混合物41.42gに
NH4F・HF24gを混合したものを第1図のコア
ガラス溶融部2に投入した。次に、30.69BaF2−
3.72GdF3−58.59ZrF4−7AlF3(mol%)の組成よ
りなる混合物58.72gにNH4F・HF30gを混合し
たものをクラツドガラス溶融部3に投入した。次
いで、二重るつぼ4のふた5を閉めた。このと
き、金製の栓8を第1図のように挿入してノズル
6および7の先端をあらかじめ閉塞しておき、二
重るつぼ4からガラス融液が流出することおよび
コアガラス融液とクラツドガラス融液とが混合す
ることを防ぐようにしておく。次に、ヒーター1
0により二重るつぼ4を1時間にわたつて400〜
500℃に加熱した。この加熱により、あらかじめ
原料に混合したNH4F・HFが分解し、得られた
HFが原料中に含まれる酸化物をフツ素化した。
こののちさらに、ヒータ10により二重るつぼ4
を2時間にわたり900℃に加熱して、コアおよび
クラツド用原料を溶解した。この際、石英容器9
内の雰囲気は乾燥Arで保たれるようにした。こ
の間に、鋳型11をヒータ14によつて260℃に
保温し、および栓8を引き抜くことにより、鋳型
11の中空部にノズル6および7よりコア−クラ
ツドの構造を保つた融液を導き、ここで冷却固化
させて、フツ化物光フアイバ用プリフオームを得
た。
得られたプリフオームは、外径が8φ、コア径
が3φ、長さが270mmであつた。これにテフロン
FEP管をコートして線引きした。それにより得
られた光フアイバの比屈折率差は0.25%、コア径
は54μm、クラツド径は145μmであつた。最低損
失は波長2.1μmにおいて6dB/Kmであり、光フア
イバ全体の結晶化等による構造不完全性に起因す
る散乱損失は極めて低く、線引きして得た全長
500mの光フアイバの全長での損失測定が可能で
あつた。
また、本発明装置では、コアが大気と接するこ
とがなく、コア−クラツド界面へのOH混入の余
地が全くないことから、OH基の吸収は3μm程度
であつて、従来法の1/100以下の20dB/Kmに減少
していることがわかつた。
また、本発明では、ヒータ14の配置によりノ
ズル6および7の先端の温度条件が一定であるた
め、プリフオーム全体が均一な冷却条件下に置か
れ、極めて低散乱損失のフツ化物光フアイバを製
造できることがわかつた。また、コア融液は常に
クラツド融液に包まれた状況で鋳型11中で冷却
固化するため、コアへのOH基の大気よりの混入
は全くなく、低OHフツ化物光フアイバ作製に極
めて有効であることがわかつた。
〔効 果〕
以上説明したように、本発明によれば、低散乱
損失−低OHのフツ化物ガラスプリフオームを製
造することができ、従つて、超低損失値の可能性
が示唆されているフツ化物光フアイバの製造にあ
たつて、その長尺化および低損失化に貢献できる
利点がある。
また、二重るつぼおよび栓を金ではなく白金製
にすることにより、さらに高温での溶融を必要と
する酸化物ガラスやカルコゲナイドガラスを用い
た光フアイバのプリフオーム製造にも本発明を利
用できるという利点がある。 DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an apparatus for manufacturing an optical fiber preform. [Prior art] Methods for producing a preform with a core-clad waveguide structure for optical fibers include the VAD method (vapor phase axis method) and the vapor phase axis method for silica-based optical fibers.
There is an MCVD method, and a theoretical limit of 0.2 dB/Km has been achieved (T. Miya, et al., Electron. Lett.,
15, 106). Further, when using a silicate oxide multicomponent glass, a double crucible method is used. On the other hand, since fluoride glass can transmit light with longer wavelengths than silica-based glass, it is thought that Rayleigh scattering will be smaller in the 3 μm band, and it is expected to have even lower loss values than quartz fiber. However, unlike oxide glass, fluoride glass has an extremely steep temperature-viscosity curve and is likely to crystallize in a high temperature range. Therefore, the VAD method and CVD method used to form silica-based glass preforms cannot be applied, and it has also been difficult to apply the double crucible drawing method. For this purpose, build-in casting methods and rotational casting methods have been developed. However, even if these methods are used, it is not possible to completely eliminate the occurrence of scattering centers, and it has not yet been possible to reduce the loss in a long fiber of 100 m or more. Therefore, in order to increase the length and reduce the loss, there is a need to develop a method for manufacturing a preform with fewer scattering centers. In addition, the build-in casting method
In the Rotational Casting method, there is room for water vapor in the atmosphere to get mixed in when forming the core-clad interface, and the absorption of OH groups is 2000~2000 at a wavelength of 3 μm.
Reaching 5000dB/Km. Therefore, there is also a need for a method for producing a preform that does not allow OH group contamination. [Purpose] The present invention was made in view of the above situation, and its purpose is to achieve low scattering and low OH when manufacturing an optical fiber using low viscosity glass.
An object of the present invention is to provide an apparatus for manufacturing a preform for forming a long, low-loss optical fiber. [Structure of the Invention] In order to achieve the above object, the present invention has a double-structured container consisting of a core melting section and a clad melting section surrounding the core melting section, and the container is placed in a predetermined atmosphere. A heating member for heating the core and cladding fusion zone is arranged around the core and cladding fusion zone, and a heating member is arranged downstream of the core and cladding fusion zone and connected to the core and cladding fusion zone, respectively. A nozzle is provided, a member for controlling opening and closing of the double nozzle is provided, a mold for forming an optical fiber preform is disposed downstream of the double nozzle, and a core flows out from the double nozzle. and a temperature control member is disposed around the mold to cool and solidify the melt in the mold, and a core-clad waveguide structure is provided in the mold. The present invention is characterized in that a preform for an optical fiber is formed. [Example] Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of an optical fiber preform manufacturing apparatus according to the present invention. In FIG. 1, 1 is a crucible stand, and on this crucible stand 1 is a double metal crucible which has a double structure of a core glass melting part 2 and a clad glass melting part 3 surrounding this core glass melting part 2. 4 will be placed. 5 is the gold lid of this crucible 4. Core and cladding glass melting sections 2 and 3
Nozzles 6 and 7 are formed at the bottom of each of the core and cladding outlets, respectively. Reference numeral 8 denotes a gold stopper that controls the opening and closing of these nozzles 6 and 7 to control the outflow of the melt. The above-described gold double crucible 4 is housed in a quartz container 9 and hermetically sealed, and dry Ar gas is introduced into the container 9. A heater 10 is arranged around the container 9 to heat and melt the core and clad glass raw materials filled in the core and clad glass melting sections 2 and 3, respectively. Inside the crucible stand 1, that is, on the downstream side of the double crucible 4, a hollow cylindrical brass mold 11 that can be divided into three parts in the vertical direction, surrounding the stopper 8, is fitted with a ring 1.
2 and a bottom ring 13, and are fixedly supported and arranged. Furthermore, a heater 14 for heating the mold as a temperature regulating member surrounds the mold 11.
are arranged to cool and solidify the melt of the core and cladding that flows out from the nozzles 6 and 7 and falls and is received in the mold 11. 15 is a base that supports the crucible stand 1, the bottom ring 13, and the heater 14, and the tip of the above-mentioned stopper 8 is made to protrude from an opening 16 formed in the center, so that the stopper 8 can be moved up and down. This opens and closes the plug 8 for the nozzles 6 and 7. An example in which a preform was manufactured using the manufacturing apparatus of the present invention described above will be shown below. First, 32.01BaF 2 −3.88GdF 3 −61.11ZrF 4 −
41.42 g of a mixture with the composition of 3AlF 3 (mol%)
A mixture of 24 g of NH 4 F and HF was charged into the core glass melting section 2 shown in FIG. Next, 30.69BaF 2 −
A mixture of 58.72 g of a mixture having a composition of 3.72GdF 3 -58.59ZrF 4 -7AlF 3 (mol %) and 30 g of NH 4 F.HF was charged into the clad glass melting section 3 . Next, the lid 5 of the double crucible 4 was closed. At this time, the tips of the nozzles 6 and 7 are closed in advance by inserting a gold stopper 8 as shown in Figure 1, so that the glass melt flows out from the double crucible 4 and the core glass melt and clad glass Make sure to prevent mixing with the melt. Next, heater 1
400~ for 1 hour in double crucible 4 by 0
Heated to 500°C. This heating decomposes the NH 4 F・HF mixed in the raw materials in advance, resulting in the
HF fluorinated the oxides contained in the raw materials.
After this, the double crucible 4 is further heated by the heater 10.
was heated to 900° C. for 2 hours to dissolve the core and cladding materials. At this time, the quartz container 9
The atmosphere inside was maintained with dry Ar. During this time, the mold 11 is kept warm at 260°C by the heater 14, and the stopper 8 is pulled out to guide the melt maintaining the core-clad structure into the hollow part of the mold 11 through the nozzles 6 and 7. The mixture was cooled and solidified to obtain a preform for fluoride optical fiber. The obtained preform had an outer diameter of 8φ, a core diameter of 3φ, and a length of 270 mm. This is Teflon
The FEP tube was coated and drawn. The optical fiber thus obtained had a relative refractive index difference of 0.25%, a core diameter of 54 μm, and a cladding diameter of 145 μm. The minimum loss is 6 dB/Km at a wavelength of 2.1 μm, and the scattering loss due to structural imperfections such as crystallization of the entire optical fiber is extremely low.
It was possible to measure loss over the entire length of an optical fiber of 500 m. In addition, in the device of the present invention, the core does not come into contact with the atmosphere, and there is no room for OH to enter the core-clad interface, so the absorption of OH groups is about 3 μm, which is less than 1/100 of the conventional method. It was found that the reduction was 20dB/Km. Furthermore, in the present invention, since the temperature conditions at the tips of the nozzles 6 and 7 are constant due to the arrangement of the heater 14, the entire preform is placed under uniform cooling conditions, making it possible to manufacture a fluoride optical fiber with extremely low scattering loss. I understood. In addition, since the core melt is always cooled and solidified in the mold 11 while being surrounded by the cladding melt, no OH groups are introduced into the core from the atmosphere, making it extremely effective for producing low-OH fluoride optical fibers. I found out something. [Effects] As explained above, according to the present invention, a fluoride glass preform with low scattering loss and low OH can be manufactured, and therefore, the possibility of ultra-low loss values is suggested. In manufacturing fluoride optical fibers, it has the advantage of contributing to longer lengths and lower losses. Another advantage is that by making the double crucible and stopper from platinum instead of gold, the present invention can be used to manufacture optical fiber preforms using oxide glasses and chalcogenide glasses, which require melting at even higher temperatures. There is.
第1図は本発明光フアイバ用プリフオームの製
造装置の一実施例を示す構成図である。
1……るつぼ台、2……コアガラス溶融部、3
……クラツドガラス溶融部、4……金製二重るつ
ぼ、5……二重るつぼ用金製ふた、6……コア流
出部としてのノズル、7……クラツド流出部とし
てのノズル、8……金製栓、9……石英容器、1
0……コアおよびクラツド原料加熱ヒータ、11
……黄銅製鋳型、12……リング、13……底リ
ング、14……鋳型加熱用ヒータ、15……基
台、16……開口。
FIG. 1 is a block diagram showing an embodiment of an optical fiber preform manufacturing apparatus according to the present invention. 1... Crucible stand, 2... Core glass melting section, 3
... Clad glass melting section, 4 ... Gold double crucible, 5 ... Gold lid for double crucible, 6 ... Nozzle as core outflow part, 7 ... Nozzle as clad outflow part, 8 ... Gold plug , 9...Quartz container, 1
0... Core and cladding raw material heater, 11
... Brass mold, 12 ... Ring, 13 ... Bottom ring, 14 ... Heater for heating the mold, 15 ... Base, 16 ... Opening.
Claims (1)
ラツド溶融部から成る二重構造の容器を有し、該
容器をあらかじめ定めた雰囲気内に配置し、前記
コアおよびクラツド溶融部の周囲には前記コアお
よびクラツド溶融部を加熱する加熱部材を配置
し、前記コアおよびクラツド溶融部の下流側には
これらコアおよびクラツド溶融部にそれぞれ連な
る二重ノズルを設け、該二重ノズルの開閉を制御
する部材を配設し、前記二重ノズルの下流側には
光フアイバ用プリフオームを形成するための鋳型
を配置して前記二重ノズルから流出するコアおよ
びクラツドの融液を受容するようになし、前記鋳
型の周囲には前記鋳型内の前記融液を冷却固化さ
せる温度調節部材を配置して、前記鋳型内にコア
−クラツドの導波構造をもつ光フアイバ用プリフ
オームを形成するようにしたことを特徴とする光
フアイバ用プリフオームの製造装置。1. It has a double-structured container consisting of a core melting section and a cladding melting section surrounding the core melting section, the container is placed in a predetermined atmosphere, and the core and cladding melting section are surrounded by the core and cladding melting section. A heating member for heating the cladding melting section is disposed, a double nozzle is provided on the downstream side of the core and the cladding melting section, each of which is connected to the core and the cladding melting section, and a member is disposed for controlling opening and closing of the double nozzle. A mold for forming an optical fiber preform is arranged downstream of the double nozzle to receive the melt of the core and cladding flowing out from the double nozzle, and a mold for forming an optical fiber preform is arranged downstream of the double nozzle, and A temperature control member for cooling and solidifying the melt in the mold is arranged to form an optical fiber preform having a core-clad waveguide structure in the mold. Fiber preform manufacturing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3251284A JPS60176939A (en) | 1984-02-24 | 1984-02-24 | Apparatus for producing preform for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3251284A JPS60176939A (en) | 1984-02-24 | 1984-02-24 | Apparatus for producing preform for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60176939A JPS60176939A (en) | 1985-09-11 |
JPS6346012B2 true JPS6346012B2 (en) | 1988-09-13 |
Family
ID=12361029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3251284A Granted JPS60176939A (en) | 1984-02-24 | 1984-02-24 | Apparatus for producing preform for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60176939A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01192736A (en) * | 1988-01-29 | 1989-08-02 | Kokusai Denshin Denwa Co Ltd <Kdd> | Production of preform for fluoride glass fiber and apparatus therefor |
JP2562705B2 (en) * | 1990-02-08 | 1996-12-11 | 国際電信電話株式会社 | Method and apparatus for manufacturing base material for fluoride glass fiber |
-
1984
- 1984-02-24 JP JP3251284A patent/JPS60176939A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60176939A (en) | 1985-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4145200A (en) | Production of optical glass fibers | |
EP0018704B1 (en) | Method of substantially continuously forming an optical waveguide preform and an optical waveguide | |
US4897100A (en) | Apparatus and process for fiberizing fluoride glasses using a double crucible and the compositions produced thereby | |
US4519826A (en) | Optical fibers having a fluoride glass cladding and method of making | |
CN1324334A (en) | Method and apparatus for producing optical fiber | |
US5656058A (en) | Apparatus for inserting a core fiber into a partially molten cladding glass to form an optical fiber preform | |
US5350433A (en) | Method of manufacturing a cylindrical part from glass, especially from fluorinated glass by maintaining a thin gaseous film around the cylinder | |
US4163654A (en) | Method of manufacturing graded index optical fibers | |
US4289516A (en) | Low loss optical fibers | |
US5679127A (en) | Apparatus for drawing glass from a containment vessel to make optical fiber preforms | |
US5055120A (en) | Fluoride glass fibers with reduced defects | |
JPS6346012B2 (en) | ||
JP2566128B2 (en) | Mold for manufacturing preform for optical fiber and method for manufacturing preform for optical fiber using this mold | |
JPS6346011B2 (en) | ||
JP2502525B2 (en) | Mold for manufacturing optical fiber preforms | |
JPS6321232A (en) | Production of perform for optical fiber | |
JPH0535096B2 (en) | ||
JPH0667769B2 (en) | Method and apparatus for manufacturing base material for optical fiber | |
JPS593030A (en) | Manufacture of base material for infrared optical fiber | |
JPS6035297B2 (en) | Manufacturing method of base material for drip rotating optical fiber | |
JPS6126502B2 (en) | ||
JPH0218294B2 (en) | ||
JPS6245181B2 (en) | ||
JPS629538B2 (en) | ||
JPS6036346A (en) | Production of optical fiber made of fluoride glass and equipment therefor |