JPS6345947B2 - - Google Patents

Info

Publication number
JPS6345947B2
JPS6345947B2 JP55053327A JP5332780A JPS6345947B2 JP S6345947 B2 JPS6345947 B2 JP S6345947B2 JP 55053327 A JP55053327 A JP 55053327A JP 5332780 A JP5332780 A JP 5332780A JP S6345947 B2 JPS6345947 B2 JP S6345947B2
Authority
JP
Japan
Prior art keywords
bellows
fiber
cylindrical
shape
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55053327A
Other languages
Japanese (ja)
Other versions
JPS56148523A (en
Inventor
Yoichi Sasajima
Hirohisa Ito
Hisami Betsusho
Fusao Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5332780A priority Critical patent/JPS56148523A/en
Publication of JPS56148523A publication Critical patent/JPS56148523A/en
Publication of JPS6345947B2 publication Critical patent/JPS6345947B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 本発明は繊維強化複合材料製ベローズの製造方
法に関し、さらに詳しくはベロー部に連続繊維を
切断することなく配列した曲がりに対して信頼性
の高い繊維強化複合材料製ベローズの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a bellows made of fiber-reinforced composite material, and more particularly to a bellows made of fiber-reinforced composite material that is highly reliable against bending and in which continuous fibers are arranged in the bellows portion without cutting. Relating to a manufacturing method.

繊維強化複合材料はガス又は液体の輸送管、又
は比強度、比弾性にすぐれることから高速回転円
筒といつた用途に用いられるものであつて、ガス
又は液体の輸送管を曲げ易くしたり、危険回転数
を越えて定速で回転する高速回転円筒の弾性曲げ
振動を吸収し、危険速度を下げるといつたように
繊維強化複合材料製ベローズの応用分野は広く考
えられている。しかし均一材料の場合と異なり繊
維強化複合材料は極端な異方性を示すため、これ
をベロー形状に成形するには種々の問題があり実
用化されていないのが現状である。すなわちベロ
ー部の役割を考えると円周方向に強く、軸方向に
曲がり易く、かつ曲がりに対して強いことが必須
となるが、繊維強化複合材料の強度は繊維の配列
密度および連続性に大きく依存し、とくにベロー
形状の場合は、いかに連続繊維を切断することな
く設計通りに繊維の乱れのないように配列するか
が問題となる。また高速回転体を考えると、特に
炭素繊維強化プラスチツクス(CFRPと略)のご
とく比強度、比弾性にすぐれた繊維強化複合材料
を遠心力に耐え得る極限で設計する場合が多く、
こうした高速回転体では繊維の配列も円周方向の
強度が高くなるように設定するため軸方向には、
その比率を多くとることができず、ベローの曲が
りに利く軸方向に寄与する繊維を無駄なく利用す
る必要がある。さらに付言すれば危険回転数を越
えて定速回転に到るような比較的長胴の高速回転
体では危険速度通過時に弾性曲げ振動を生じる危
険があるため、バランス調整を行ない振動を極力
抑える方式を採つているが、危険回転数が大きく
なるにつれてバランスの微調整が必要となり、た
めに多大の時間をかけねばならず、これにベロー
を適用して危険速度を下げることは工業的見地か
らも極めて有効な手段と言える。
Fiber-reinforced composite materials are used in applications such as gas or liquid transport pipes, or high-speed rotating cylinders due to their excellent specific strength and specific elasticity. Bellows made of fiber-reinforced composite materials are thought to have a wide range of applications, such as absorbing the elastic bending vibrations of high-speed rotating cylinders that rotate at a constant speed exceeding the critical rotational speed and reducing the critical speed. However, unlike homogeneous materials, fiber-reinforced composite materials exhibit extreme anisotropy, so there are various problems in molding them into a bellows shape, and at present they have not been put to practical use. In other words, considering the role of the bellows part, it is essential that it be strong in the circumferential direction, easy to bend in the axial direction, and strong against bending, but the strength of fiber reinforced composite materials largely depends on the arrangement density and continuity of the fibers. However, especially in the case of a bellows shape, the problem is how to arrange the continuous fibers as designed without cutting them and without disturbing the fibers. In addition, when considering high-speed rotating bodies, fiber-reinforced composite materials with excellent specific strength and specific elasticity, such as carbon fiber reinforced plastics (CFRP), are often designed to withstand centrifugal force.
In such a high-speed rotating body, the fiber arrangement is set so that the strength in the circumferential direction is high, so in the axial direction,
It is not possible to increase the ratio, and it is necessary to utilize fibers that contribute in the axial direction, which is effective in bending the bellows, without wasting it. Furthermore, in high-speed rotating bodies with relatively long bodies that reach constant speed rotation beyond the critical rotation speed, there is a risk of elastic bending vibration occurring when passing through the critical speed, so a method is used to minimize vibration by adjusting the balance. However, as the critical speed increases, fine adjustment of the balance becomes necessary, which requires a large amount of time, and from an industrial perspective it is difficult to reduce the critical speed by applying bellows. It can be said to be an extremely effective method.

こうした観点から本発明者等は円周方向の強度
を低下することなく、軸方向の曲がりに対して強
くかつ曲がり易い繊維強化複合材料製ベローズを
得るためには連続繊維を用い、連続繊維の切断に
つながる機械加工を出来るだけ抑え、設計巻角を
維持したまま繊維の乱れのない繊維強化複合材料
製ベローズを製作せねばならず、その製造方法に
ついて鋭意研究した結果、本発明を完成するに到
つた。
From this point of view, the present inventors used continuous fibers to obtain a bellows made of a fiber-reinforced composite material that is strong and easy to bend in the axial direction without reducing the strength in the circumferential direction. It was necessary to manufacture a bellows made of fiber-reinforced composite material that does not disturb the fibers while maintaining the designed winding angle while minimizing the machining that would lead to damage, and as a result of intensive research into the manufacturing method, we were able to complete the present invention. Ivy.

すなわち、平坦なもしくはベロー部に相当する
位置の径を他の部分よりも小さくした円筒型表面
にマトリツクスを含浸した連続繊維を巻付けたの
ち、その上から円周方向に分割した内面にベロー
形状を有する円筒型で巻付けられた連続繊維を覆
い、巻付型のベローに相当する部分又は全部をは
ずし、巻付けられた連続繊維の内面をゴム状弾性
体で覆い、この内面から内圧をかけて成形する
か、或いは平坦なもしくはベロー部に相当する位
置の径を他の部分よりも小さくした円筒型の少な
くともベローに相当する部分がゴム状弾性体を用
いた円筒型と、その内側にこれを支える円筒型と
からなり、この型表面上にマトリツクスを含浸し
た連続繊維を巻付けたのちその上から円周方向に
分割した内面にベロー形状を有する円筒型で巻付
けられた連続繊維を覆い、ゴム状弾性体を用いた
円筒型を支える円筒型をはずし、ゴム状弾性体の
内面に内圧をかけて成形することにより、上記特
性を兼ね備えた繊維強化複合材料製ベローズの製
作が可能となることを見出したのである。
In other words, a continuous fiber impregnated with a matrix is wound around a flat or cylindrical surface with a smaller diameter at the position corresponding to the bellows part than the other parts, and then a bellows shape is formed on the inner surface divided in the circumferential direction from above. The wrapped continuous fibers are covered with a cylindrical shape having or a cylindrical shape in which at least the part corresponding to the bellows is made of a rubber-like elastic material, and the diameter of the part corresponding to the bellows part is made smaller than other parts, and A continuous fiber impregnated with a matrix is wound on the surface of this mold, and then a cylindrical shape having a bellows shape covers the wrapped continuous fiber on the inner surface divided in the circumferential direction. By removing the cylindrical mold that supports the cylindrical mold using a rubber-like elastic body and molding it by applying internal pressure to the inner surface of the rubber-like elastic body, it becomes possible to manufacture a bellows made of a fiber-reinforced composite material that has both of the above characteristics. I discovered that.

以下本発明を具体例を挙げながら詳述する。第
1図および第2図は本発明に係る製造方法により
製作された繊維強化複合材料製ベローズ付円筒体
の一例で、第1図は円筒部およびベロー部を連続
した繊維を用いて一体で製作したもので、第2図
は円筒部とベロー部とを連続した繊維を用いて別
別に製作し、これらを接着剤を用いて一体となし
たものである。
The present invention will be explained in detail below by giving specific examples. Figures 1 and 2 show an example of a cylindrical body with bellows made of fiber-reinforced composite material manufactured by the manufacturing method according to the present invention, and in Figure 1, the cylindrical part and bellows part are manufactured integrally using continuous fibers. 2, the cylindrical part and the bellows part are manufactured separately using continuous fibers, and then integrated using an adhesive.

第3図〜第6図は本発明に係る巻付型の一例で
あつて、第3図は平坦な円筒型の一例で円筒体の
平坦部に相当する部分の円筒型1およびベロー部
に相当する円筒型2を芯型3上に配置したもので
あつて、芯型3は必要に応じて省略し、この替わ
りに型の両端にフランジを設け円筒型を固定して
もよい。第3図に示す巻付型を用いてマトリツク
スを含浸した連続繊維を巻付けた場合は、円周方
向に分割し割れ型とした円筒型2をはずし、円周
方向に分割した内面にベロー形状を有する円筒型
で繊維表面を覆つたのちに第9図に示すように連
続繊維の内面をゴム状弾性体で覆い、この内面に
内圧をかけるが、円筒型1および2を1体とし、
内圧をかける際に円筒型全体をはずし、連続繊維
の内面をゴム状弾性体で覆い、この内面に内圧を
かけることも可能である。第4図は円筒体のベロ
ー部に相当する位置の径を他の部分よりも小さく
した円筒型の一例で、円筒体の平坦部に相当する
円筒型1およびベロー部に相当する円筒型2を芯
型3上に配置したもので、ベロー部に相当する円
筒型2は円筒体を貫通した構造となつている。第
4図に示す巻付型を用いる場合はマトリツクスを
含浸した連続繊維を巻付けたのち、芯型3および
円筒型2をはずし、繊維の上から円周方向に分割
した内面にベロー形状を有する円筒型で覆い、か
つ連続繊維の内面をゴム状弾性体で覆い、この内
面に内圧をかけて成形する。この場合も芯型3を
省略し円筒型2の両端をフランジで固定すること
も可能で、また、ベロー部に相当する円筒型2の
平坦部の長さはベローズの全長(L)すなわち軸方向
にベローに沿つた最短直線距離に等しいかそれ以
上とし、巻付られたマトリツクスを含浸した連続
繊維を全長にわたつてすべらせるよりも、この部
分のみで変形させベロー形状とした方が巻付繊維
の乱れを生じさせないためにも好適である。
Figures 3 to 6 are examples of the winding type according to the present invention, and Figure 3 is an example of a flat cylindrical type, which corresponds to the cylindrical type 1 of the part corresponding to the flat part of the cylinder and the bellows part. A cylindrical mold 2 is placed on a core mold 3, and the core mold 3 may be omitted if necessary, and instead flanges may be provided at both ends of the mold to fix the cylindrical mold. When the continuous fibers impregnated with a matrix are wound using the winding die shown in Fig. 3, the cylindrical die 2 that is divided in the circumferential direction and made into a split shape is removed, and the inner surface of the split in the circumferential direction is given a bellow shape. After covering the fiber surface with a cylindrical mold having
When applying internal pressure, it is also possible to remove the entire cylindrical shape, cover the inner surface of the continuous fiber with a rubber-like elastic body, and apply internal pressure to this inner surface. Figure 4 shows an example of a cylindrical shape in which the diameter of the position corresponding to the bellows part of the cylinder body is smaller than that of the other parts. It is arranged on a core mold 3, and the cylindrical mold 2 corresponding to the bellows part has a structure that penetrates the cylindrical body. When using the winding mold shown in Fig. 4, after winding the continuous fiber impregnated with the matrix, the core mold 3 and the cylindrical mold 2 are removed, and the inner surface of the fiber is divided in the circumferential direction from above to form a bellows shape. The continuous fiber is covered with a cylindrical mold, and the inner surface of the continuous fiber is covered with a rubber-like elastic material, and internal pressure is applied to the inner surface to form the fiber. In this case, it is also possible to omit the core mold 3 and fix both ends of the cylindrical mold 2 with flanges, and the length of the flat part of the cylindrical mold 2, which corresponds to the bellows part, is the total length (L) of the bellows, that is, in the axial direction. The length of the wrapped fiber is equal to or greater than the shortest straight line distance along the bellows, and it is better to deform the wrapped fiber only in this part to form a bellows shape than to let the continuous fiber impregnated with the wrapped matrix slide over its entire length. This is also suitable for preventing disturbances in the flow.

本願の意図するところは円筒形状に巻付けた樹
脂を含浸させた連続繊維をゴム状弾性体を介して
内圧をかけ、ベロー形状に変形させることにあ
り、このとき連続繊維は円筒の軸方向に引張り力
を受け、繊維1本1本が軸方向にずれ、ベロー形
状を呈する。
The purpose of this application is to apply internal pressure to resin-impregnated continuous fibers wound into a cylindrical shape through a rubber-like elastic body to deform the continuous fibers into a bellows shape. When subjected to tensile force, each fiber shifts in the axial direction and takes on a bellows shape.

即ち第10図に概念図を示すように、巻付けた
連続繊維部11をゴム状弾性体4を介して内圧を
かけた場合、連続繊維部11は円筒軸方向に軸力
を受け(A状態)、連続繊維の外側に設けた内側
にベロー形状を有する円筒型21に沿つた形に変
形する(B状態)。
That is, as shown in the conceptual diagram in FIG. 10, when internal pressure is applied to the wound continuous fiber part 11 via the rubber-like elastic body 4, the continuous fiber part 11 receives an axial force in the cylindrical axis direction (state A). ), the continuous fiber is deformed into a shape along a cylindrical shape 21 having a bellows shape on the inside provided on the outside (state B).

このとき、各連続繊維はそれぞれベロー形状を
呈するに必要な長さだけ軸方向に移動し、上記形
状を確保する。
At this time, each continuous fiber moves in the axial direction by a length necessary to assume a bellows shape, thereby securing the above shape.

第5図は平坦な円筒型のベロー部に相当する部
分にゴム状弾性体を用いた一例で、円筒体の平坦
部に相当する部分の円筒型1およびベロー部に相
当する部分のゴム状弾性体を用いた円筒型4を支
える円筒型(芯型)3上に配置したもので、第3
図に示す2の部分或いは1および2の部分、さら
には第4図に示す2の部分或いは1および2の部
分をゴム状弾性体を用いた円筒型としてもよく、
この場合マトリツクスを含浸した連続繊維を型表
面上に巻付け、その上を円周方向に分割した内面
にベロー形状を有する円筒型で覆い芯型3をはず
しゴム状弾性体の内側に内圧をかけ、内圧によつ
てゴム状弾性体を外型に設けられたベロー形状に
変形することにより、繊維をベロー形状に沿わし
て成形する。芯型3は省略することも可能でその
場合は円筒体の両端をフランジで固定する。この
場合も繊維を全長にわたつてすべらせるよりも、
ゴム状弾性体の円筒型内でベロー形状に沿わした
方が巻付繊維の乱れを生じさせないためにも好適
である。
Figure 5 shows an example of using a rubber-like elastic body in the part corresponding to the bellows part of a flat cylindrical body. It is placed on the cylindrical mold (core mold) 3 that supports the cylindrical mold 4 using the body, and the third
The part 2 shown in the figure or the parts 1 and 2, and further the part 2 or the parts 1 and 2 shown in FIG. 4 may be cylindrical using a rubber-like elastic body,
In this case, a continuous fiber impregnated with a matrix is wound on the mold surface, and then covered with a cylindrical mold having a bellows shape on the inner surface divided in the circumferential direction.The core mold 3 is removed and internal pressure is applied to the inside of the rubber-like elastic body. By deforming the rubber-like elastic body into the bellows shape provided in the outer mold by internal pressure, the fibers are molded along the bellows shape. The core mold 3 can also be omitted, in which case both ends of the cylindrical body are fixed with flanges. Again, rather than sliding the fibers along their entire length,
It is preferable to follow the bellows shape within the cylindrical shape of the rubber-like elastic body in order to prevent the winding fibers from being disordered.

さらに第6図はベロー部に相当する位置の径を
他の部分よりも小さくした円筒型のベローに相当
する部分にゴム状弾性体を用いた円筒型とその内
側にこれを支える円筒型を設けた一例で、円筒体
の平坦部に相当する部分の円筒型1およびベロー
部に相当する部分のゴム状弾性体を用いた円筒型
4をこれを支える円筒型3上に配置したもので円
筒型3は両端にフランジ部を設けて固定してあ
る。
Furthermore, Fig. 6 shows a cylindrical bellows portion with a smaller diameter at the position corresponding to the bellows portion than the other portions, and a cylindrical shape using a rubber-like elastic body and a cylindrical shape supporting this inside. In one example, a cylindrical mold 1 corresponding to the flat part of the cylindrical body and a cylindrical mold 4 made of a rubber-like elastic body corresponding to the bellows part are arranged on a cylindrical mold 3 that supports them. 3 is fixed with flanges provided at both ends.

第7図および第8図は円周方向に分割したベロ
ー形状を有する円筒型21を組み込んだ状態を示
した一例で、円筒型21は2分割してある。すな
わちマトリツクスを含浸して巻付けられた連続繊
維11は第7図においては円筒体の平坦部に相当
する円筒型1およびベロー部に相当するゴム状弾
性体を用いた円筒型4、さらに第8図では平坦な
円筒体全面のゴム状弾性体を用いた円筒型4を通
じて内圧がかけられ、円筒型21のベロー形状に
変形される。また円周方向に分割したベロー形状
を有する円筒型21の固定方法は第7図に示すご
とく、ボルトナツトで締付ける方法、第8図に示
すように円筒型21の外径に等しいか若干大きい
内径を有する円筒を挿入する方法等種々のものが
考えられ、分割数についても適宜変更可能であ
る。ベローの形状が内付の場合はベロー部分の径
を他よりも小さくした方が円筒型21の挿入時に
繊維の乱れを生じさせないためにも好適で、この
場合ベローの平坦部の径はベローの谷の径に等し
いかもしくはそれ以下とした方がよい。
FIGS. 7 and 8 show an example of a state in which a cylindrical mold 21 having a bellows shape divided in the circumferential direction is incorporated, and the cylindrical mold 21 is divided into two parts. That is, the continuous fibers 11 impregnated with a matrix and wound are divided into a cylindrical shape 1 corresponding to the flat part of the cylinder, a cylindrical shape 4 using a rubber-like elastic body corresponding to the bellows part, and a cylindrical shape 8 using a rubber-like elastic body corresponding to the bellows part in FIG. In the figure, internal pressure is applied through a cylindrical mold 4 made of a rubber-like elastic material over the entire surface of a flat cylindrical body, and the cylindrical mold 21 is deformed into a bellows shape. The cylindrical mold 21, which has a bellows shape divided in the circumferential direction, can be fixed by tightening with bolts and nuts, as shown in FIG. Various methods can be considered, such as the method of inserting the cylinder having the structure, and the number of divisions can also be changed as appropriate. When the shape of the bellows is internal, it is preferable to make the diameter of the bellows part smaller than the other diameters in order to prevent the fibers from being disturbed when inserting the cylindrical mold 21. In this case, the diameter of the flat part of the bellows is It is better to make it equal to or less than the diameter of the valley.

次に内圧をかける成形する方法としては第9図
に示すようにゴム状弾性体の内面を密閉構造とし
てここに油圧又は空気圧により内圧を負荷する方
法、第11図に示すようにゴム状弾性体の内面よ
りベロー形状を呈した分割型を挿入した上でこの
分割型に油圧、空気圧或いは機械的手段により内
圧をかけ分割型を拡径し、円筒形を巻付けた連続
繊維をベロー形状にする方法、或いは第12図に
示すようにベロー山部に相当するゴム状弾性体の
内面に周方向に分割した金属製の帯を配置し、こ
れを油圧、空気圧或いは機械的手段により拡径し
円筒形に巻付けた連続繊維をベロー形状にする方
法等が考えられる。
Next, as a molding method by applying internal pressure, as shown in Figure 9, the inner surface of the rubber-like elastic body is sealed and internal pressure is applied thereto by hydraulic pressure or air pressure, and as shown in Figure 11, the rubber-like elastic body is formed into a sealed structure. A split die with a bellows shape is inserted into the inner surface of the split die, and internal pressure is applied to the split die by hydraulic, pneumatic, or mechanical means to expand the diameter of the split die to make the continuous fibers wrapped around the cylinder into a bellows shape. Alternatively, as shown in Fig. 12, a metal band divided in the circumferential direction is arranged on the inner surface of a rubber-like elastic body corresponding to the bellows peak, and the diameter of this is expanded by hydraulic, pneumatic, or mechanical means to form a cylinder. Possible methods include a method of forming continuous fibers into a bellows shape by winding them into a shape.

さらに円筒形に巻付けた連続繊維を内圧により
ベロー形状に沿わせた後、この状態で加圧、加熱
硬化することによつて得られた繊維強化複合材料
製ベローズを脱型する場合は円筒型21をはず
し、さらに巻付型を脱型することにより容易に行
なえる。また巻付型のベローに相当する部分又は
全部をマトリツクスを含浸した連続繊維を巻付た
のちにはずす場合は、マトリツクスはそのままの
状態でもよいが、繊維の乱れを防止するために
は、これを一旦固化し、とくに熱硬化性樹脂をマ
トリツクスとして使用する場合は成形温度よりも
低い温度で固化するか、液体窒素等で冷却し固化
するか、或いはプリプレグ状態としたのちに行な
つた方が好適である。
Furthermore, after the continuous fibers wound in a cylindrical shape are made to conform to a bellows shape by internal pressure, the bellows made of fiber-reinforced composite material obtained by applying pressure and heat curing in this state is removed from the mold. This can be easily done by removing 21 and then removing the winding mold. In addition, if the continuous fibers impregnated with a matrix are wound around the part or all of the bellows of the wrapping type and then removed, the matrix may be left as is, but in order to prevent the fibers from becoming disordered, it is necessary to Once solidified, especially when using a thermosetting resin as a matrix, it is better to solidify it at a temperature lower than the molding temperature, or to solidify it by cooling with liquid nitrogen, or after making it into a prepreg state. It is.

上記の如く具体例をあげて詳述したが、本発明
は円周方向の強度を低下することなく、軸方向の
曲がりに対して強くかつ曲がり易い繊維強化複合
材料製ベローズを製作するにあたつて連続繊維を
用い連続繊維の切断につながる機械加工を出来る
だけ抑え、かつ設計巻角を維持したままその乱れ
のない製造方法を提供するものであつて、ベロー
の形状、山数さらに型の形状、分割方法等は具体
例に限定されるものではなく用途に応じて適宜用
いられるべきものである。
As described above in detail with specific examples, the present invention is intended to produce a bellows made of fiber reinforced composite material that is strong against bending in the axial direction and easy to bend without reducing the strength in the circumferential direction. The present invention provides a manufacturing method that uses continuous fibers and minimizes mechanical processing that may lead to cutting of the continuous fibers, and that maintains the designed winding angle without disturbing it. The dividing method and the like are not limited to the specific examples and should be used as appropriate depending on the application.

またベローズに用いられる材料については強化
繊維としてはガラス繊維、ケプラー繊維、カーボ
ン繊維、シリコンカーバイト繊維、アルミナ繊
維、ボロン繊維といつた種々の繊維が目的に応じ
て使い分けられるが、とくにプラスチツクスをマ
トリツクスとした炭素繊維強化複合材料は比強
度、比弾性にすぐれるためこうしたベロー付円筒
体としては好適な材料と言える。またマトリツク
スもプラスチツクス、金属等が考えられ、繊維の
形態、ロービング、ヤーンといつた一方向繊維、
織物状のクロス、さらに織物を円筒状とした円筒
クロス等と組合せて適宜使用されるべきである。
Regarding the materials used for bellows, various reinforcing fibers such as glass fiber, Kepler fiber, carbon fiber, silicon carbide fiber, alumina fiber, and boron fiber can be used depending on the purpose, but plastics are especially used. A matrix carbon fiber reinforced composite material has excellent specific strength and specific elasticity, so it can be said to be a suitable material for such a cylindrical body with bellows. In addition, the matrix can be plastic, metal, etc., and the fiber form, roving, unidirectional fibers such as yarn, etc.
It should be used appropriately in combination with woven cloth, cylindrical cloth made of cylindrical cloth, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図 本発明に係る製造方法によつ
て製作された繊維強化複合材料製ベローズ付円筒
の一例、第3図〜第6図 本発明に係る巻付型の
一例であり、1は側面図、2は1のA−A′断面
図である。第7図、第8図 本発明に係る内圧の
かけ方の一例であり、2は断面図、1はA−
A′断面図である。第9図 本発明に係る内圧の
かけ方のもう一方の一例、第10図1,2 本発
明に係る内圧の負荷に伴なう変形の概念図、第1
1,12図 本発明に係る内圧のかけ方のもう一
方の一例 1……円筒体の平坦部に相当する部分の円筒
型、2……ベロー部に相当する部分の円筒型、3
……ゴム状弾性体を支える円筒型(芯型)、4…
…ゴム状弾性体を用いた円筒型、5……流体流入
管、6……内圧負荷部材、11……繊維強化複合
材料、21……円周方向に分割したベロー形状を
有する円筒型、31……周方向を分割したベロー
形状型、32……内圧負荷テーパ円筒、41……
金属製帯、42……内圧負荷治具。
Figures 1 and 2 are examples of cylinders with bellows made of fiber-reinforced composite material manufactured by the manufacturing method according to the present invention; Figures 3 to 6 are examples of winding molds according to the present invention; 2 is a side view, and 2 is a sectional view taken along line A-A' of 1. Figures 7 and 8 are examples of how to apply internal pressure according to the present invention, 2 is a cross-sectional view, and 1 is an A-
It is an A′ cross-sectional view. FIG. 9 Another example of how to apply internal pressure according to the present invention, FIG. 10 FIGS. 1 and 2 Conceptual diagram of deformation due to internal pressure load according to the present invention,
Figures 1 and 12 Another example of how to apply internal pressure according to the present invention 1... Cylindrical shape of the part corresponding to the flat part of the cylindrical body, 2... Cylindrical shape of the part corresponding to the bellows part, 3
...Cylindrical type (core type) that supports a rubber-like elastic body, 4...
...Cylindrical type using a rubber-like elastic body, 5...Fluid inflow pipe, 6...Internal pressure load member, 11...Fibre-reinforced composite material, 21...Cylindrical type having a bellows shape divided in the circumferential direction, 31 ... Bellows shape type divided in the circumferential direction, 32 ... Tapered cylinder with internal pressure load, 41 ...
Metal band, 42... Internal pressure loading jig.

Claims (1)

【特許請求の範囲】 1 平坦なもしくはベロー部に相当する位置の径
を他の部分よりも小さくした円筒型表面にマトリ
ツクスを含浸した連続繊維を巻付けたのち、その
上から円周方向に分割した内面にベロー形状を有
する円筒型で巻付けられた連続繊維を覆い、巻付
型のベローに相当する部分又は全部をはずし、巻
付けられた連続繊維の内面をゴム状弾性体で覆
い、この内面から内圧をかけて成形することを特
徴とする繊維強化複合材料製ベローズの製造方
法。 2 平坦なもしくはベロー部に相当する位置の径
を他の部分よりも小さくした円筒型の小なくとも
ベローに相当する部分がゴム状弾性体を用いた円
筒型とその内側にこれを支える円筒型とからなり
この型表面にマトリツクスを含浸した連続繊維を
巻付けたのち、その上から円周方向に分割した内
面にベロー形状を有する円筒型で巻付けられた連
続繊維を覆い、ゴム状弾性体を用いた円筒型を支
える円筒型をはずし、ゴム状弾性体の内面に内圧
をかけて成形することを特徴とする特許請求の範
囲第1項記載の繊維強化複合材料製ベローズの製
造方法。 3 ベロー部に相当する位置に設けた他の部分よ
りも径の小さな平坦部の長さがベローズの全長(L)
に等しいかもしくはそれ以上とすることを特徴と
する特許請求の範囲第1項及び第2項記載の繊維
強化複合材料製ベローズの製造方法。 4 繊維強化複合材料が炭素繊維強化プラスチツ
クスであることを特徴とする特許請求の範囲第1
項乃至第3項記載の繊維強化複合材料製ベローズ
の製造方法。
[Claims] 1. A continuous fiber impregnated with a matrix is wound around a cylindrical surface that is flat or has a smaller diameter at a position corresponding to the bellows portion than other portions, and then divided in the circumferential direction from above. Cover the inner surface of the wrapped continuous fiber with a cylindrical shape having a bellows shape, remove the portion or all of the bellows of the wrapped type, cover the inner surface of the wrapped continuous fiber with a rubber-like elastic material, and A method for manufacturing a bellows made of fiber-reinforced composite material, characterized by forming the bellows by applying internal pressure from the inside. 2. A cylindrical shape that is flat or has a smaller diameter at the position corresponding to the bellows than other parts, and at least the part corresponding to the bellows is made of a rubber-like elastic body, and the cylindrical shape supports this inside the cylindrical shape. After winding continuous fibers impregnated with a matrix on the surface of this mold, the wrapped continuous fibers are covered with a cylindrical shape having a bellows shape on the inner surface divided in the circumferential direction, and a rubber-like elastic material is 2. A method for producing a bellows made of fiber-reinforced composite material according to claim 1, characterized in that the cylindrical mold supporting the cylindrical mold is removed, and internal pressure is applied to the inner surface of the rubber-like elastic body to form the bellows. 3 The length of the flat part, which is located at the position corresponding to the bellows part and has a smaller diameter than other parts, is the total length of the bellows (L).
A method for manufacturing a bellows made of fiber reinforced composite material according to claims 1 and 2, characterized in that the bellows is equal to or greater than . 4 Claim 1 characterized in that the fiber reinforced composite material is carbon fiber reinforced plastics.
A method for manufacturing a bellows made of fiber reinforced composite material according to items 1 to 3.
JP5332780A 1980-04-21 1980-04-21 Manufacture of bellows made of fiber-reinforced composite material Granted JPS56148523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5332780A JPS56148523A (en) 1980-04-21 1980-04-21 Manufacture of bellows made of fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5332780A JPS56148523A (en) 1980-04-21 1980-04-21 Manufacture of bellows made of fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JPS56148523A JPS56148523A (en) 1981-11-18
JPS6345947B2 true JPS6345947B2 (en) 1988-09-13

Family

ID=12939622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5332780A Granted JPS56148523A (en) 1980-04-21 1980-04-21 Manufacture of bellows made of fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPS56148523A (en)

Also Published As

Publication number Publication date
JPS56148523A (en) 1981-11-18

Similar Documents

Publication Publication Date Title
US3664764A (en) Devices of fibrous-reinforced plastics material
US4131701A (en) Composite tubular elements
JP2530614Y2 (en) Sliding bush
JPS6292833A (en) Manufacture of bent continuous fiber reinforced resin tube
GB2056615A (en) Fiber-reinforced coil spring
JPH0258493B2 (en)
JPS6345947B2 (en)
GB1327246A (en) Fibre reinforced composites
JPS6345946B2 (en)
JPS5888264A (en) Method of manufacturing bellows made of fiber reinforcing composite material
JPS6255010B2 (en)
JPS5863413A (en) Preparation of bellows of fiber reinforced compound material
US4130154A (en) Curved reinforced support member
JPH03161326A (en) Pipe fitted with flange made of fiber reinforced composite material and preparation thereof
JPH07329196A (en) Synthetic resin tube reinforced by fiber
JP2022517756A (en) Composite coil spring with carbon and fiberglass layers
JPH0214895B2 (en)
JPS60109628A (en) Hollow helical spring
JPS60166439A (en) Manufacture of bend made of fiber reinforced plastic
JP3745402B2 (en) Manufacturing method of pressure vessel
JPH0321434A (en) Manufacture of fiber reinforced plastic pipe
JPH0380617B2 (en)
JPS6249492B2 (en)
JPS62280027A (en) Method for molding expansion joint
JPH05508115A (en) Composite structural member with high bending strength and manufacturing method