JPH11118676A - Gas analyzer - Google Patents

Gas analyzer

Info

Publication number
JPH11118676A
JPH11118676A JP30365297A JP30365297A JPH11118676A JP H11118676 A JPH11118676 A JP H11118676A JP 30365297 A JP30365297 A JP 30365297A JP 30365297 A JP30365297 A JP 30365297A JP H11118676 A JPH11118676 A JP H11118676A
Authority
JP
Japan
Prior art keywords
sample gas
gas
converter
line
gas analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30365297A
Other languages
Japanese (ja)
Inventor
Tsukasa Satake
司 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP30365297A priority Critical patent/JPH11118676A/en
Publication of JPH11118676A publication Critical patent/JPH11118676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an H2 S gas analyzer which is capable of always analyzing oven a low concentration of H2 S stably at a higher sensitivity. SOLUTION: A Fourier transform infrared spectrophotometer 1 is provided with a converter 3 on a sample gas line 2 for introducing a sample gas to convert H2 S contained in the sample gas to SO2 by oxidization while a bypass line 6 is connected free to switch a passage on the front stage and on the rear stage of the converter 3 in the sample gas line 2. On the other hand, an H2 S gas of a known concentration can be supplied to the sample gas line 2 on the upstream side from the connection point on the upstream side of the bypass line 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はサンプルガス中のH
2 Sを検出するためのFTIRガス分析計(フーリエ変
換赤外分光光度計)を用いたガス分析計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to H
The present invention relates to a gas analyzer using an FTIR gas analyzer (Fourier transform infrared spectrophotometer) for detecting 2S.

【0002】[0002]

【従来の技術】サンプルガス中のH2 S成分を測定する
場合、H2 Sは分子吸光係数が小さいため、例えば図3
に示すように、コンバータCによってH2 SをSO2
変換した後、これをNDIR(非分散型赤外線分析計)
SO2 計で計測していた。
2. Description of the Related Art When measuring the H 2 S component in a sample gas, H 2 S has a small molecular absorption coefficient.
As shown in (1), after converting H 2 S into SO 2 by the converter C, this is converted to NDIR (non-dispersive infrared spectrometer).
It was measured by the SO 2 meter.

【0003】[0003]

【発明が解決しようとする課題】上述のように、NDI
RSO2 計でH2 Sを測定する場合には、以下のような
難点があった。まず、コンバータCは経時的に劣化し変
換効率が低下(変化)するが、その影響が計測値にその
まま反映される。また、その劣化の度合いを検知するこ
とができない。そして、そのコンバータCによってSO
2 と同時に生成されるH2 OがSO2 に干渉影響を与え
るが、これを補正することができなかった。従って、低
濃度のH2 Sを常時安定に精度よく計測するのは難しか
った。
As described above, the NDI
When H 2 S is measured with an RSO 2 meter, there are the following difficulties. First, the converter C deteriorates with time and the conversion efficiency decreases (changes), but the effect is directly reflected on the measured value. Further, the degree of the deterioration cannot be detected. Then, the converter C outputs SO
2 H 2 O produced at the same time provides an interference effect on the SO 2, but could not be corrected. Therefore, it has been difficult to measure low-concentration H 2 S stably and accurately at all times.

【0004】本発明はこのような実情に鑑みてなされ、
低濃度のH2 Sガスをも常時安定に高感度で分析するこ
とのできるH2 Sガス分析計を提供することを目的とし
ている。
[0004] The present invention has been made in view of such circumstances,
It is an object of the present invention to provide an H 2 S gas analyzer that can constantly and stably analyze low concentration H 2 S gas with high sensitivity.

【0005】[0005]

【課題を解決するための手段】本発明は上述の課題を解
決するための手段を以下のように構成している。すなわ
ち、本発明はFTIRガス分析計にサンプルガスを導入
するためのサンプルガスラインに、そのサンプルガス中
に含まれているH2 Sを酸化してSO2に変換するため
のコンバータを設けると共に、そのサンプルガスライン
における前記コンバータの前段と後段とに流路切換自在
なバイパスラインを接続する一方、前記バイパスライン
の上流側の接続点よりも上流側のサンプルガスラインに
既知濃度のH2 Sガスを供給できるように構成してなる
ことを特徴としている。
According to the present invention, means for solving the above-mentioned problems are constituted as follows. That is, according to the present invention, a converter for oxidizing H 2 S contained in the sample gas and converting it into SO 2 is provided in the sample gas line for introducing the sample gas into the FTIR gas analyzer, In the sample gas line, a bypass line capable of switching the flow path is connected to the upstream and downstream stages of the converter, and a known concentration of H 2 S gas is supplied to the sample gas line upstream of the connection point on the upstream side of the bypass line. Is provided.

【0006】ガス分析手段としてFTIRガス分析計を
用いていることにより、多成分同時分析が可能となり、
2 S,SO2 ,H2 Oの各成分を同時に高感度で検出
することができ、低濃度のH2 Sをも精度よく検出でき
る。
[0006] By using an FTIR gas analyzer as a gas analysis means, simultaneous analysis of multiple components becomes possible.
H 2 S, SO 2 , and H 2 O components can be simultaneously detected with high sensitivity, and low-concentration H 2 S can be detected with high accuracy.

【0007】既知濃度のH2 Sガスをコンバータを経由
させた場合と、バイパスを経由させた場合と比較するこ
とにより、そのコンバータの変換効率をチェックするこ
とができ、ユーザサイドで適宜バリデーション(妥当性
の確認)をおこなうことができる。
By comparing the case where H 2 S gas of a known concentration passes through the converter and the case where H 2 S gas passes through the bypass, the conversion efficiency of the converter can be checked. Confirmation of sex) can be performed.

【0008】[0008]

【発明の実施の形態】以下に本発明のH2 Sガス分析計
の実施形態を図面に基づいて詳細に説明する。図1はH
2 Sガス分析計の全体構成を示し、符号1はFTIRガ
ス分析計,2はそのFTIRガス分析計1にサンプルガ
スを導入するためのサンプルガスライン,3はそのサン
プルガスライン2に設けたコンバータ,4はコンバータ
3にO2 を供給するためのライン,5は電磁開閉弁であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the H 2 S gas analyzer of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows H
Showing the overall structure of the 2 S gas analyzer, reference numeral 1 FTIR gas analyzer, 2 sample gas line for introducing a sample gas into the FTIR gas analyzer 1, the converter provided in the sample gas line 2 3 , 4 lines for supplying O 2 to the converter 3, and 5 is a solenoid valve.

【0009】6はコンバータ3の変換効率を検出するた
めのバイパスラインで、その両端が、サンプルガスライ
ン2におけるコンバータ3の前段と後段とに設けた電磁
切換弁7,8に接続されている。9は既知濃度のH2
が充填されているボンベで、電磁切換弁10を介してサ
ンプルガスライン2に接続されている。
Reference numeral 6 denotes a bypass line for detecting the conversion efficiency of the converter 3. Both ends of the bypass line are connected to electromagnetic switching valves 7, 8 provided before and after the converter 3 in the sample gas line 2. 9 is a known concentration of H 2 S
Is connected to the sample gas line 2 via the electromagnetic switching valve 10.

【0010】上述のような構成により、サンプルガスの
測定時には、サンプルガスをコンバータ3を経由させて
2 の供給下で350°C程度に加熱することによりH
2 SをSO2 に酸化させそのSO2 成分をFTIRガス
分析計1で計測し、コンバータ3の変換効率(酸化率)
を考慮した補正をおこないH2 Sの濃度を求めることが
できる。なお、上述のコンバータ3としては、例えばV
2 5 等の酸化触媒を用いることができるが、加熱手段
のみであってもよい。
With the above-described configuration, when measuring the sample gas, the sample gas is heated to about 350 ° C. under the supply of O 2 through the converter 3 so that H is measured.
2 S is oxidized to SO 2 , and the SO 2 component is measured by the FTIR gas analyzer 1, and the conversion efficiency (oxidation rate) of the converter 3 is measured.
The concentration of H 2 S can be obtained by performing correction in consideration of the following. In addition, as the above-mentioned converter 3, for example, V
Although an oxidation catalyst such as 2 O 5 can be used, only a heating means may be used.

【0011】このFTIRガス分析計1では、検出感度
が極めて高く、多成分同時分析が可能であり、H2 S,
SO2 ,H2 Oを同時に高い精度で計測することができ
る。このFTIRガス分析計1による吸光度スペクトル
は、例えば1%の濃度のH2Sは図2(A)に、50ppm
濃度のSO2 は図2(B)に、15%濃度のH2 Oは
図2(C)にそれぞれ示されるように、その横軸の分解
能がNDIRよりも格段に優れている。
The FTIR gas analyzer 1 has an extremely high detection sensitivity, enables simultaneous analysis of multiple components, and has an H 2 S,
SO 2 and H 2 O can be simultaneously measured with high accuracy. The absorbance spectrum of the FTIR gas analyzer 1 shows that, for example, H 2 S at a concentration of 1% is 50 ppm in FIG.
As shown in FIG. 2 (B) for the concentration of SO 2 and FIG. 2 (C) for the 15% concentration of H 2 O, the resolution of the horizontal axis is much better than that of NDIR.

【0012】SO2 の分子吸光係数は図2(A)および
(B)に示す範囲では測定対象となるH2 Sの約400
倍であり、そのH2 Sをコンバータ3によってSO2
して、そのSO2 ベースでH2 Sを求めることにより、
高感度なH2 Sの定量が可能となる。
The molecular extinction coefficient of SO 2 in the range shown in FIGS. 2A and 2B is about 400 times that of H 2 S to be measured.
By converting the H 2 S into SO 2 by the converter 3 and obtaining the H 2 S based on the SO 2 ,
Highly sensitive quantification of H 2 S becomes possible.

【0013】一方、バリデーションをおこなう場合に
は、サンプルガスに代えてボンベ9から既知濃度のH2
Sガスをサンプルガスライン2に導入し、コンバータ3
を経由させた後のSO2 成分の計測値と、バイパスライ
ン6を経由させたH2 S成分の計測値とを比較すること
によってそのコンバータ3の変換効率を求め、その効率
が許容される範囲内のものであるか否かを判断すること
ができる。そのバリデーション実施の頻度、信頼度の設
定等についてはユーザサイドで適宜選択が可能であり、
安定した信頼性の維持が可能となる。
On the other hand, when performing the validation, a known concentration of H 2 gas is supplied from the cylinder 9 in place of the sample gas.
S gas is introduced into the sample gas line 2 and the converter 3
The conversion efficiency of the converter 3 is obtained by comparing the measured value of the SO 2 component after passing through the bypass line 6 with the measured value of the H 2 S component passed through the bypass line 6, and a range in which the efficiency is allowed. Can be determined. The frequency of the validation, the setting of the reliability, etc. can be appropriately selected by the user side.
Stable reliability can be maintained.

【0014】[0014]

【発明の効果】以上説明したように、本発明のガス分析
計によれば、FTIRガス分析計へのサンプルガスライ
ンに、そのサンプルガス中に含まれているH2 Sを酸化
してSO2 に変換するためのコンバータを設けると共
に、そのサンプルガスラインにおける前記コンバータの
前段と後段とに流路切換自在なバイパスラインを接続す
る一方、前記バイパスラインの上流側の接続点よりも上
流側のサンプルガスラインに既知濃度のH2 Sガスを供
給できるように構成したので、低濃度のH2 Sをも常に
高い精度で安定に測定することができる。また、適宜バ
リデーションを実施することができ、測定システムの高
い信頼性を確保することができる。
As described above, according to the gas analyzer of the present invention, H 2 S contained in the sample gas is oxidized to SO 2 in the sample gas line to the FTIR gas analyzer. A converter for converting the sample gas line into a sample gas line, and connecting a bypass line capable of switching a flow path to a stage before and after the converter in the sample gas line, and a sample upstream of a connection point on an upstream side of the bypass line. Since the gas line is configured to be supplied with a known concentration of H 2 S gas, low concentration H 2 S can always be measured with high accuracy and stability. In addition, validation can be appropriately performed, and high reliability of the measurement system can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガス分析計の一実施形態を示す全体構
成図である。
FIG. 1 is an overall configuration diagram showing one embodiment of a gas analyzer of the present invention.

【図2】(A)は同ガス分析計によるH2 S(1%濃
度)の吸光度,(B)はSO2 (50ppm 濃度)の吸光
度,(C)はH2 O(15%濃度)の吸光度をそれぞれ
示すグラフである。
FIG. 2 (A) shows the absorbance of H 2 S (1% concentration), (B) the absorbance of SO 2 (50 ppm concentration), and (C) shows the absorbance of H 2 O (15% concentration) by the same gas analyzer. It is a graph which each shows an absorbance.

【図3】従来のNDIRSO2 計の一例を示す構成図で
ある。
FIG. 3 is a configuration diagram showing an example of a conventional NDIRSO 2 meter.

【符号の説明】[Explanation of symbols]

1…FTIRガス分析計、2…サンプルガスライン、3
…コンバータ、6…バイパスライン。
1 FTIR gas analyzer, 2 sample gas line, 3
... converter, 6 ... bypass line.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 FTIRガス分析計にサンプルガスを導
入するためのサンプルガスラインに、そのサンプルガス
中に含まれているH2 Sを酸化してSO2 に変換するた
めのコンバータを設けると共に、そのサンプルガスライ
ンにおける前記コンバータの前段と後段とに流路切換自
在なバイパスラインを接続する一方、前記バイパスライ
ンの上流側の接続点よりも上流側のサンプルガスライン
に既知濃度のH2 Sガスを供給できるように構成してな
ることを特徴とするガス分析計。
1. A sample gas line for introducing a sample gas into an FTIR gas analyzer is provided with a converter for oxidizing H 2 S contained in the sample gas to convert it into SO 2 , In the sample gas line, a bypass line capable of switching the flow path is connected to the upstream and downstream stages of the converter, and a known concentration of H 2 S gas is supplied to the sample gas line upstream of the connection point on the upstream side of the bypass line. A gas analyzer characterized in that it is configured to be able to supply gas.
JP30365297A 1997-10-17 1997-10-17 Gas analyzer Pending JPH11118676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30365297A JPH11118676A (en) 1997-10-17 1997-10-17 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30365297A JPH11118676A (en) 1997-10-17 1997-10-17 Gas analyzer

Publications (1)

Publication Number Publication Date
JPH11118676A true JPH11118676A (en) 1999-04-30

Family

ID=17923594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30365297A Pending JPH11118676A (en) 1997-10-17 1997-10-17 Gas analyzer

Country Status (1)

Country Link
JP (1) JPH11118676A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329823A (en) * 2005-05-26 2006-12-07 Horiba Ltd Analyzer
JP2007271462A (en) * 2006-03-31 2007-10-18 Horiba Ltd Sample gas analyzer
CN105203497A (en) * 2014-06-30 2015-12-30 中国石油化工股份有限公司 Method for predicting content of hydrogen sulfide in desulfurization amine liquid through near-infrared light
US11802832B2 (en) 2017-05-10 2023-10-31 Opsis Ab Method and system for determining a content of H2S

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329823A (en) * 2005-05-26 2006-12-07 Horiba Ltd Analyzer
JP2007271462A (en) * 2006-03-31 2007-10-18 Horiba Ltd Sample gas analyzer
CN105203497A (en) * 2014-06-30 2015-12-30 中国石油化工股份有限公司 Method for predicting content of hydrogen sulfide in desulfurization amine liquid through near-infrared light
US11802832B2 (en) 2017-05-10 2023-10-31 Opsis Ab Method and system for determining a content of H2S

Similar Documents

Publication Publication Date Title
Zahniser et al. Measurement of trace gas fluxes using tunable diode laser spectroscopy
US7454950B2 (en) Vehicle exhaust gas analyzer
JP4246867B2 (en) Exhaust gas analysis system
US9410872B2 (en) Exhaust gas flowmeter and exhaust gas analyzing system
JP4413160B2 (en) Exhaust gas component analyzer
CN116297268B (en) Method for simultaneously detecting concentration of ammonia gas and concentration of water vapor on line
US10876929B2 (en) Exhaust gas analysis device, exhaust gas analysis method and storage medium recording programs for exhaust gas analysis device
US5255072A (en) Apparatus for analyzing fluid by multi-fluid modulation mode
JP4550645B2 (en) Vehicle-mounted exhaust gas analyzer
JPH11118676A (en) Gas analyzer
JP2003050203A (en) Gas analyzing device of non-dispersive infrared absorption type, and its analyzing method
US20060222563A1 (en) Gas analyzer and method for controlling hydrogen flame ionization detector
EP0467307B1 (en) Gas analyzer
GB2059574A (en) Absorption cell gas monitor
JPH07198600A (en) Fourier transform multi-component continuous absorption analyzer
JP2001099781A (en) Method for correcting effect of co-existing gas in gas analysis by infrared absorption method
JP2001159587A (en) Gas analyzer
Werle Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring
JPH0815253A (en) Exhaust gas weight measuring method using trace gas
EP4276444A1 (en) Optical co2 concentration meter based on ir light absorption in gas
JP2003028765A (en) Analytical device and method of particulate matter in engine exhaust gas
JPH0915228A (en) Method and device for inspecting device for converting sulfur oxide into sulfur dioxide gas
JPS5957143A (en) Measurement of nox concentration
JPH089634Y2 (en) Atmospheric CH ▲ Bottom 4 ▼ Concentration measuring device
Breton Multicomponent analysis using established techniques