JPS6345537A - Chemiluminescence type ammonia analyzing instrument - Google Patents

Chemiluminescence type ammonia analyzing instrument

Info

Publication number
JPS6345537A
JPS6345537A JP18975886A JP18975886A JPS6345537A JP S6345537 A JPS6345537 A JP S6345537A JP 18975886 A JP18975886 A JP 18975886A JP 18975886 A JP18975886 A JP 18975886A JP S6345537 A JPS6345537 A JP S6345537A
Authority
JP
Japan
Prior art keywords
gas
measured
gaseous
concentration
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18975886A
Other languages
Japanese (ja)
Other versions
JPH0731119B2 (en
Inventor
Wataru Tsuruta
鶴田 捗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61189758A priority Critical patent/JPH0731119B2/en
Publication of JPS6345537A publication Critical patent/JPS6345537A/en
Publication of JPH0731119B2 publication Critical patent/JPH0731119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To permit measurement of ammonia of low concn. in a measurement range of a small full scale by supplying gaseous O3 of the concn. lower than the concn. of gaseous NO to a system up to a detector and oxidizing the gaseous NO in the gas by as much as the amt. of the gaseous O3 to convert said gas to gaseous NO2. CONSTITUTION:A converter 3 provided to permit reduction contact catalysis is disposed to the system 1 and the top ends of the probe part 4 of the respective systems 1, 2 are disposed to face a flue 5. A scrubber part 6, a pretreatment part 7, a flow rate control part 8 and chemiluminescence chambers 9 which are the detecting part are connected to the inflow line for the gas to be measured of the respective systems. Ozone supply lines 11 for supplying the gaseous O3 from ozone generating parts 10 are piped to the respective chambers 9. The measurement of the concn. of the gaseous NO is executed by chemiluminescence analysis and the concn. is calculated by an arithmetic part 12 and is displayed on a display part 13. The respective ozone generating parts 10 of the respective systems and the inflow line for the gas to be measured are connected by ozone introducing paths 14 so that the gaseous O3 of the concn. lower than the concn. of the gaseous NO in the gas to be measured is supplied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、排煙脱硝装置等の公害防止機器などに付設
され、ガス中に含まれるアンモニアガスの濃度を測定す
る化学発光式アンモニア分析装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a chemiluminescent ammonia analyzer that is attached to pollution prevention equipment such as flue gas denitrification equipment and measures the concentration of ammonia gas contained in gas. Regarding.

〔従来の技術〕[Conventional technology]

一般に、ケミルミ法と呼ばれ、NO(−酸化窒素)ガス
が0.(オゾン)と反応するときに発する光の強さを光
電子増倍管で検出する方法を利用した化学発光式のアン
モニア分析装置は。
It is generally called the Chemilumi method, in which NO (-nitrogen oxide) gas is used at 0. This is a chemiluminescent ammonia analyzer that uses a photomultiplier tube to detect the intensity of light emitted when it reacts with (ozone).

被測定ガス導入部から導入された、NH,ガス及びNO
ガスが共存する被測定ガスを還元触媒もしくは酸化触媒
が設けられたコンバータを通し、そのコンバータを通し
た後のガス中におけるNOガス濃度を検出器で検出する
第1の系列と、同じく被測定ガスをコンバータを通さず
に、そのコンバータを通さないガス中のNOガス濃度を
前記とは別の検出器で検出する第2の系列とを備え、こ
れら両系列における各検出器の出力を比較演算して被測
定ガス中のNH3ガス濃度を測定するする構成となって
いる。
NH, gas and NO introduced from the gas introduction part to be measured
The first series passes the measured gas coexisting with a gas through a converter equipped with a reduction catalyst or oxidation catalyst, and the detector detects the NO gas concentration in the gas after passing through the converter. and a second system that detects the NO gas concentration in the gas that does not pass through the converter with a detector different from the above, and compares and calculates the output of each detector in these two systems. The structure is such that the NH3 gas concentration in the gas to be measured is measured.

そして、還元形のアンモニア分析計における測定原理は
、2系列のサンプリングラインを設け、その片方のNH
,系列には還元触媒が設けられたコンバータを介設して
、被測定ガスをそのコンバータを通すことにより NO+NH,+1/40.=N、+3/2H,0の反応
を行なわせる。この反応は、02共存下におけるNOガ
スとNH,ガスとの等モル反応であるから、金板りに、
被測定ガス中に5ppmのNH,ガスと150ppmの
NOガスとが共存する場合を考えると1反応後のガス中
のNOガス濃度は1l50−5=145ppとなる。
The measurement principle of a reduced ammonia analyzer is to provide two sampling lines, one of which
, a converter equipped with a reduction catalyst is interposed in the series, and the gas to be measured is passed through the converter to produce NO+NH,+1/40. =N, +3/2H,0 reaction is carried out. This reaction is an equimolar reaction between NO gas and NH gas in the coexistence of 02, so on the metal plate,
Considering the case where 5 ppm of NH gas and 150 ppm of NO gas coexist in the gas to be measured, the NO gas concentration in the gas after one reaction is 1l50-5=145 pp.

一方、もう片方のNOx系列にはコンバータが設けられ
ていないので、被測定ガス中のNOガス濃度150pp
mがそのまま分析計にて検出される。この両系列の差、
すなわち、(NO)−[NONH3)= 150 14
5 = 5 p p m=[N H3]が最最終出力量
として得られ、NH3ガス濃度が測定される。
On the other hand, since the other NOx series is not equipped with a converter, the NO gas concentration in the measured gas is 150 pp.
m is directly detected by the analyzer. The difference between these two series,
That is, (NO) - [NONH3) = 150 14
5 = 5 p p m = [NH3] is obtained as the final output amount, and the NH3 gas concentration is measured.

また、酸化形のアンモニア分析計における測定原理は、
同じく2系列のサンプリングラインを設け、その片方の
系列には酸化触媒が設けられたコンバータを介設して、
被測定ガスをそのコンバータを通すことにより N H,+5/40. = N O+3/2H20の反
応を行なわせる。この反応により、NH3ガスは酸化さ
れてそれと等モルのNOガスに変わるから、上記と同様
に、被測定ガス中に5ppmのNH3ガスと150pp
mのNOガスとが共存する場合を考えると、反応後のガ
ス中のNOガス濃度は150 + 5 = 155 p
 p mとなる。一方、もう片方の系列にはコンバータ
が設けられていないので、被測定ガス中のNOガス濃度
150ppmがそのまま分析計にて検出される。この両
系列の差、すなわち。
The measurement principle of an oxidized ammonia analyzer is
Similarly, two sampling lines are provided, and one of the lines is equipped with a converter equipped with an oxidation catalyst.
By passing the gas to be measured through the converter, NH, +5/40. =N O+3/2H20 reaction is carried out. Due to this reaction, NH3 gas is oxidized and turns into NO gas with an equimolar amount, so in the same way as above, 5ppm of NH3 gas and 150ppm of NH3 gas in the gas to be measured.
Considering the case where m NO gas coexists, the NO gas concentration in the gas after reaction is 150 + 5 = 155 p
p m. On the other hand, since the other series is not provided with a converter, the NO gas concentration of 150 ppm in the gas to be measured is directly detected by the analyzer. The difference between these two series, ie.

(NO+  N)(3)−(NO)=155−150=
5 p p m=(NH3)が最終出力信号として得ら
れ、NH3ガス濃度が測定されることとなる。
(NO+N)(3)-(NO)=155-150=
5 pp m=(NH3) is obtained as the final output signal, and the NH3 gas concentration is measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来の化学発光式アンモニア分析装置は、干渉
影響が少なく、感度、安定性などに優れた特性を示すが
、NH,ガス濃度を求めるに当たって、各系列のNOガ
ス濃度を測定し、そのNOガス濃度からNH,ガス濃度
を算出するものであり、他方、被測定ガス中のNOガス
濃度はNH,ガス濃度に比べて相当高いことから、NH
,ガス濃度が極めて低いにも拘らず、測定は大きなフル
スケール濃度の測定レンジを用いて行なわれなければな
らない、このため、フルスケール濃度に対するNH,ガ
ス濃度の比率が小となり、分析精度が悪くなるといった
問題点がある0例えば、被測定ガス中のNOガス濃度は
通常100〜200ppmの間にあることから、分析装
置の測定レンジは、フルスケール濃度が250ppm程
度のものを選定する必要がある。一方、NH,ガス濃度
は通常O〜110PP程度であることから、250pp
mフルスケール濃度に対しては0〜4%程度の値にしか
ならない。このため、従来装置においては、出力値を電
気的に拡大して見かけ上だけは小さいフルスケール濃度
の測定レンジとしているが、このように単に出力値を拡
大するだけでは見かけ上の読み取り精度を向上させるに
過ぎず2本質的な精度向上は達成されていない。
The conventional chemiluminescent ammonia analyzer described above exhibits excellent characteristics such as low interference effects and excellent sensitivity and stability, but when determining the NH and gas concentrations, the NO gas concentration of each series is measured, and the The NH gas concentration is calculated from the gas concentration.On the other hand, since the NO gas concentration in the measured gas is considerably higher than the NH gas concentration, the NH gas concentration is calculated from the NH gas concentration.
, Even though the gas concentration is extremely low, measurements must be performed using a large full-scale concentration measurement range.As a result, the ratio of the NH and gas concentration to the full-scale concentration is small, resulting in poor analysis accuracy. For example, since the concentration of NO gas in the gas to be measured is usually between 100 and 200 ppm, the measurement range of the analyzer must be selected to have a full-scale concentration of approximately 250 ppm. . On the other hand, since the NH gas concentration is usually about O to 110PP, 250pp
The value is only about 0 to 4% with respect to the m full-scale concentration. For this reason, in conventional devices, the output value is electrically expanded to obtain an apparently small full-scale concentration measurement range, but simply expanding the output value in this way does not improve the apparent reading accuracy. However, no essential improvement in accuracy has been achieved.

この発明はケミルミ法を利用したアンモニア分析装置が
2系統差動演算システムである点に着眼し、測定レンジ
を小さなフルスケール濃度のものとしてNOを測定でき
るようにし、本質的にアンモニア分析装置における精度
を高めることを課題としている。
This invention focuses on the fact that an ammonia analyzer using the Chemilumi method is a two-system differential calculation system, and makes it possible to measure NO by setting the measurement range to a small full-scale concentration, which essentially improves the accuracy of the ammonia analyzer. The challenge is to increase the

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記課題を達成するために、アンモニア分
析装置を次のような構成とした。すなわち、被測定ガス
導入部から導入された、NH,ガス及びNOガスが共存
する被測定ガスを還元触媒もしくは酸化触媒が設けられ
たコンバータを通し、そのコンバータを通した後のガス
中のNOガス濃度を検出器で検出する第1の系列と、同
じく被測定ガスをコンバータを通さずに、そのコンバー
タを通さないガス中のN。
In order to achieve the above object, the present invention provides an ammonia analyzer with the following configuration. In other words, the gas to be measured, in which NH, gas, and NO gas coexist, is introduced from the gas inlet to be measured and passed through a converter equipped with a reduction catalyst or an oxidation catalyst, and after passing through the converter, the NO gas in the gas is reduced. The first series detects the concentration with a detector, and also the N in the gas that does not pass the gas to be measured through the converter.

ガス濃度を前記とは別の検出器で検出する第2の系列と
を備え、これら両系列における各検出器の出力を比較演
算して被測定ガス中のNH。
and a second series in which the gas concentration is detected by a detector different from the above, and the outputs of the respective detectors in both series are compared and calculated to determine the NH in the gas to be measured.

ガス濃度を測定する化学発光式アンモニア分析装置にお
いて、前記第1の系列及び第2の系列の前記各検出器に
至るまでの各ガス流路のそれぞれに、オゾン発生器から
発生されるオゾンを導入するオゾン導入路を連通させた
ことを特徴とする化学発光式アンモニア分析装置を要旨
としている。
In a chemiluminescent ammonia analyzer for measuring gas concentration, ozone generated from an ozone generator is introduced into each gas flow path up to each of the detectors of the first series and the second series. The gist of this paper is a chemiluminescence type ammonia analyzer characterized by having an ozone introduction path in communication.

〔作  用〕[For production]

上記構成としたこの発明に係るアンモニアガス分析装置
においては、検出器に至るまでの第1の系列及び第2の
系列にNOガス濃度よりも低い濃度の0.ガスを供給す
ると、それぞれの系列の被測定ガス中のNOガスは、○
、ガス濃度に相当する量だけ酸化されてN○2ガスに変
わる。このため、その反応分だけ検出部では化学発光し
なくなり、検出器においては、未反応の残存したNOガ
スだけが検出される。そして、従来と同様にして、両系
列の検出値の差からNH,ガス濃度が測定されることと
なる。従って、検出器の測定レンジは、前記残存したN
In the ammonia gas analyzer according to the present invention having the above-mentioned configuration, the first line and the second line leading to the detector have a concentration of 0.000 ml of gas lower than the NO gas concentration. When gas is supplied, NO gas in each series of gas to be measured becomes ○
, it is oxidized by an amount corresponding to the gas concentration and turns into N○2 gas. Therefore, chemiluminescence is no longer produced in the detection section by the reaction amount, and only the remaining unreacted NO gas is detected in the detector. Then, as in the conventional case, the NH and gas concentrations are measured from the difference between the detected values of both series. Therefore, the measurement range of the detector is the remaining N
.

ガスに対応した小さいフルスケール濃度のものに選定す
ることが可能となる。
It becomes possible to select one with a small full-scale concentration corresponding to the gas.

〔実 施 例〕〔Example〕

以下、この発明の実施例を、図を参照しながら説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明を実施した還元形のアンモニア分析装
置の概略構成図であり、第2図は従来装置及びこの発明
の装置における各フルスケール濃度に対するNH3ガス
1度値の比率を示した図である。
Fig. 1 is a schematic diagram of a reduced type ammonia analyzer according to the present invention, and Fig. 2 is a diagram showing the ratio of NH3 gas 1 degree value to each full-scale concentration in the conventional device and the device of the present invention. It is.

この還元形のアンモニア分析装置は、NH3系列である
第1の系列と、NO系列である第2の系列2との2つの
系列の被測定ガス流入ラインを備えている。第1の系列
1には、還元触媒を設けたコンバータ3を配設し、各系
列1.2のプローブ部4の先端部を、煙道5に臨ませて
いる。前記プローブ部4に続く各系列の被測定ガス流入
ラインには、スクラバ一部6、前処理部7、流量制御部
8及び検出部であるケミルミチャンバー9が順次配管接
続されている。そして、各ケミルミチャンバー9には、
オゾン発生部10から0.ガスを供給するためのオゾン
供給ライン11が配管されている。また、各ケミルミチ
ャンバー9におけるNOガス濃度の測定は、化学発光分
析により行なわれ、NOガス濃度は演算部12により演
算され表示部13に表示されるようになっている。以上
の構成は、上記した従来の還元形アンモニア分析装置と
同じであるが。
This reduced type ammonia analyzer is equipped with two series of measurement gas inflow lines: a first series that is an NH3 series, and a second series 2 that is an NO series. The first series 1 is provided with a converter 3 provided with a reduction catalyst, and the tips of the probe sections 4 of each series 1.2 are made to face the flue 5. A scrubber section 6, a pretreatment section 7, a flow rate control section 8, and a chemirumi chamber 9 serving as a detection section are connected in sequence to the gas inflow line to be measured in each series following the probe section 4. And, in each Chemilumi chamber 9,
0 from the ozone generating section 10. An ozone supply line 11 for supplying gas is installed. Further, the NO gas concentration in each chemiluminescence chamber 9 is measured by chemiluminescence analysis, and the NO gas concentration is calculated by the calculation section 12 and displayed on the display section 13. The above configuration is the same as the conventional reduced ammonia analyzer described above.

この発明は、上記構成の分析装置において、各系列にお
ける前記各オゾン発生部IOと被測定ガス流入ラインと
を前記前処理部7と流量制御部8との間でオゾン導入路
14により配管接続し、煙道5から各被測定ガス流入ラ
インに流入した被測定ガス中のNOガス濃度よりも低い
濃度の03ガスを供給する構成としたことに特徴がある
In the analyzer having the above configuration, the present invention connects each of the ozone generators IO and the gas inflow line to be measured in each series via an ozone introduction path 14 between the pretreatment section 7 and the flow rate control section 8. The structure is characterized in that the 03 gas is supplied with a concentration lower than the NO gas concentration in the gas to be measured which has flowed from the flue 5 into each of the gas inflow lines to be measured.

上記構成としたアンモニア分析装置においては、煙道5
から各系列の被測定ガス流入ラインに流入した被測定ガ
スは、それぞれの被測定ガス流入ラインの各部を流通し
てケミルミチャンバー9に至るのであるが、第1の系列
1の被測定ガス流入ラインに流入した、例えば10Pp
mのNH,ガスと200ppmのNOガスが共存する被
測定ガスは、プローブ部4のコンバータ3の還元触媒と
の接触によって上述したような反応が起こり、NOガス
の一部はNH,ガスと等モル反応してN2 ガスに変わ
り、NOガス濃度は190PPmとなる。一方、第2の
系列2の被測定ガス流入ラインに流入した被測定ガスは
、この系列にはコンバータが設けられていないので、N
Oガス濃度は200ppmのまま変化しない。そして、
ケミルミチャンバー9に至るまでの各系列にオゾン発生
部10からオゾン導入路14を介してNOガス1度より
も低い1例えば150ppmの濃度の○、ガスを供給す
ると、NO+O,=NO2+02’i’)反応が各系列
において起こり、各ケミルミチャンバー9においてはそ
のNO2は検出されず、残存したN。
In the ammonia analyzer configured as above, the flue 5
The gas to be measured that has flowed into the gas inflow line of each series flows through each part of each gas inflow line to reach the Chemiluminium chamber 9. For example, 10Pp
The gas to be measured, in which m NH, gas and 200 ppm NO gas coexist, undergoes the above-mentioned reaction when it comes into contact with the reduction catalyst of the converter 3 of the probe section 4, and a portion of the NO gas is mixed with NH, gas, etc. It undergoes a molar reaction and turns into N2 gas, and the NO gas concentration becomes 190PPm. On the other hand, since this series is not provided with a converter, the gas to be measured that has flowed into the gas to be measured inflow line of the second series 2 is N
The O gas concentration remains unchanged at 200 ppm. and,
When gas is supplied from the ozone generator 10 to each series up to the Chemilumi chamber 9 through the ozone introduction path 14 at a concentration lower than NO gas, for example 150 ppm, NO+O,=NO2+02'i') A reaction occurs in each series, and the NO2 is not detected in each Chemiluminium chamber 9, but the remaining N.

ガス、すなわち第1の系列においては40PPmのNO
ガスが、また第2の系列においては50ppmのNOガ
スがそれぞれ○、ガスとの反応による化学発光により検
出され1両系列の差であるNOガス濃度10ppmが検
出され、従って10ppmのNH3ガス濃度が測定され
ることとなる。このため、検出部における測定レンジは
フルスケール濃度50PPmのものに設定することがで
きるようになる。この点について、200ppmの濃度
のNOガスを測定するためにフルスケール濃度250p
pmである測定レンジとした従来の場合と比較すると、
第2図のようになる。すなわち、10ppmの濃度のN
H,ガスを250PPmフルスケールレンジで測定する
と、フルスケールの僅かに4%であるが、50ppmフ
ルスケールレンジであればフルスケールの20%となる
のである。このようにNOガスの濃度を50PPm以下
となるようにすれば、フルスケール濃度が50ppmと
いった小さな測定レンジに設定して測定することが可能
となるとともに、演算部のゲインを拡大する必要がなく
なり、従来のようにゲインを拡大した見かけの読み取り
精度の向上ではなく1本質的な精度向上が達成される。
gas, i.e. 40 PPm NO in the first series
In the second series, 50 ppm of NO gas was detected by chemiluminescence due to reaction with the gas, and the NO gas concentration of 10 ppm was detected, which is the difference between the two series. Therefore, the NH3 gas concentration of 10 ppm was detected. It will be measured. Therefore, the measurement range in the detection section can be set to a full scale concentration of 50 PPm. In this regard, to measure NO gas at a concentration of 200 ppm, a full scale concentration of 250 p
Compared to the conventional case where the measurement range is pm,
It will look like Figure 2. That is, a concentration of 10 ppm of N
When H, gas is measured in a 250 ppm full scale range, it is only 4% of the full scale, but in a 50 ppm full scale range, it is 20% of the full scale. By setting the concentration of NO gas to 50 ppm or less in this way, it is possible to set the full scale concentration to a small measurement range of 50 ppm, and there is no need to expand the gain of the calculation section. Rather than an apparent improvement in reading accuracy by expanding the gain as in the prior art, an essential improvement in accuracy is achieved.

尚、上記実施例においては、被測定ガスを還元触媒に接
触させる還元形のアンモニア分析装置について説明した
が、被測定ガスを酸化触媒に接触させてNH,を酸化し
てNOに変えて測定する酸化形のアンモニア分析装置に
もこの°発明は適用できることはいうまでもない。また
In the above embodiments, a reduction type ammonia analyzer was described in which the gas to be measured is brought into contact with a reduction catalyst, but the gas to be measured is brought into contact with an oxidation catalyst to oxidize NH, converting it to NO, and then making the measurement. It goes without saying that this invention can also be applied to an oxidized ammonia analyzer. Also.

各系列の流量制御部と前処理部との間へ定量のO,ガス
を供給するようにしたものについて説明したが、これに
限定されるものではなく、前処理部とプローブ部との間
から03ガスを導入してもよい。
Although we have described a system in which a fixed amount of O and gas are supplied between the flow rate control section and the pretreatment section of each series, the present invention is not limited to this. 03 gas may be introduced.

〔効  果〕〔effect〕

以上説明したように、この発明によれば、被測定ガスを
コンバータを通してそのコンバータを通した後のNOガ
ス濃度を測定する第1の系列及び被測定ガスをコンバー
タを通さずにそのコンバータを通さない場合のNOガス
濃度を測定する第2の系列の各検出部に至るまでの被測
定ガス流入ラインに、NO濃度よりも低い0゜を供給す
ることのできるオゾン導入路を設けたから、低濃度のア
ンモニアを、検出部のゲインを拡大することなく、小さ
なフルスケール濃度の測定レンジで測定することができ
るので、アンモニア分析装置における分析精度を向上さ
せることができる。また、検出部のゲインを拡大したり
する必要がないため、演算部においてレンジ拡大をする
ことによって生じていた器差の拡大などの心配がない。
As explained above, according to the present invention, there is a first series for measuring the NO gas concentration after passing the gas to be measured through the converter, and a first series for measuring the NO gas concentration after passing the gas to be measured through the converter; Since an ozone introduction path that can supply 0° lower than the NO concentration is provided in the gas inflow line to be measured up to each detection part of the second series that measures the NO gas concentration in the case of a low concentration. Since ammonia can be measured in a small full-scale concentration measurement range without expanding the gain of the detection section, the analysis accuracy in the ammonia analyzer can be improved. Furthermore, since there is no need to expand the gain of the detection section, there is no need to worry about the increase in instrumental error that would otherwise occur due to range expansion in the arithmetic section.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係るアンモニア分析装置の1実施
例を示す概略構成図、第2図は、この発明の装置及び従
来装置における各フルスケール濃度に対するNH,ガス
濃度値の比率を示した図である。 1・・・第1の系列、   2・・・第2の系列、3・
・・コンバータ、    4・・・プローブ部、6・・
・スクラバ一部、   7・・・前処理部、8・・・流
量制御部、 9・・・ケミルミチャンバー。 10・・・オゾン発生部、  11・・・オゾン供給ラ
イン。 12・・・演算部、     13・・・指示部、14
・・・オゾン導入路。
FIG. 1 is a schematic configuration diagram showing one embodiment of the ammonia analyzer according to the present invention, and FIG. 2 shows the ratio of NH and gas concentration values to each full-scale concentration in the device of the present invention and the conventional device. It is a diagram. 1...First series, 2...Second series, 3...
...Converter, 4...Probe part, 6...
- Part of the scrubber, 7... Pretreatment section, 8... Flow rate control section, 9... Chemiluminium chamber. 10... Ozone generation section, 11... Ozone supply line. 12... Arithmetic unit, 13... Instruction unit, 14
...Ozone introduction path.

Claims (1)

【特許請求の範囲】[Claims] 被測定ガス導入部から導入された、NH_3ガス及びN
Oガスが共存する被測定ガスを還元触媒もしくは酸化触
媒が設けられたコンバータを通し、そのコンバータを通
した後のガス中のNOガス濃度を検出器で検出する第1
の系列と、同じく被測定ガスをコンバータを通さずに、
そのコンバータを通さないガス中のNOガス濃度を前記
とは別の検出器で検出する第2の系列とを備え、これら
両系列における各検出器の出力を比較演算して被測定ガ
ス中のNH_3ガス濃度を測定する化学発光式アンモニ
ア分析装置において、前記第1の系列及び第2の系列の
前記各検出器に至るまでの各ガス流路のそれぞれに、オ
ゾン発生器から発生されるオゾンを導入するオゾン導入
路を連通させたことを特徴とする化学発光式アンモニア
分析装置。
NH_3 gas and N introduced from the gas introduction part to be measured
A first step in which the gas to be measured in which O gas coexists is passed through a converter equipped with a reduction catalyst or an oxidation catalyst, and the NO gas concentration in the gas after passing through the converter is detected by a detector.
series, and similarly the gas to be measured does not pass through the converter,
A second system detects the NO gas concentration in the gas that does not pass through the converter with a detector different from the above, and the output of each detector in both systems is compared and calculated to detect the NH_3 concentration in the gas to be measured. In a chemiluminescent ammonia analyzer for measuring gas concentration, ozone generated from an ozone generator is introduced into each gas flow path up to each of the detectors of the first series and the second series. A chemiluminescence type ammonia analyzer characterized in that an ozone introduction path is connected.
JP61189758A 1986-08-12 1986-08-12 Chemiluminescent ammonia analyzer Expired - Lifetime JPH0731119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189758A JPH0731119B2 (en) 1986-08-12 1986-08-12 Chemiluminescent ammonia analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189758A JPH0731119B2 (en) 1986-08-12 1986-08-12 Chemiluminescent ammonia analyzer

Publications (2)

Publication Number Publication Date
JPS6345537A true JPS6345537A (en) 1988-02-26
JPH0731119B2 JPH0731119B2 (en) 1995-04-10

Family

ID=16246685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189758A Expired - Lifetime JPH0731119B2 (en) 1986-08-12 1986-08-12 Chemiluminescent ammonia analyzer

Country Status (1)

Country Link
JP (1) JPH0731119B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619351A (en) * 1992-07-13 1997-04-08 Seiko Epson Corporation Surface-type illumination device and liquid crystal display
US5931555A (en) * 1989-05-18 1999-08-03 Seiko Epson Corporation Background lighting apparatus for liquid crystal display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008008A (en) * 2010-06-24 2012-01-12 Mitsubishi Heavy Ind Ltd Ammonia compound concentration measuring device and ammonia compound concentration measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343836A (en) * 1976-10-01 1978-04-20 Hitachi Maxell Silver oxide *2* battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343836A (en) * 1976-10-01 1978-04-20 Hitachi Maxell Silver oxide *2* battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5931555A (en) * 1989-05-18 1999-08-03 Seiko Epson Corporation Background lighting apparatus for liquid crystal display
US5619351A (en) * 1992-07-13 1997-04-08 Seiko Epson Corporation Surface-type illumination device and liquid crystal display
US5949505A (en) * 1992-07-13 1999-09-07 Seiko Epson Corporation Surface-type illumination device and liquid crystal display
US6108060A (en) * 1992-07-13 2000-08-22 Seiko Epson Corporation Surface-type illumination device and liquid crystal display

Also Published As

Publication number Publication date
JPH0731119B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US3977836A (en) Method and apparatus for determining ammonia concentration of gas
US20060039826A1 (en) Concentration monitor of fluid samples
JP2006284500A (en) Nitrogen oxide analyzer, and parameter setting method applied to nitrogen oxide analyzer
JPS6345537A (en) Chemiluminescence type ammonia analyzing instrument
KR20000006296A (en) Ammonia analyzer
JP2002162393A (en) Method and device for simultaneously analyzing nox and nh3
Chakrabarti The atomic absorption spectroscopy of selenium
JPH11311613A (en) Analyzer for nox in exhaust gas of flue
EP0467307B1 (en) Gas analyzer
JP2668675B2 (en) Ammonia analyzer
Garo et al. Experimental study of methane-oxygen flames doped with nitrogen oxide or ammonia. Comparison with modeling
JPH0265154U (en)
JPH0731118B2 (en) Chemiluminescent nitrogen dioxide analyzer
Niki et al. An Ozone-NO Chemiluminescence Method for NO Analysis in Piston and Turbine Engines
JP3515671B2 (en) Gas sampling method
JP2599357Y2 (en) Ammonia analyzer
JP3244415B2 (en) Conversion efficiency inspection device in the converter from sulfur oxides to sulfur dioxide gas
JP2946386B2 (en) Method for checking catalyst efficiency in pretreatment device of ammonia analyzer
JPH11118676A (en) Gas analyzer
US5102806A (en) Method for analyzing fluid by multi-fluid modulation mode
JPH04191654A (en) Continuously measuring method for concentration of nitrogen monoxide in gas
JPS641740B2 (en)
SU1762200A1 (en) Method for determining carbon oxide content in atmospheric air
JP2541993Y2 (en) Chemiluminescence gas analyzer
Grekas et al. Effect of sulphite on the determination of sulphide by continuous-flow molecular emission cavity analysis Determination of both anions in admixture