JPS634580B2 - - Google Patents

Info

Publication number
JPS634580B2
JPS634580B2 JP9877180A JP9877180A JPS634580B2 JP S634580 B2 JPS634580 B2 JP S634580B2 JP 9877180 A JP9877180 A JP 9877180A JP 9877180 A JP9877180 A JP 9877180A JP S634580 B2 JPS634580 B2 JP S634580B2
Authority
JP
Japan
Prior art keywords
vulcanization
rubber
chloroprene rubber
weight
trithiocyanuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9877180A
Other languages
Japanese (ja)
Other versions
JPS5723640A (en
Inventor
Hideo Oda
Masataka Yasumoto
Kazuya Hirota
Yutaka Kawaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanshin Chemical Industry Co Ltd
Original Assignee
Sanshin Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanshin Chemical Industry Co Ltd filed Critical Sanshin Chemical Industry Co Ltd
Priority to JP9877180A priority Critical patent/JPS5723640A/en
Publication of JPS5723640A publication Critical patent/JPS5723640A/en
Publication of JPS634580B2 publication Critical patent/JPS634580B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、 (a) 非イオウ変性クロロプレンゴム。 (b) 亜鉛華,酸化マグネシウムあるいはその混
合。 (c) トリチオシアヌール酸と一般式 (式中、Rはフエニル基,トリル基を示す。)
で示される1・3―置換グアニジン類から選ば
れた1種類以上をゴム100重量部当り0.3ないし
3重量部。さらにトリチオシアヌール酸/1・
3―置換グアニジン類の重量比は95/5〜55/45。 上記(a),(b),(c)の各成分を含むことを特徴とす
るクロロプレンゴムの加硫用組成物に関するもの
である。 クロロプレンゴムは、耐候性,耐オゾン性,耐
熱性,耐油性の大きいハロゲン含有ポリマーで、
一般用タイプはイオウ変性クロロプレンゴムと非
イオウ変性クロロプレンゴムに大別される。イオ
ウ変性クロロプレンゴムは亜鉛華や酸化マグネシ
ウムの如き金属酸化物のみでも加硫するが、非イ
オウ変性タイプのクロロプレンゴムは金属酸化物
のみでは、加硫がおそく十分な加硫ゴム物性を得
ることが出来ない。そのため、従来からエチレン
チオ尿素(2―メルカプトイミダゾリン),ジエ
チルチオ尿素,トリメチルチオ尿素などのチオ尿
素類、あるいはジカテコールボレートのジ・オル
ソ・トリルグアニジン塩などが用いられている。 トリチオシアヌール酸は、クロロプレンゴムの
加硫促進剤として有効であることが、米国特許第
2804450号(1957)の明細書中で明らかであるが、
本加硫促進剤は前記のチオ尿素加硫系に比べて、
焼け(スコーチ)の傾向が大きい。その反面加硫
温度に於ては、加硫速度がおそく、タイトに加硫
が進行しない。また、圧縮永久歪が大きいなどの
欠点を有する。本発明者らは前述の欠点を克服す
るための鋭意研究を重ねた結果、 (1) トリチオシアヌール酸に1・3―置換グアニ
ジン類を前述の併用比で用いると、スコーチの
傾向が低減すること。 (2) 1・3―置換グアニジン類は単独では、加硫
促進作用は皆無に等しいのに、トリチオシアヌ
ール酸との前述の併用範囲に於ては,シヤープ
に加硫が進行し、加硫時間が短縮すること。 (3) さらに加硫ゴムの物理性,特に圧縮永久歪を
改善することなどを発見し本発明を完成するに
至つた。 本発明に係るトリチオシアヌール酸(以下
TTCAと略称)は塩化シアヌルと水硫化ナトリ
ウムあるいは硫化ナトリウムとから合成され、融
点300℃以上の黄色結晶である。また、本発明に
係る1.3―置換グアニジン類としては1.3―ジフエ
ニルグアニジン(以下DPGと略称),1・3―ジ
オルソ・トリルグアニジン(以下DOTGと略称)
が最も好適である。そしてこれらの加硫促進剤の
総量はクロロプレンゴム100重量部に対し0.3〜
3.0重量部,好ましくは1.0〜2.0重量部である。ま
たTTCA/グアニジン類の重量比は95/5〜55/4
5。好ましくは90/10〜60/40重量比である。加硫
剤あるいは酸受容体としての亜鉛華あるいは酸化
マグネシウムは通常4〜5重量部であるが必要に
応じては増減することも出来る。 本発明の組成物は、上記の配合剤以外に通常の
ゴム配合剤、例えば加硫遅延剤,老化防止剤,安
定剤,補強剤,可塑剤などを適宜加えても差しつ
かえない。 次に本発明の特徴を実施例をもつてさらに詳細
に説明する。 実施例 配合は第1表に示す。トリチオシアヌール酸と
1.3―ジオルソ・トリルグアニジンとを種々の割
合で併用した非イオウ変性クロロプレンゴム組成
物のスコーチタイム及び160℃における加硫速度
に及ぼす影響を第2表及び第3表に示す。 配合ゴムは6″φ×12″の試験ロールを用い50±
5℃で混練りした。ムーニー・スコーチはJIS
K6300(1974)に準拠し、120℃に於いて試験し
た。キユラストメーターの試験条件は下記の通り
である。加熱時間は160℃×50分と一定とし、最
高トルクに至らない場合は、50分間加熱のトルク
値をもつて最大値(Kg−cm)とした。 試験機: JSR型キユラスト・メーター ダイス: 2mm 振 巾: ±3゜ 誘導期間:t10(分,秒)を採用 加硫時間:t90(分,秒)を採用 立ち上り速度:R(分,秒)を採用 推定加硫時間:T=2t90−t10(分,秒)最大トル
ク値(Kg―cm)=(10×P/W)Kg×13.5cm P:応力ゼロの中心線からの応力最大値までの距
離(cm) W:記録用紙の有効幅(cm)。 引張り試験はJIS K6301(1975)に準拠した。
160℃においてプレス加硫した加硫ゴムの物理性,
100℃×70時間加熱後の圧縮永久歪(CS%)およ
びギヤーオーブンを用いて100℃×70時間熱老化
後の引張り試験の結果は第4表に示す。 第1表 非イオウ変性クロロプレンゴム※ 100 亜鉛華 5 酸化マグネシウム 4 ステアリン酸 1 プロセス・オイル 10 SRFブラツク 50加硫促進剤 変量 註 ※ネオプレンW(昭和ネオプレン(株)製)
The present invention provides (a) non-sulfur modified chloroprene rubber. (b) Zinc white, magnesium oxide or a mixture thereof. (c) Trithiocyanuric acid and general formula (In the formula, R represents a phenyl group or a tolyl group.)
0.3 to 3 parts by weight of one or more selected from the 1,3-substituted guanidines shown below per 100 parts by weight of rubber. In addition, trithiocyanuric acid/1.
The weight ratio of 3-substituted guanidines is 95/5 to 55/45. The present invention relates to a composition for vulcanizing chloroprene rubber, which is characterized by containing each of the components (a), (b), and (c) above. Chloroprene rubber is a halogen-containing polymer with high weather resistance, ozone resistance, heat resistance, and oil resistance.
General-use types are broadly divided into sulfur-modified chloroprene rubber and non-sulfur-modified chloroprene rubber. Sulfur-modified chloroprene rubber can be vulcanized only with metal oxides such as zinc white or magnesium oxide, but non-sulfur-modified chloroprene rubber is slow to vulcanize and cannot obtain sufficient vulcanized rubber physical properties with metal oxides alone. Can not. Therefore, thioureas such as ethylenethiourea (2-mercaptoimidazoline), diethylthiourea, and trimethylthiourea, or the di-ortho-tolylguanidine salt of dicatecholborate have been used. Trithiocyanuric acid has been shown to be effective as a vulcanization accelerator for chloroprene rubber, as reported in U.S. Patent No.
As is clear in the specification of No. 2804450 (1957),
Compared to the above-mentioned thiourea vulcanization system, this vulcanization accelerator has
There is a strong tendency to burn (scorch). On the other hand, at the vulcanization temperature, the vulcanization rate is slow and vulcanization does not progress tightly. It also has drawbacks such as large compression set. As a result of extensive research by the present inventors to overcome the above-mentioned drawbacks, we found that (1) When 1,3-substituted guanidines are used in the above-mentioned combination ratio with trithiocyanuric acid, the tendency to scorch is reduced. thing. (2) When used alone, 1,3-substituted guanidines have almost no vulcanization accelerating effect, but when used in combination with trithiocyanuric acid, vulcanization progresses sharply and vulcanization increases. To shorten the time. (3) Furthermore, they discovered that the physical properties of vulcanized rubber, especially compression set, can be improved, leading to the completion of the present invention. Trithiocyanuric acid according to the present invention (hereinafter referred to as
TTCA (abbreviated as TTCA) is synthesized from cyanuric chloride and sodium hydrosulfide or sodium sulfide, and is a yellow crystal with a melting point of over 300℃. In addition, the 1,3-substituted guanidines according to the present invention include 1,3-diphenylguanidine (hereinafter abbreviated as DPG) and 1,3-diortho-tolylguanidine (hereinafter abbreviated as DOTG).
is the most suitable. The total amount of these vulcanization accelerators is 0.3 to 100 parts by weight of chloroprene rubber.
The amount is 3.0 parts by weight, preferably 1.0 to 2.0 parts by weight. Also, the weight ratio of TTCA/guanidines is 95/5 to 55/4.
5. Preferably the weight ratio is 90/10 to 60/40. The amount of zinc white or magnesium oxide used as a vulcanizing agent or acid acceptor is usually 4 to 5 parts by weight, but the amount can be increased or decreased as necessary. In addition to the above-mentioned compounding agents, the composition of the present invention may contain, as appropriate, conventional rubber compounding agents such as vulcanization retarders, anti-aging agents, stabilizers, reinforcing agents, and plasticizers. Next, the features of the present invention will be explained in more detail using examples. Examples The formulations are shown in Table 1. trithiocyanuric acid and
Tables 2 and 3 show the effects of non-sulfur modified chloroprene rubber compositions containing 1.3-diortho-tolylguanidine in various proportions on the scorch time and vulcanization rate at 160°C. The compounded rubber was 50± using a 6″φ x 12″ test roll.
The mixture was kneaded at 5°C. Moony Scorch is JIS
Tested at 120°C in accordance with K6300 (1974). The test conditions for the cuylastometer are as follows. The heating time was constant at 160°C x 50 minutes, and if the maximum torque was not reached, the torque value after 50 minutes of heating was taken as the maximum value (Kg-cm). Testing machine: JSR type Cyulast meter Dice: 2mm Shaking width: ±3° Induction period: t 10 (minutes, seconds) Vulcanization time: t 90 (minutes, seconds) Rising speed: R (minutes, seconds) ) Estimated vulcanization time: T = 2t 90 -t 10 (minutes, seconds) Maximum torque value (Kg - cm) = (10 x P / W) Kg x 13.5 cm P: stress from the center line of zero stress Distance to maximum value (cm) W: Effective width of recording paper (cm). The tensile test was based on JIS K6301 (1975).
Physical properties of vulcanized rubber press-cured at 160℃,
The compression set (CS%) after heating at 100°C for 70 hours and the results of the tensile test after heat aging at 100°C for 70 hours using a gear oven are shown in Table 4. Table 1 Non-sulfur modified chloroprene rubber* 100 Zinc white 5 Magnesium oxide 4 Stearic acid 1 Process oil 10 SRF black 50 Vulcanization accelerator Variable notes *Neoprene W (manufactured by Showa Neoprene Co., Ltd.)

【表】 註) * トリチオシアヌール酸 ** 1・3
−ジオルソ・トリルグアニジン
[Table] Note) * Trithiocyanuric acid ** 1.3
-Diortho-tolylguanidine

【表】【table】

【表】 註) * トリチオシアヌール酸 ** 1・
3−ジオルソ・トリルグアニジン
上記実施例1〜4はTTCA単独(比較例1及
び6)に比べ、加硫時間(t90),加硫立ち上り速
度(R),推定加硫時間(T)が短く、また最高
トルク値も大きいことなどが判明した。 またDOTGの併用比を増加するに従つてスコ
ーチタイム(t5)もほぼ比例的に長くなることが
わかる。 次に本発明に係る組成物の加硫ゴム物性につい
て試験した結果を第4表に示す。
[Table] Note) * Trithiocyanuric acid ** 1.
3-Diortho-tolylguanidine The above Examples 1 to 4 have shorter vulcanization time (t 90 ), vulcanization rise rate (R), and estimated vulcanization time (T) than TTCA alone (Comparative Examples 1 and 6). It was also found that the maximum torque value was large. It is also seen that as the combined use ratio of DOTG increases, the scorch time (t 5 ) also increases almost proportionally. Next, Table 4 shows the results of testing the physical properties of the vulcanized rubber of the composition according to the present invention.

【表】 註) 1)引張り強さ 2)伸び 3)モヂユ
ラス 4)硬さ 5)圧縮永久歪
第4表の試験結果から本発明に係る組成物は比
較例に比べてモヂユラスおよび硬度の大きい加硫
ゴムを与え,圧縮永久歪を改善することがわか
る。同様にDOTGの代りに1・3―ジフエニル
グアニジン(DPG)を併用した本発明に係る組
成物の効果を第5表に示す。
[Table] Note) 1) Tensile strength 2) Elongation 3) Modulus 4) Hardness 5) Compression set From the test results in Table 4, the composition according to the present invention has a large modulus and hardness compared to the comparative example. It can be seen that adding sulfur rubber improves compression set. Similarly, Table 5 shows the effects of the composition according to the present invention using 1,3-diphenylguanidine (DPG) in place of DOTG.

【表】 本試験結果から本発明に係る組成物は、モヂユ
ラス,硬度の大きい加硫ゴムを与え、圧縮永久歪
が優れていることが判明した。
[Table] From the test results, it was found that the composition according to the present invention provided a vulcanized rubber with high modulus and hardness, and had excellent compression set.

Claims (1)

【特許請求の範囲】 1 (a) 非イオウ変性クロロプレンゴム。 (b) 亜鉛華,酸化マグネシウムあるいはその混
合。 (c) トリチオシアヌール酸と一般式 (式中、Rはフエニル基,トリル基を示す。)
で示される1・3―置換グアニジン類から選ば
れた1種類以上をゴム100重量部当り0.3ないし
3重量部。さらにトリチオシアヌール酸/1・
3―置換グアニジン類の重量比は95/5〜55/45。 上記(a),(b),(c)の各成分を含むことを特徴とす
るクロロプレンゴムの加硫用組成物。
[Claims] 1 (a) Non-sulfur modified chloroprene rubber. (b) Zinc white, magnesium oxide or a mixture thereof. (c) Trithiocyanuric acid and general formula (In the formula, R represents a phenyl group or a tolyl group.)
0.3 to 3 parts by weight of one or more selected from the 1,3-substituted guanidines shown below per 100 parts by weight of rubber. In addition, trithiocyanuric acid/1.
The weight ratio of 3-substituted guanidines is 95/5 to 55/45. A composition for vulcanizing chloroprene rubber, comprising each of the components (a), (b), and (c) above.
JP9877180A 1980-07-21 1980-07-21 Vulcanizable composition of chloroprene rubber Granted JPS5723640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9877180A JPS5723640A (en) 1980-07-21 1980-07-21 Vulcanizable composition of chloroprene rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9877180A JPS5723640A (en) 1980-07-21 1980-07-21 Vulcanizable composition of chloroprene rubber

Publications (2)

Publication Number Publication Date
JPS5723640A JPS5723640A (en) 1982-02-06
JPS634580B2 true JPS634580B2 (en) 1988-01-29

Family

ID=14228635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9877180A Granted JPS5723640A (en) 1980-07-21 1980-07-21 Vulcanizable composition of chloroprene rubber

Country Status (1)

Country Link
JP (1) JPS5723640A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010073B2 (en) * 2001-07-18 2012-08-29 電気化学工業株式会社 Chloroprene-based rubber composition

Also Published As

Publication number Publication date
JPS5723640A (en) 1982-02-06

Similar Documents

Publication Publication Date Title
JP5495153B2 (en) Rubber composition and pneumatic tire using the same
KR100357504B1 (en) Rubber composition
JP3865900B2 (en) Rubber composition
JP5418141B2 (en) Rubber composition
JP2002531617A (en) Improved processability of silica-filled rubber raw materials
JPH0339543B2 (en)
JPH09151279A (en) Tread rubber composition
JP6702433B2 (en) Method for producing rubber composition for tire
JPS634580B2 (en)
JPH1171479A (en) Rubber composition
JPH06234885A (en) Rubber composition with improved processibility and vulcanizing characteristics
JP2014077050A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP7127340B2 (en) Method for producing rubber composition for tire
JP4090114B2 (en) Rubber composition, method for producing the same, and tire
JP3202782B2 (en) Rubber composition and tire using the same
JPS62115045A (en) Rubber composition
JP2019137778A (en) Method of producing rubber composition for tire
JPH0953070A (en) Age resistor for rubber and composition thereof
JPH11172046A (en) Rubber composition
JP7372524B2 (en) Rubber composition for tires and pneumatic tires using the same
JP2005298435A (en) Mixture containing sulfur-containing organosilicon compound and method for producing the same
JP2019182985A (en) Method of producing rubber composition for tire
JPS6360065B2 (en)
JP4939015B2 (en) Rubber and rubber composition for tire containing the same
JPH10120826A (en) Composition for vibrationproof rubber and vibrationproof rubber