JP2001099781A - Method for correcting effect of co-existing gas in gas analysis by infrared absorption method - Google Patents

Method for correcting effect of co-existing gas in gas analysis by infrared absorption method

Info

Publication number
JP2001099781A
JP2001099781A JP27664799A JP27664799A JP2001099781A JP 2001099781 A JP2001099781 A JP 2001099781A JP 27664799 A JP27664799 A JP 27664799A JP 27664799 A JP27664799 A JP 27664799A JP 2001099781 A JP2001099781 A JP 2001099781A
Authority
JP
Japan
Prior art keywords
gas
concentration
infrared absorption
component
absorption method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27664799A
Other languages
Japanese (ja)
Other versions
JP4205821B2 (en
Inventor
Ko Inoue
香 井上
Masaaki Ishihara
正昭 石原
Kotaro Akashi
耕太郎 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP27664799A priority Critical patent/JP4205821B2/en
Publication of JP2001099781A publication Critical patent/JP2001099781A/en
Application granted granted Critical
Publication of JP4205821B2 publication Critical patent/JP4205821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for correcting effects of co-existing gas in gas analysis by an infrared absorption method capable of correcting the sensitivity change caused by a change in infrared absorption spectrum intensity depending on a component of co-existing composition in continuously analyzing gas by the infrared absorption method. SOLUTION: Cocentration and change in the concentration of the co-existing gas, which is difficult to measure in the infrared absorption method but affects an indicated value of a target component of a gas analyzer 1 by the infrared absorption method, are estimated from indicated values of the target component and other components measurable by the infrared absorption method. The indicated value of the target component is corrected by using the estimated concentration and change in the concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、赤外吸収法によ
るガス分析における共存ガスの影響を補正する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for correcting the influence of a coexisting gas in gas analysis by an infrared absorption method.

【0002】[0002]

【従来の技術およびその問題点】NDIR法(非分散型
赤外線ガス分析法)やFTIR法(フーリエ変換赤外
法)などの赤外吸収法によって赤外に吸収スペクトルを
もつあるガス成分(目的成分または測定対象成分)を測
定する際、同じく赤外に吸収スペクトルをもつが目的成
分とは分離できている共存成分、あるいは、赤外領域に
は吸収をもたない共存成分によって測定値(スパン感
度)が影響されてしまうことがある。
2. Description of the Related Art A certain gas component (a target component) having an infrared absorption spectrum by an infrared absorption method such as an NDIR method (non-dispersive infrared gas analysis method) or an FTIR method (Fourier transform infrared method). Or the component to be measured), the coexisting component which also has an absorption spectrum in the infrared but can be separated from the target component, or the coexisting component which has no absorption in the infrared region (span sensitivity) ) May be affected.

【0003】これは、同一ガス成分・同一ガス濃度であ
ってもベースガス組成(共存成分組成)によりスペクト
ル強度に差が生ずることがあるにもかかわらず、従来の
赤外吸収法では、成分同士の干渉は全て吸収スペクトル
の重なりが分離できてないことにに起因するという前提
になっていたためである。実際に、自動車排ガスなどの
分析において、目的成分であるCOおよびCO2 のスパ
ン指示に対して共存成分であり、かつ濃度も一定でない
2 OやO2 が影響を与えやすいことが確認されてい
る。
[0003] This is because, although the spectral intensity may differ depending on the base gas composition (coexisting component composition) even with the same gas component and the same gas concentration, in the conventional infrared absorption method, the components are different from each other. Is presumed to be caused by the fact that the overlap of the absorption spectra cannot be separated. In fact, in the analysis of automobile exhaust gas and the like, it has been confirmed that H 2 O and O 2 , which are coexistent components and have non-constant concentrations, easily affect the span indication of the target components CO and CO 2. I have.

【0004】しかし、O2 は赤外吸収をもたず、H2
は濃度校正が難しいことから、いずれも赤外吸収法での
分析は困難である。
However, O 2 has no infrared absorption and H 2 O
Since it is difficult to calibrate the concentration, analysis by the infrared absorption method is difficult.

【0005】図4(A)は、種々の濃度のCO2 を測定
したときにおける共存するH2 Oの濃度とCO2 指示値
の誤差との関係を示すもので、この図からH2 O濃度が
高くなるにつれてCO2 指示値の誤差がプラス側に大き
く表れることがわかる。そして、同図(B)は、2台の
ガス分析計を用いて種々の濃度のCO2 を測定したとき
における共存するO2 の濃度とCO2 指示値の誤差との
関係を示すもので、この図からO2 濃度が高くなるにつ
れてCO2 指示値の誤差がマイナス側に大きく表れるこ
とがわかる。すなわち、これらのガス分析計の感度校正
は、N2 ガスをベースガスとして製造された標準ガスに
よって行われるため、H2 OやO2 を含む混合ガスがベ
ースガスとなる場合に感度変化を生じていることがわか
る。
[0005] FIG. 4 (A), shows the relationship between the error of the of H 2 O concentration and CO 2 indicated value coexist in when measuring CO 2 at various concentrations, H 2 O concentration from FIG It can be understood that the error of the CO 2 indicated value appears larger on the positive side as the value of “” increases. FIG. 4B shows the relationship between the coexisting O 2 concentration and the error in the indicated CO 2 value when various concentrations of CO 2 are measured using two gas analyzers. From this figure, it can be seen that as the O 2 concentration increases, the error in the CO 2 indicated value appears more negatively. That is, since the sensitivity calibration of these gas analyzers is performed using a standard gas manufactured using N 2 gas as a base gas, a change in sensitivity occurs when a mixed gas containing H 2 O or O 2 is used as a base gas. You can see that it is.

【0006】上記図4(A),(B)に示したような現
象が生ずる正確な機構は不明であるが、一つには、ガス
分子同士の相互作用によるクエンチングが関係している
と考えられる。
The exact mechanism that causes the phenomena shown in FIGS. 4A and 4B is unknown, but one is that quenching due to the interaction between gas molecules is involved. Conceivable.

【0007】図5は、クエンチングによる赤外吸収量変
化モデルを示すもので、これは、目的成分Xと共存成分
の衝突確率および衝突の際の相互作用の大小によって、
赤外吸収量に変化が生ずるという仮説を示している。す
なわち、同図(A)は、目的成分Xに対して共存成分A
の衝突確率および衝突の際の相互作用が共に小さい場合
を示し、この場合、成分Aは成分Xの基底状態・励起状
態の平衡に影響を余り与えないため、成分Aの濃度は成
分Xによる赤外の吸収量に殆ど影響しない。一方、同図
(B)は、成分Xに対して共存成分Bの衝突確率および
衝突の際の相互作用が共に大きい場合を示し、この場
合、成分Xの平衡が基底状態側にずれるため、新たな光
吸収が起こりやすくなる。つまり、成分Bの存在によ
り、成分Xの吸収強度が大きくなり、主な共存成分、す
なわち、ベースガスが成分Aであった場合よりも同一濃
度で強い吸収を示す。
FIG. 5 shows a model of a change in the amount of infrared absorption due to quenching, which depends on the probability of collision between the target component X and the coexisting component and the magnitude of the interaction at the time of collision.
This shows a hypothesis that a change occurs in the amount of infrared absorption. That is, FIG. 3A shows that the target component X and the coexisting component A
In this case, the collision probability and the interaction at the time of collision are both small. In this case, since the component A does not significantly affect the equilibrium between the ground state and the excited state of the component X, the concentration of the component A is Almost no effect on outside absorption. On the other hand, FIG. 7B shows a case where the collision probability of the coexisting component B and the interaction at the time of the collision are both large with respect to the component X. In this case, since the equilibrium of the component X is shifted to the ground state side, Light absorption is likely to occur. That is, due to the presence of the component B, the absorption intensity of the component X is increased, and the main coexisting component, that is, stronger absorption is exhibited at the same concentration as when the base gas is the component A.

【0008】また、上記現象の原因となりうる他の機構
としては、目的成分自身および共存成分による作用で吸
収波長が影響を受け、見かけ上、吸収線幅が広がる「衝
突広がり」というメカニズムも考えられる。
As another mechanism that may cause the above phenomenon, a mechanism called "collision spread" in which the absorption wavelength is apparently widened due to the absorption wavelength being affected by the action of the target component itself and the coexisting component is also considered. .

【0009】この発明は、上述の事柄に留意してなされ
たもので、その目的は、赤外吸収法によってガス分析を
連続的に行う場合、共存成分組成に依存する赤外吸収ス
ペクトルの強度変化に起因する感度変化を補正すること
ができる、赤外吸収法によるガス分析における共存ガス
影響の補正方法(以下、単に共存ガス影響の補正方法と
いう)を提供することである。
The present invention has been made in consideration of the above-mentioned matters, and an object of the present invention is to provide a method for continuously performing gas analysis by an infrared absorption method. It is an object of the present invention to provide a method for correcting the effect of coexisting gas in gas analysis by the infrared absorption method (hereinafter, simply referred to as a method for correcting the effect of coexisting gas), which can correct the sensitivity change caused by the above.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、この発明の共存ガス影響の補正方法においては、赤
外吸収法によるガス分析計の目的成分の指示値に影響を
与えるにもかかわらず赤外吸収法では濃度測定が困難な
共存ガスの濃度および濃度変化を、赤外吸収法で測定可
能な目的成分またはそれ以外の成分の指示値から推定
し、この推定された濃度および濃度変化を用いて、目的
成分の指示値を補正するようにしている。
In order to achieve the above object, in the method for correcting the influence of a coexisting gas according to the present invention, the influence of the infrared absorption method on the indicated value of the target component of the gas analyzer is reduced. The concentration and concentration change of coexisting gas, for which concentration measurement is difficult by the infrared absorption method, are estimated from the indicated values of the target component or other components that can be measured by the infrared absorption method, and the estimated concentration and the concentration change are estimated. This is used to correct the indicated value of the target component.

【0011】[0011]

【発明の実施の形態】この発明の実施の形態を、図面を
参照しながら説明する。まず、図1は、この発明の共存
ガス影響の補正方法が適用されるガス分析装置の一例を
概略的に示すもので、例えばエンジン排ガスに含まれる
CO2 の濃度を測定するものである。すなわち、この図
において、1は自動車(例えばガソリン車)のエンジ
ン、2はエンジン1に接続される排気管、3は排気管2
を流れる排ガスGの一部をサンプルガスSとして採取す
るためのプローブ4を介して接続されるサンプルガス流
路である。5はサンプルガス流路3に設けられる非分散
型赤外線ガス分析計としてのCO2 計である。6はこの
CO2 計5の信号ラインで、プリアンプ7およびアナロ
グ系の信号処理装置8が設けられている。
Embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 schematically shows an example of a gas analyzer to which the method for correcting a coexisting gas effect of the present invention is applied, for example, for measuring the concentration of CO 2 contained in an engine exhaust gas. That is, in this figure, 1 is an engine of an automobile (for example, a gasoline vehicle), 2 is an exhaust pipe connected to the engine 1, and 3 is an exhaust pipe 2.
Is a sample gas flow path connected via a probe 4 for sampling a part of the exhaust gas G flowing through the probe 4 as a sample gas S. Reference numeral 5 denotes a CO 2 meter provided as a non-dispersive infrared gas analyzer provided in the sample gas channel 3. Reference numeral 6 denotes a signal line of the CO 2 meter 5, which is provided with a preamplifier 7 and an analog signal processing device 8.

【0012】上記構成の装置を用いた場合、エンジン排
ガスGに含まれるCO2 の濃度を測定することができる
が、エンジン排ガスGには、同時に高濃度のH2 Oが含
まれている。つまり、この場合、H2 Oが共存ガスとな
り、これが測定対象成分CO 2 の濃度に影響を及ぼすこ
ととなる。しかし、このH2 Oの濃度は、前記CO2
5で測定していない。
When the apparatus having the above configuration is used, the engine exhaust
CO contained in gas GTwoCan measure the concentration of
However, the high concentration HTwoO included
It is rare. That is, in this case, HTwoO is a coexisting gas
This is the measurement target component CO TwoMay affect the concentration of
And But this HTwoThe concentration of O depends on the COTwoTotal
Not measured at 5.

【0013】ところで、ガソリン車のエンジン1内は、
一般的に燃料とその燃焼に必要な空気の量とに過不足が
ない「理論空燃比」にコントロールされる。今仮に、通
常よく使われるように、燃料中の炭素Cと水素Hとの比
率を1:2、空気中のO2 とN2 との比率を2:8とみ
なすと、エンジン1前後の化合物の収支は、下記(1)
式のようになる。 CH2 +3/2・O2 +6・N2 =CO2 +H2 O+6・N2 ……(1)
By the way, the inside of the engine 1 of the gasoline vehicle is
Generally, the "stoichiometric air-fuel ratio" is controlled so that there is no excess or deficiency in the amount of fuel and the amount of air required for its combustion. Assuming that the ratio of carbon C and hydrogen H in fuel is 1: 2 and the ratio of O 2 to N 2 in air is 2: 8, as commonly used, the compounds around engine 1 are Is the following (1)
It looks like an expression. CH 2 + 3/2 · O 2 + 6 · N 2 = CO 2 + H 2 O + 6 · N 2 (1)

【0014】つまり、エンジン1の下流でのH2 OとC
2 の濃度比はほぼ1:1であり、この場合、H2 Oの
濃度は、CO2 の濃度とともに、12.5vol%〔=
1/(1+1+6)×100〕であることが導き出せ
る。このような理論空燃比における燃焼では、CO2
5の入口では酸素濃度はゼロである。このように、H2
Oの濃度は、CO2 の濃度から簡単に推定することがで
きる。なお、サンプルガス流路3のCO2 計5の上流側
に除湿機を設けて排ガスG中の水蒸気を除去しているよ
うな場合は、CO2 計5の入口におけるH2 Oの濃度
は、この除湿機の水分除去能力で決まり、また、CO2
計5の入口におけるCO2 の濃度値は、除湿により失わ
れるH2 Oの分だけ高くなる。
That is, H 2 O and C downstream of the engine 1
The concentration ratio of O 2 is approximately 1: 1. In this case, the concentration of H 2 O, together with the concentration of CO 2 , is 12.5 vol% [=
1 / (1 + 1 + 6) × 100]. In the combustion at such a stoichiometric air-fuel ratio, the oxygen concentration at the inlet of the CO 2 meter 5 is zero. Thus, H 2
The concentration of O can be easily estimated from the concentration of CO 2 . When a dehumidifier is provided upstream of the CO 2 meter 5 in the sample gas flow path 3 to remove water vapor in the exhaust gas G, the concentration of H 2 O at the inlet of the CO 2 meter 5 becomes determined by the dehumidifier moisture removal capability, also, CO 2
The CO 2 concentration value at the inlet of the total 5 increases by the amount of H 2 O lost by dehumidification.

【0015】また、自動車の減速時においては、エンジ
ン1に対する燃料の供給を一時的に中断(燃料カット)
することがある。そして、仮にある時間内の燃料噴射量
が理論空燃比の1/nであった場合、エンジン1前後の
化合物の収支は、下記(2)式のようになる。 1/n・CH2 +3/2・O2 +6・N2 =1/n・CO2 +1/n・H2 O +3(n−1)/2n・O2 +6・N2 ……(2)
When the vehicle decelerates, the supply of fuel to the engine 1 is temporarily interrupted (fuel cut).
May be. If the fuel injection amount within a certain period of time is 1 / n of the stoichiometric air-fuel ratio, the balance of the compound before and after the engine 1 is expressed by the following equation (2). 1 / n · CH 2 + 3/2 · O 2 + 6 · N 2 = 1 / n · CO 2 + 1 / n · H 2 O +3 (n−1) / 2n · O 2 + 6 · N 2 (2)

【0016】上記の場合、CO2 の実測濃度値(vol
%)は、2/(15n+1)×100vol%になって
いるはずであるから、 CO2 の実測濃度値=2/(15n+1)×100 ……(3) とすることにより、nを求めることができる。そして、
このときのCO2 計5の入口におけるO2 の濃度は、上
記(2)式から、3/(15n+1)×100vol%
と表されるので、前記(3)式を解いて得られるnをこ
れに代入することにより、O2 濃度も推定することがで
きる。
In the above case, the measured concentration of CO 2 (vol.
%) Should be 2 / (15n + 1) × 100 vol%, so that the actual measured concentration of CO 2 = 2 / (15n + 1) × 100 (3) it can. And
At this time, the concentration of O 2 at the inlet of the CO 2 meter 5 is 3 / (15n + 1) × 100 vol% from the above equation (2).
Thus, the O 2 concentration can be estimated by substituting n obtained by solving the equation (3).

【0017】図2(A)〜(D)は、測定対象成分であ
るCO2 の測定値に基づいて共存するH2 OおよびO2
の濃度を推定し、この推定された濃度を用いて前記CO
2 の測定値を補正する例を示すもので、各図において、
横軸は時間(秒)、縦軸は濃度(vol%)を示してい
る。そして、同図(A)はCO2 計5によって測定され
たCO2 の濃度値を示し、同図(B),(C)は前記C
2 の濃度値からそれぞれ推定されたH2 O、O2 の濃
度値である。これらの濃度値は既に説明したような手法
を用いて推定される。そして、同図(D)は同図
(B),(C)で示されるH2 O、O2 の濃度値による
影響を補正した後のCO2 の濃度値である。補正には、
図4に示したような影響の実測値から求められる近似式
を使用することができる。
FIGS. 2A to 2D show the coexistence of H 2 O and O 2 based on the measured value of CO 2 which is the component to be measured.
Is estimated, and the CO2 is estimated using the estimated concentration.
It shows an example of correcting the measured value of 2 , in each figure,
The horizontal axis represents time (seconds), and the vertical axis represents concentration (vol%). (A) shows the concentration of CO 2 measured by the CO 2 meter 5, and (B) and (C) show the C 2 values.
O 2 concentration H 2 that is estimated from each value O, the concentration value of O 2. These density values are estimated using the method described above. FIG. 3D shows the CO 2 concentration values after the influence of the H 2 O and O 2 concentration values shown in FIGS. 2B and 2C is corrected. To correct,
An approximate expression obtained from the measured value of the influence as shown in FIG. 4 can be used.

【0018】上述のように、エンジン排ガスGの分析に
おいて、CO2 の濃度から、このCO2 濃度に影響を与
えるH2 Oまたは/およびO2 の濃度を推定することが
できるため、CO2 濃度に対するH2 OまたはO2 の影
響度を予め調べておくことにより、それらの推定濃度を
用いてCO2 濃度出力に対する影響を補正することが可
能となる。なお、推定濃度は、補正値を求めるのに用い
るだけであるから、精度自体はそれほど要求されない。
また、ガス分析計間の機差が小さければ、補正のための
近似式は代表となる装置での確認データに基づいて決定
しておけばよい。さらにこの場合、ガス分析計の校正ガ
スは通常通りN2 ベースのものを使用することができ
る。
[0018] As described above, in the analysis of engine exhaust G, from the concentration of CO 2, it is possible to estimate the concentration of H 2 O or / and O 2 affect the CO 2 concentration, CO 2 concentration By previously examining the degree of influence of H 2 O or O 2 on the CO 2 concentration output, it is possible to correct the influence on the CO 2 concentration output using those estimated concentrations. Since the estimated density is only used for obtaining the correction value, the accuracy itself is not so required.
If the difference between the gas analyzers is small, the approximate expression for correction may be determined based on confirmation data from a representative apparatus. Furthermore, in this case, it is possible to use a calibration gas of N 2 base usual for gas analyzer.

【0019】そして、前記補正の手法としては、近似式
を用いて補正する従来の手法のほかに、例えば、FTI
Rによる場合は、この出願の出願人に係る特許出願「F
TIR法による多成分ガス分析方法」(特願平11−1
58493号)に示されている、定量アルゴリズムによ
って混合ガススペクトルから未補正の多成分濃度を算出
した後、一部の成分についてはさらに共存ガス成分によ
るスペクトルの変化分の補正計算を行う手法を用いるこ
とができる。
As the above-mentioned correction method, in addition to the conventional method of correcting using an approximate expression, for example, FTI
In the case of R, the patent application “F
Multicomponent Gas Analysis Method by TIR Method ”(Japanese Patent Application No. 11-1)
No. 58493), a method of calculating an uncorrected multi-component concentration from a mixed gas spectrum by a quantitative algorithm and then performing a correction calculation of a change in the spectrum due to a coexisting gas component for some components is used. be able to.

【0020】上述の実施の形態におけるエンジン排ガス
分析は、エンジン1からの排ガスGを希釈しないでガス
分析計5に導くものであったが、エンジン排ガス分析手
法としては、排ガスGを空気またはN2 で希釈してガス
分析計5に導いたり、また、排ガスGを空気またはN2
で希釈してバッグ内にサンプリングし、このバック内の
ガスをガス分析計5に導く手法がある。このような希釈
した排ガスをサンプルとして用いる場合にも、CO2
濃度実測値の理論値との比較からおおよその希釈率を求
め、この情報も加味してH2 OやO2 の濃度を推定し、
その後、CO2の濃度を補正すればよい。
In the engine exhaust gas analysis in the above-described embodiment, the exhaust gas G from the engine 1 is led to the gas analyzer 5 without dilution, but as an engine exhaust gas analysis method, the exhaust gas G is converted to air or N 2 gas. And exhaust gas G is diluted with air or N 2.
There is a method in which the gas in the bag is sampled in the bag and the gas in the bag is guided to the gas analyzer 5. Even when such a diluted exhaust gas is used as a sample, an approximate dilution rate is obtained by comparing the actual measured value of CO 2 with the theoretical value, and the concentration of H 2 O or O 2 is estimated in consideration of this information. And
Thereafter, the concentration of CO 2 may be corrected.

【0021】この発明は、上述の実施の形態に限られる
ものではなく、種々に変形して実施することができ、例
えばCOの補正を行う場合、COおよびCO2 について
ほぼ同等の応答が得られるように構成したCO/CO2
2成分計(あるいは、それ以上の多成分計)を使用すれ
ばよい。
The present invention is not limited to the above-described embodiment, but can be implemented in various modifications. For example, when CO correction is performed, approximately equivalent responses can be obtained for CO and CO 2. CO / CO 2 configured as follows
A two-component meter (or a multi-component meter more than that) may be used.

【0022】また、赤外吸収法によるガス分析計とし
て、図3に示すようなFTIR10を用いることができ
る。この図3において、11は分析部で、平行な赤外光
を発するように構成された赤外光源12と、ビームスプ
リッタ13、固定ミラー14、図外の駆動機構によって
例えばX−Y方向に平行移動する可動ミラー15からな
る干渉機構16と、測定試料や比較(参照)試料等を収
容し、干渉機構16を介して赤外光源12からの赤外光
が照射されるセル17と、半導体検出器18とからな
る。そして、19はこの分析部11の出力であるインタ
ーフェログラムを処理するデータ処理部である。
An FTIR 10 as shown in FIG. 3 can be used as a gas analyzer by the infrared absorption method. In FIG. 3, reference numeral 11 denotes an analysis unit which is parallel to, for example, the XY direction by an infrared light source 12 configured to emit parallel infrared light, a beam splitter 13, a fixed mirror 14, and a driving mechanism (not shown). An interference mechanism 16 including a movable mirror 15 that moves, a cell 17 that accommodates a measurement sample, a comparison (reference) sample, and the like, and is irradiated with infrared light from the infrared light source 12 via the interference mechanism 16; And a vessel 18. Reference numeral 19 denotes a data processing unit that processes an interferogram output from the analysis unit 11.

【0023】上記構成のFTIR10を用いて例えばプ
ロセスガスの計測など、主要構成ガスが限られており、
目的成分に影響する成分の濃度が目的成分の濃度から推
定可能である試料の分析を行う場合にも、上記実施の形
態に示したのと同様の手法を適用することができる。す
なわち、成分P,Q,R,Sからなるガス試料で、成分
P〜Rが目的成分であり、成分Sが共存成分(ベースガ
ス)でしかも校正ガスに含まれない場合、成分P〜Rの
濃度値から成分Sの濃度(=100−P−Q−R)を求
め、この値を用いて再度、成分P〜Rの出力を補正する
のである。
The main constituent gas is limited by using the FTIR 10 having the above structure, for example, for measuring a process gas.
The same technique as that described in the above embodiment can be applied to the case of analyzing a sample in which the concentration of the component affecting the target component can be estimated from the concentration of the target component. That is, in a gas sample composed of components P, Q, R, and S, when components P to R are target components and component S is a coexisting component (base gas) and is not included in the calibration gas, the components P to R The density of the component S (= 100-PQR) is obtained from the density value, and the output of the components P to R is corrected again using this value.

【0024】[0024]

【発明の効果】以上説明したように、この発明の共存ガ
ス影響の補正方法においては、測定対象成分の指示値に
影響を与え、かつ赤外吸収法では濃度測定が困難な共存
ガスについて、その濃度と濃度変化とを赤外吸収法で測
定可能な目的成分またはそれ以外の成分の指示値から推
定し、目的成分の指示値に対する補正を行うようにして
いるので、ベースガス補正を確実に行うことができ、目
的成分の濃度値として信頼性の高いものが得られる。
As described above, in the method of correcting the influence of a coexisting gas according to the present invention, the coexisting gas which affects the indicated value of the component to be measured and whose concentration cannot be easily measured by the infrared absorption method is described. Since the concentration and the change in concentration are estimated from the indicated values of the target component or the other components that can be measured by the infrared absorption method, and the correction is performed on the indicated value of the target component, the base gas correction is surely performed. As a result, a highly reliable concentration value of the target component can be obtained.

【0025】特に、ベースガス成分の濃度を測定対象成
分自身から推定する場合、時間遅れによって生ずる補正
誤差を無視することができる。そして、多成分測定によ
る場合でも、セルを共用するなど成分間の応答差が生じ
ないような構成を取りやすく、時間遅れの誤差を避ける
ことができる。したがって、ガス分析計のハードおよび
ソフトをシンプルなものとすることができ、連続測定に
おいても非常に好適に適用することができる。
In particular, when estimating the concentration of the base gas component from the measurement target component itself, a correction error caused by a time delay can be ignored. Even in the case of multi-component measurement, it is easy to adopt a configuration that does not cause a response difference between components, such as sharing a cell, and it is possible to avoid a time delay error. Therefore, the hardware and software of the gas analyzer can be simplified, and the gas analyzer can be suitably applied to continuous measurement.

【0026】さらに、この発明の共存ガス影響の補正方
法によれば、H2 Oなどガスサンプリングの際に結露す
るなどの問題が生じやすい成分や、O2 、N2 、H2
ど赤外吸収をもたない成分の直接的な分析が不要であ
り、また、共存成分を全て校正ガスに混合しておく必要
もない。
Further, according to the method of correcting the influence of the coexisting gas of the present invention, a component such as H 2 O, which is liable to cause a problem such as dew condensation at the time of gas sampling, or an infrared absorbing component such as O 2 , N 2 , H 2. There is no need for direct analysis of components having no components, and it is not necessary to mix all coexisting components with the calibration gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の共存ガス影響の補正方法が適用され
るガス分析装置の一例を概略的に示す図である。
FIG. 1 is a diagram schematically illustrating an example of a gas analyzer to which a method for correcting a coexisting gas effect according to the present invention is applied.

【図2】前記共存ガス影響の補正方法の一例を示す説明
図である。
FIG. 2 is an explanatory diagram showing an example of a method for correcting the effect of the coexisting gas.

【図3】この発明の共存ガス影響の補正方法が適用され
るガス分析装置の他の例を概略的に示す図である。
FIG. 3 is a diagram schematically showing another example of a gas analyzer to which the method of correcting a coexisting gas effect of the present invention is applied.

【図4】従来技術の問題点を説明するための図である。FIG. 4 is a diagram for explaining a problem of the related art.

【図5】クエンチングによる赤外吸収量変化モデルを示
す図である。
FIG. 5 is a diagram showing a model of a change in the amount of infrared absorption due to quenching.

【符号の説明】[Explanation of symbols]

5,10…赤外吸収法によるガス分析計。 5, 10 ... Gas analyzer by infrared absorption method.

フロントページの続き (72)発明者 明石 耕太郎 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 Fターム(参考) 2G020 BA02 BA12 CA02 CB42 2G059 AA01 BB01 CC04 EE01 HH01 NN01 Continued on the front page (72) Inventor Kotaro Akashi 2 Higashi-cho, Kichijoin-gu, Minami-ku, Kyoto, Kyoto F-term in HORIBA, Ltd. (Reference) 2G020 BA02 BA12 CA02 CB42 2G059 AA01 BB01 CC04 EE01 HH01 NN01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 赤外吸収法によるガス分析計の目的成分
の指示値に影響を与えるにもかかわらず赤外吸収法では
濃度測定が困難な共存ガスの濃度および濃度変化を、赤
外吸収法で測定可能な目的成分またはそれ以外の成分の
指示値から推定し、この推定された濃度および濃度変化
を用いて、目的成分の指示値を補正するようにしたこと
を特徴とする赤外吸収法によるガス分析における共存ガ
ス影響の補正方法。
1. An infrared absorption method for determining the concentration of coexisting gas and a change in concentration which have an influence on an indication value of a target component of a gas analyzer by an infrared absorption method but whose concentration cannot be easily measured by the infrared absorption method. Infrared absorption method characterized by estimating from the indicated value of the target component or other components that can be measured by the method, and correcting the indicated value of the target component using the estimated concentration and the change in concentration. Of the effect of coexisting gas in gas analysis by FTIR.
JP27664799A 1999-09-29 1999-09-29 Correction method for influence of coexisting gas in gas analysis by infrared absorption method and gas analyzer Expired - Lifetime JP4205821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27664799A JP4205821B2 (en) 1999-09-29 1999-09-29 Correction method for influence of coexisting gas in gas analysis by infrared absorption method and gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27664799A JP4205821B2 (en) 1999-09-29 1999-09-29 Correction method for influence of coexisting gas in gas analysis by infrared absorption method and gas analyzer

Publications (2)

Publication Number Publication Date
JP2001099781A true JP2001099781A (en) 2001-04-13
JP4205821B2 JP4205821B2 (en) 2009-01-07

Family

ID=17572376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27664799A Expired - Lifetime JP4205821B2 (en) 1999-09-29 1999-09-29 Correction method for influence of coexisting gas in gas analysis by infrared absorption method and gas analyzer

Country Status (1)

Country Link
JP (1) JP4205821B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460858C (en) * 2005-12-13 2009-02-11 上海神开石油化工装备股份有限公司 Method for on-line spectral determining oily gas in drilling liquid
JP2010223702A (en) * 2009-03-23 2010-10-07 Toyota Motor Corp Exhaust gas analyzer
JP2013120058A (en) * 2011-12-06 2013-06-17 Shimadzu Corp Combustion exhaust gas analysis instrument
JP2014174054A (en) * 2013-03-11 2014-09-22 Horiba Ltd Exhaust gas analyzer
EP3098592A1 (en) 2015-05-25 2016-11-30 Yokogawa Electric Corporation Multi-component gas analysis system and multi-component gas analysis method
WO2022071066A1 (en) * 2020-10-02 2022-04-07 株式会社堀場製作所 Exhaust gas analysis device, exhaust gas analysis method, and program storage medium for exhaust gas analysis device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460858C (en) * 2005-12-13 2009-02-11 上海神开石油化工装备股份有限公司 Method for on-line spectral determining oily gas in drilling liquid
JP2010223702A (en) * 2009-03-23 2010-10-07 Toyota Motor Corp Exhaust gas analyzer
JP2013120058A (en) * 2011-12-06 2013-06-17 Shimadzu Corp Combustion exhaust gas analysis instrument
JP2014174054A (en) * 2013-03-11 2014-09-22 Horiba Ltd Exhaust gas analyzer
US9568396B2 (en) 2013-03-11 2017-02-14 Horiba, Ltd. Exhaust gas analyzing apparatus
EP3098592A1 (en) 2015-05-25 2016-11-30 Yokogawa Electric Corporation Multi-component gas analysis system and multi-component gas analysis method
US10605724B2 (en) 2015-05-25 2020-03-31 Yokogawa Electric Corporation Multi-component gas analysis system and multi-component gas analysis method
WO2022071066A1 (en) * 2020-10-02 2022-04-07 株式会社堀場製作所 Exhaust gas analysis device, exhaust gas analysis method, and program storage medium for exhaust gas analysis device

Also Published As

Publication number Publication date
JP4205821B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
EP1914545B1 (en) Vehicle-mountable exhaust gas analyzer
Vogel et al. Evaluation of a cavity ring-down spectrometer for in situ observations of 13 CO 2
CA2277945C (en) Stable isotope measurement method and apparatus by spectroscopy
US9194797B2 (en) Method and system for detecting moisture in a process gas involving cross interference
DK0797765T3 (en) Method for spectrometric measurement of the concentration ratio of isotopes in a gas
EP3327423A1 (en) Gas analysis apparatus and gas analysis method
JPH102857A (en) Analysis of gas mixture by infrared method
JP2003521706A (en) How to determine the safety of gas mixtures
JPH06265538A (en) Apparatus for measurement of total content of organic carbon and of total content of nitrogen in water
JP4205821B2 (en) Correction method for influence of coexisting gas in gas analysis by infrared absorption method and gas analyzer
Berhanu et al. High-precision atmospheric oxygen measurement comparisons between a newly built CRDS analyzer and existing measurement techniques
JP2003050203A (en) Gas analyzing device of non-dispersive infrared absorption type, and its analyzing method
JP2006284508A (en) On-vehicle exhaust gas analyzer
WO2021005900A1 (en) Sample gas analysis device, sample gas analysis method, and program for sample gas analysis
JP3223097B2 (en) Method for analyzing the concentration of multiple components contained in a solution
JP2004279339A (en) Concentration measuring instrument
JP2004085252A (en) Gas analyzer
JP4113302B2 (en) Method and apparatus for removing influence of coexisting gas in gas analysis
JPH0815253A (en) Exhaust gas weight measuring method using trace gas
JPH10339669A (en) Method for calibrating ndir spectrometer
CN111912805A (en) Ultraviolet spectrum detection method and device for monitoring trace hydrogen sulfide in blast furnace flue gas
CN111912804A (en) Ultraviolet spectrum detection method and device for monitoring trace sulfur dioxide in blast furnace flue gas
JP7011626B2 (en) Analytical equipment and analytical method
Werle Analytical applications of infrared semiconductor lasers in atmospheric trace gas monitoring
JPH10142147A (en) Method for measuring concentration of nitrogen oxides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141024

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4205821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141024

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term