JP2010223702A - Exhaust gas analyzer - Google Patents

Exhaust gas analyzer Download PDF

Info

Publication number
JP2010223702A
JP2010223702A JP2009070160A JP2009070160A JP2010223702A JP 2010223702 A JP2010223702 A JP 2010223702A JP 2009070160 A JP2009070160 A JP 2009070160A JP 2009070160 A JP2009070160 A JP 2009070160A JP 2010223702 A JP2010223702 A JP 2010223702A
Authority
JP
Japan
Prior art keywords
concentration
exhaust gas
moisture
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009070160A
Other languages
Japanese (ja)
Other versions
JP5316143B2 (en
Inventor
Nobuhisa Mori
信久 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009070160A priority Critical patent/JP5316143B2/en
Publication of JP2010223702A publication Critical patent/JP2010223702A/en
Application granted granted Critical
Publication of JP5316143B2 publication Critical patent/JP5316143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas analyzer capable of measuring properly and simultaneously an exhaust gas component concentration and the air-fuel ratio. <P>SOLUTION: This exhaust gas analyzer is loaded on a vehicle, or the like, in addition to a measuring chamber, and analyzes exhaust gas discharged from an internal combustion engine. More specifically, the exhaust gas analyzer measures a moisture concentration in the exhaust gas by Fourier-transform infrared spectroscopy; calculates the moisture concentration in the exhaust gas by a theoretical combustion reaction formula; and calculates the amount of moisture condensed in an exhaust system and the amount of moisture generated by re-evaporation of condensed moisture, based on the moisture concentration and calculated moisture concentration measured. Then, the measured gas concentration of a carbon component is corrected, based on the calculated amount of moisture, and the air-fuel ratio of the exhaust gas is calculated by a carbon balance method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関から排出された排気ガスの分析を行う排気ガス分析装置に関する。   The present invention relates to an exhaust gas analyzer that analyzes exhaust gas discharged from an internal combustion engine.

従来から、フーリエ変換赤外分光法やカーボンバランス法などにより、排気ガスを分析する技術が提案されている。例えば、特許文献1には、サンプルガス中に含まれる水分の影響を補正し、所望の測定対象成分の濃度を求める赤外線ガス分析方法が提案されている。具体的には、この技術では、水分干渉および水分共存影響を除去した精度の高い濃度測定を図っている。その他にも、本発明に関連する技術が特許文献2に提案されている。   Conventionally, techniques for analyzing exhaust gas by Fourier transform infrared spectroscopy, carbon balance method, and the like have been proposed. For example, Patent Document 1 proposes an infrared gas analysis method for correcting the influence of moisture contained in a sample gas and obtaining the concentration of a desired measurement target component. Specifically, in this technique, highly accurate concentration measurement is performed by removing moisture interference and moisture coexistence effects. In addition, Patent Document 2 proposes a technique related to the present invention.

特許第3771849号公報Japanese Patent No. 3771849 特開平10−38850号公報Japanese Patent Laid-Open No. 10-38850

しかしながら、上記した特許文献1及び2には、排気ガス成分濃度の排出挙動と空燃比の変化とを同時に適切に計測する方法については記載されていない。   However, Patent Documents 1 and 2 described above do not describe a method of appropriately measuring the exhaust behavior of the exhaust gas component concentration and the change in the air-fuel ratio at the same time.

本発明は、上記のような課題を解決するためになされたものであり、排気ガス成分濃度と空燃比とを適切に同時計測することが可能な排気ガス分析装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an exhaust gas analyzer that can appropriately and simultaneously measure the exhaust gas component concentration and the air-fuel ratio. .

本発明の1つの観点では、内燃機関から排出された排気ガスの分析を行う排気ガス分析装置は、フーリエ変換赤外分光法により前記排気ガスを分析することで、前記排気ガスにおける水分濃度を計測する水分濃度計測手段と、前記内燃機関での燃焼を表した理論燃焼反応式に基づいて、前記排気ガスにおける水分濃度を算出する水分濃度算出手段と、前記水分濃度計測手段によって計測された水分濃度、及び前記水分濃度算出手段によって算出された水分濃度に基づいて、前記内燃機関における排気系で結露した水分量、及び、前記排気系で結露した水分が再気化した水分量を算出する水分量算出手段と、前記水分量算出手段によって算出された水分量に基づいて、前記フーリエ変換赤外分光法により計測された前記排気ガスにおける炭素成分のガス濃度を補正する炭素成分ガス濃度補正手段と、前記炭素成分ガス濃度補正手段によって補正された前記炭素成分のガス濃度を用いて、カーボンバランス法により前記排気ガスの空燃比を算出する空燃比算出手段と、を備える。   In one aspect of the present invention, an exhaust gas analyzer that analyzes exhaust gas discharged from an internal combustion engine measures moisture concentration in the exhaust gas by analyzing the exhaust gas by Fourier transform infrared spectroscopy. A moisture concentration measuring means for calculating the moisture concentration in the exhaust gas based on a theoretical combustion reaction equation representing combustion in the internal combustion engine, and a moisture concentration measured by the moisture concentration measuring means Based on the moisture concentration calculated by the moisture concentration calculating means, the moisture amount calculation for calculating the amount of moisture condensed in the exhaust system in the internal combustion engine and the amount of moisture re-vaporized from the moisture condensed in the exhaust system. And the carbon composition in the exhaust gas measured by the Fourier transform infrared spectroscopy based on the water content calculated by the water content calculating device. An air-fuel ratio for calculating the air-fuel ratio of the exhaust gas by a carbon balance method using a carbon component gas concentration correcting means for correcting the gas concentration of the gas and a gas concentration of the carbon component corrected by the carbon component gas concentration correcting means Calculating means.

上記の排気ガス分析装置は、計測室以外に車両などに搭載され、内燃機関から排出された排気ガスの分析を行う。水分濃度計測手段は、フーリエ変換赤外分光法により排気ガスにおける水分濃度を計測し、水分濃度算出手段は、理論燃焼反応式により排気ガスにおける水分濃度を算出する。水分量算出手段は、計測された水分濃度及び算出された水分濃度に基づいて、排気系で結露した水分量及び結露した水分が再気化した水分量を算出する。炭素成分ガス濃度補正手段は、算出された水分量に基づいて、フーリエ変換赤外分光法により計測された排気ガスにおける炭素成分のガス濃度を補正する。そして、空燃比算出手段は、補正された炭素成分のガス濃度を用いて、カーボンバランス法により排気ガスの空燃比を算出する。これにより、排気系で結露・再気化した水分量を適切に考慮に入れて、排気ガスの空燃比を精度良く算出することができる。   The exhaust gas analyzer is installed in a vehicle or the like other than the measurement chamber, and analyzes exhaust gas discharged from the internal combustion engine. The moisture concentration measuring means measures the moisture concentration in the exhaust gas by Fourier transform infrared spectroscopy, and the moisture concentration calculating means calculates the moisture concentration in the exhaust gas by a theoretical combustion reaction equation. The moisture amount calculating means calculates the amount of moisture condensed in the exhaust system and the amount of moisture re-vaporized from the condensed water based on the measured moisture concentration and the calculated moisture concentration. The carbon component gas concentration correction means corrects the gas concentration of the carbon component in the exhaust gas measured by Fourier transform infrared spectroscopy based on the calculated water content. The air / fuel ratio calculating means calculates the air / fuel ratio of the exhaust gas by the carbon balance method using the corrected gas concentration of the carbon component. As a result, it is possible to accurately calculate the air-fuel ratio of the exhaust gas by appropriately taking into consideration the amount of moisture condensed and re-vaporized in the exhaust system.

本実施形態における排気ガス分析装置が適用されたシステムの概略構成図である。1 is a schematic configuration diagram of a system to which an exhaust gas analyzer in the present embodiment is applied. 排気ガス分析装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of an exhaust-gas analyzer. 本実施形態における空燃比算出処理を示すフローチャートである。It is a flowchart which shows the air fuel ratio calculation process in this embodiment.

以下、図面を参照して本発明の好適な実施の形態について説明する。
[装置構成]
図1は、本実施形態における排気ガス分析装置が適用されたシステムの一例を示す概略構成図である。図1においては、実線矢印は排気の流れの一例を示している。
Preferred embodiments of the present invention will be described below with reference to the drawings.
[Device configuration]
FIG. 1 is a schematic configuration diagram illustrating an example of a system to which an exhaust gas analyzer according to this embodiment is applied. In FIG. 1, a solid line arrow shows an example of the flow of exhaust.

図示のように、当該システムは、主に、エンジン(内燃機関)1と、排気通路2と、排気ガス採取通路3と、排気ガス分析装置4と、排気ガス排出通路5と、を備える。当該システムは、計測室以外に車両などに搭載される。   As illustrated, the system mainly includes an engine (internal combustion engine) 1, an exhaust passage 2, an exhaust gas collection passage 3, an exhaust gas analyzer 4, and an exhaust gas discharge passage 5. The system is mounted on a vehicle or the like other than the measurement room.

エンジン1は、空気と燃料との混合気を燃焼させ、車両の走行用動力を出力する。エンジン1における燃焼によって発生した排気ガスは、排気通路2へ排出される。排気通路2上には、排気ガス分析装置4へ排気ガスを供給するための排気ガス採取通路3が接続されている。   The engine 1 burns a mixture of air and fuel and outputs driving power for the vehicle. Exhaust gas generated by combustion in the engine 1 is discharged to the exhaust passage 2. An exhaust gas collection passage 3 for supplying exhaust gas to the exhaust gas analyzer 4 is connected on the exhaust passage 2.

排気ガス分析装置4は、図示しないFTIR(Fourier Transform Infrared Spectroscopy)多成分計、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)などを備え、排気ガス採取通路3を介して採取された排気ガスの分析を行う。詳細は後述するが、排気ガス分析装置4は、排気ガス成分濃度と排気ガスの空燃比とを同時計測が可能に構成されている。排気ガス分析装置4によって分析が行われた排気ガスは、排気ガス排出通路5を介して、排気通路2へ戻される。   The exhaust gas analyzer 4 includes an FTIR (Fourier Transform Infrared Spectroscopy) multi-component meter (not shown), a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The exhaust gas collected through the Although details will be described later, the exhaust gas analyzer 4 is configured to be able to simultaneously measure the exhaust gas component concentration and the air-fuel ratio of the exhaust gas. The exhaust gas analyzed by the exhaust gas analyzer 4 is returned to the exhaust passage 2 via the exhaust gas discharge passage 5.

図2は、排気ガス分析装置4の概略構成を示すブロック図である。図示のように、排気ガス分析装置4は、主に、排気ガス成分濃度計測部4aと、空燃比演算処理部4bと、燃料データ記憶部4cと、表示部4dと、を備える。   FIG. 2 is a block diagram showing a schematic configuration of the exhaust gas analyzer 4. As shown in the figure, the exhaust gas analyzer 4 mainly includes an exhaust gas component concentration measurement unit 4a, an air-fuel ratio calculation processing unit 4b, a fuel data storage unit 4c, and a display unit 4d.

排気ガス成分濃度計測部4aは、フーリエ変換赤外分光法(以下、「FTIR法」と呼ぶ。)によって、排気ガス成分の濃度を計測する。具体的には、排気ガス成分濃度計測部4aは、FTIR多成分計に相当し、排気ガスに赤外光を照射することで得られた吸収スペクトルより、排気ガスにおける多成分を定量分析する。排気ガス成分濃度計測部4aは、例えば、排気ガス中のHOのガス濃度(以下、「水分濃度」と呼ぶ。)や、CO、CO、HCなどのC含有成分のガス濃度(以下、「炭素成分ガス濃度」と呼ぶ。)を計測する。なお、排気ガス成分濃度計測部4aは、本発明における水分濃度計測手段に相当する。 The exhaust gas component concentration measuring unit 4a measures the concentration of the exhaust gas component by Fourier transform infrared spectroscopy (hereinafter referred to as “FTIR method”). Specifically, the exhaust gas component concentration measuring unit 4a corresponds to an FTIR multi-component meter, and quantitatively analyzes the multi-components in the exhaust gas from an absorption spectrum obtained by irradiating the exhaust gas with infrared light. The exhaust gas component concentration measuring unit 4a is, for example, a gas concentration of H 2 O in the exhaust gas (hereinafter referred to as “moisture concentration”) or a gas concentration of C-containing components such as CO 2 , CO, and HC (hereinafter referred to as “water concentration”) , Called “carbon component gas concentration”). The exhaust gas component concentration measuring unit 4a corresponds to the moisture concentration measuring means in the present invention.

燃料データ記憶部4cには、燃料データが記憶されている。具体的には、燃料データ記憶部4cには、燃料(供試燃料)の種類(例えば、EtOH含有率など)やC/H/O組成比などのデータが、燃料データとして記憶されている。このような燃料データは、燃料データ記憶部4cに予め登録される。   The fuel data storage unit 4c stores fuel data. Specifically, data such as the type of fuel (test fuel) (for example, EtOH content) and the C / H / O composition ratio are stored as fuel data in the fuel data storage unit 4c. Such fuel data is registered in advance in the fuel data storage unit 4c.

空燃比演算処理部4bは、排気ガス成分濃度計測部4aでの計測結果、及び燃料データ記憶部4cに記憶された燃料データに基づいて、排気ガスの空燃比(A/F)を算出するための処理を行う。基本的には、空燃比演算処理部4bは、カーボンバランス法により、炭素成分ガス濃度などに基づいて空燃比を算出する。このカーボンバランス法は、簡単に述べると、排気ガス中の炭素成分ガス濃度に基づいて、燃焼で使用された燃料量を算出するといった方法である。空燃比演算処理部4bは、算出された空燃比のデータを表示部4dに出力して、これを表示部4dに表示させる。
[空燃比算出方法]
次に、本実施形態において空燃比演算処理部4bが行う空燃比算出方法について、具体的に説明する。
The air-fuel ratio calculation processing unit 4b calculates the air-fuel ratio (A / F) of the exhaust gas based on the measurement result in the exhaust gas component concentration measurement unit 4a and the fuel data stored in the fuel data storage unit 4c. Perform the process. Basically, the air-fuel ratio calculation processing unit 4b calculates the air-fuel ratio based on the carbon component gas concentration and the like by the carbon balance method. In brief, the carbon balance method is a method of calculating the amount of fuel used in combustion based on the carbon component gas concentration in the exhaust gas. The air-fuel ratio calculation processing unit 4b outputs the calculated air-fuel ratio data to the display unit 4d and displays it on the display unit 4d.
[Air-fuel ratio calculation method]
Next, the air-fuel ratio calculation method performed by the air-fuel ratio calculation processing unit 4b in the present embodiment will be specifically described.

本実施形態では、空燃比演算処理部4bは、FTIR法で計測された水分濃度(以下、「水分濃度実測値」と呼ぶ。)と、理論燃焼反応式より求められた水分濃度(以下、「水分濃度理論値」と呼ぶ。)とに基づいて、排気系で結露した水分量及び結露した水分が再気化した水分量を算出し、当該水分量に基づいてFTIR法で計測された炭素成分ガス濃度を補正し、補正された炭素成分ガス濃度を用いてカーボンバランス法により空燃比を算出する。このように、空燃比演算処理部4bは、本発明における水分濃度算出手段、水分量算出手段、炭素成分ガス濃度補正手段、空燃比算出手段として機能する。   In the present embodiment, the air-fuel ratio calculation processing unit 4b is configured to determine the moisture concentration measured by the FTIR method (hereinafter referred to as “moisture concentration measured value”) and the moisture concentration obtained from the theoretical combustion reaction equation (hereinafter referred to as “ The amount of water condensed in the exhaust system and the amount of water re-vaporized from the condensed water are calculated based on the water concentration theoretical value, and the carbon component gas measured by the FTIR method based on the amount of water is calculated. The concentration is corrected, and the air-fuel ratio is calculated by the carbon balance method using the corrected carbon component gas concentration. As described above, the air-fuel ratio calculation processing unit 4b functions as the water concentration calculation means, the water content calculation means, the carbon component gas concentration correction means, and the air-fuel ratio calculation means in the present invention.

このように空燃比を算出する理由は、以下の通りである。排気低減技術の評価・解析には、排気ガス成分の排出挙動及び空燃比の同時計測が有効であると言える。排気ガス成分濃度の排出挙動と空燃比の変化とを同時計測する方法として、FTIR法とカーボンバランス法とを用いることが考えられる。具体的には、FTIR法により排気ガス中の炭素成分ガス濃度を計測し、計測された炭素成分ガス濃度を用いて、カーボンバランス法により空燃比を算出する方法が考えられる。しかしながら、このような方法をそのまま用いた場合には、空燃比を精度良く算出することができない場合があると言える。   The reason for calculating the air-fuel ratio in this way is as follows. It can be said that simultaneous measurement of exhaust gas component emission behavior and air-fuel ratio is effective for the evaluation and analysis of exhaust emission reduction technology. As a method for simultaneously measuring the exhaust behavior of the exhaust gas component concentration and the change in the air-fuel ratio, it is conceivable to use the FTIR method and the carbon balance method. Specifically, a method is conceivable in which the carbon component gas concentration in the exhaust gas is measured by the FTIR method, and the air-fuel ratio is calculated by the carbon balance method using the measured carbon component gas concentration. However, when such a method is used as it is, it can be said that the air-fuel ratio may not be calculated with high accuracy.

これは、燃焼によって生じる排気ガス中には十数%程度の水分が存在するが、例えば冷間始動から暖機過程において、排気ガス中の水分が排気系で結露したり、結露した水分が再気化したりすることで、一定条件(水分共存)下で、FTIR法にて排気ガス成分濃度を適切に計測することができない場合があるからである。具体的には、冷間始動域では、エンジン1や排気系の温度が低いため、水分が排気系で結露することで、FTIR法により計測される水分濃度が、本来の燃焼生成ガスの水分濃度以下となる場合がある。この場合には、他の測定対象のガス濃度(例えばCOなどの濃度)が高く計測され、カーボンバランス法により求められる空燃比が実態よりもリッチ側になる傾向にある。逆に、暖機過程域では、排気系で結露した水分が気化することで、求められる空燃比が実態よりもリーン側になる傾向にある。 This is because the exhaust gas generated by combustion contains about 10% or more of moisture. This is because, by vaporizing, the exhaust gas component concentration may not be appropriately measured by the FTIR method under a certain condition (water coexistence). Specifically, in the cold start region, since the temperature of the engine 1 and the exhaust system is low, moisture is condensed in the exhaust system, so that the moisture concentration measured by the FTIR method is the moisture concentration of the original combustion product gas. May be: In this case, the gas concentration (for example, concentration of CO 2 or the like) of other measurement objects is measured high, and the air-fuel ratio obtained by the carbon balance method tends to be richer than the actual state. On the contrary, in the warm-up process region, the moisture condensed in the exhaust system is vaporized, so that the required air-fuel ratio tends to be leaner than the actual condition.

このように、結露・再気化した水分量が変化することで、共存水分濃度が変わり、排気ガス成分濃度の計測値に影響を与えるものと考えられる。したがって、FTIR法で計測された炭素成分ガス濃度をそのまま用いた場合には、カーボンバランス法により空燃比を精度良く算出することができない場合があると言える。なお、供試燃料組成によっても排気ガス中の水分量が異なるので、排気系で結露・再気化する水分量が変化するものと考えられる。   Thus, it is considered that the coexistence moisture concentration changes due to the change in the amount of moisture that has been condensed and re-vaporized, which affects the measured value of the exhaust gas component concentration. Therefore, if the carbon component gas concentration measured by the FTIR method is used as it is, it can be said that the air-fuel ratio may not be accurately calculated by the carbon balance method. In addition, since the amount of moisture in the exhaust gas varies depending on the test fuel composition, it is considered that the amount of moisture that is condensed and re-vaporized in the exhaust system changes.

したがって、本実施形態では、排気系で結露・再気化した水分量を算出して、当該水分量に基づいてFTIR法で計測された炭素成分ガス濃度を補正し、補正後の炭素成分ガス濃度を用いて空燃比を算出する。詳しくは、空燃比演算処理部4bは、下記のように空燃比を算出する。   Therefore, in this embodiment, the amount of moisture condensed and re-vaporized in the exhaust system is calculated, the carbon component gas concentration measured by the FTIR method is corrected based on the moisture amount, and the corrected carbon component gas concentration is calculated. To calculate the air-fuel ratio. Specifically, the air-fuel ratio calculation processing unit 4b calculates the air-fuel ratio as follows.

空燃比演算処理部4bは、まず、排気ガス成分濃度計測部4aで計測された水分濃度(水分濃度実測値)を取得し、当該水分濃度実測値が所定範囲内にあるか否かの判定を行う。この判定は、排気系で水分の結露・再気化が生じているか否かの判定を行っていることに相当する。なお、当該判定に用いる所定範囲は、本来の燃焼生成ガスにおける水分濃度に基づいて定められる。   The air-fuel ratio calculation processing unit 4b first acquires the water concentration (measured water concentration value) measured by the exhaust gas component concentration measuring unit 4a, and determines whether or not the measured water concentration value is within a predetermined range. Do. This determination corresponds to determining whether or not moisture condensation or revaporization has occurred in the exhaust system. The predetermined range used for the determination is determined based on the moisture concentration in the original combustion product gas.

水分濃度実測値が所定範囲内にある場合には、排気系で水分の結露・再気化がほとんど生じていないと言える。この場合には、FTIR法で計測された炭素成分ガス濃度を補正する必要がないと考えられるので、空燃比演算処理部4bは、当該炭素成分ガス濃度をそのまま用いて、カーボンバランス法により空燃比を算出する。   When the measured value of the moisture concentration is within the predetermined range, it can be said that there is almost no condensation or re-vaporization of moisture in the exhaust system. In this case, since it is considered unnecessary to correct the carbon component gas concentration measured by the FTIR method, the air-fuel ratio calculation processing unit 4b uses the carbon component gas concentration as it is and performs the air-fuel ratio calculation by the carbon balance method. Is calculated.

これに対して、水分濃度実測値が所定範囲外にある場合には、排気系で水分の結露・再気化が生じていると言える。この場合には、FTIR法で計測された炭素成分ガス濃度をそのまま用いて空燃比を算出すべきではないと考えられるので、空燃比演算処理部4bは、当該炭素成分ガス濃度に対する補正を行う。   On the other hand, when the measured value of the moisture concentration is outside the predetermined range, it can be said that moisture condensation / re-vaporization occurs in the exhaust system. In this case, since it is considered that the air-fuel ratio should not be calculated using the carbon component gas concentration measured by the FTIR method as it is, the air-fuel ratio calculation processing unit 4b corrects the carbon component gas concentration.

炭素成分ガス濃度の補正を行うために、空燃比演算処理部4bは、まず、排気系で結露・再気化した水分量を算出する。具体的には、空燃比演算処理部4bは、エンジン1での燃焼を表した理論燃焼反応式より水分濃度(水分濃度理論値)を算出し、この水分濃度理論値と、FTIR法で計測された水分濃度実測値とに基づいて、排気系で結露・再気化した水分量を算出する。この場合、空燃比演算処理部4bは、例えば以下の式(1)で表される理論燃焼反応式に基づいて、水分濃度理論値を算出する。   In order to correct the carbon component gas concentration, the air-fuel ratio calculation processing unit 4b first calculates the amount of moisture condensed and re-vaporized in the exhaust system. Specifically, the air-fuel ratio calculation processing unit 4b calculates the water concentration (the water concentration theoretical value) from the theoretical combustion reaction formula representing the combustion in the engine 1, and is measured by the water concentration theoretical value and the FTIR method. Based on the measured moisture concentration, the amount of moisture condensed and re-vaporized in the exhaust system is calculated. In this case, the air-fuel ratio calculation processing unit 4b calculates a theoretical water concentration value based on, for example, a theoretical combustion reaction equation represented by the following equation (1).

CxHyOz+(x+y/4-z/2)O2+0.79/0.21(x+y/4-z/2)N2
→xCO2+y/2H2O+0.79/0.21(x+y/4-z/2)N2 式(1)
詳しくは、空燃比演算処理部4bは、燃料データ記憶部4cに記憶された燃料データ(C/H/O組成比若しくはEtOH含有率など)を用いて、このような式(1)で示す理論燃焼反応式に基づいて、水分濃度理論値を算出する。
C x H y O z + (x + y / 4-z / 2) O 2 + 0.79 / 0.21 (x + y / 4-z / 2) N 2
→ xCO 2 + y / 2H 2 O + 0.79 / 0.21 (x + y / 4-z / 2) N 2 formula (1)
Specifically, the air-fuel ratio calculation processing unit 4b uses the fuel data (C / H / O composition ratio or EtOH content ratio) stored in the fuel data storage unit 4c to calculate the theory represented by the equation (1). Based on the combustion reaction equation, the theoretical value of water concentration is calculated.

そして、空燃比演算処理部4bは、水分濃度理論値と水分濃度実測値とに基づいて結露・再気化した水分量を算出した後、当該水分量に基づいてFTIR法で計測された炭素成分ガス濃度を補正し、補正された炭素成分ガス濃度を用いてカーボンバランス法により空燃比を算出する。   Then, the air-fuel ratio calculation processing unit 4b calculates the amount of moisture condensed and re-vaporized based on the theoretical value of moisture concentration and the measured value of moisture concentration, and then the carbon component gas measured by the FTIR method based on the amount of moisture. The concentration is corrected, and the air-fuel ratio is calculated by the carbon balance method using the corrected carbon component gas concentration.

以上説明した空燃比算出方法によれば、空燃比を精度良く算出することができる。よって、本実施形態における排気ガス分析装置4によれば、FTIR法及びカーボンバランス法を用いて、排気ガス成分濃度の排出挙動と空燃比の変化とを適切に同時計測することが可能となる。
[空燃比算出処理]
次に、図3を参照して、本実施形態における空燃比算出処理について説明する。当該処理は、空燃比演算処理部4bによって、所定の周期で繰り返し実行される。
According to the air-fuel ratio calculation method described above, the air-fuel ratio can be calculated with high accuracy. Therefore, according to the exhaust gas analyzer 4 in the present embodiment, it is possible to appropriately and simultaneously measure the exhaust behavior of the exhaust gas component concentration and the change in the air-fuel ratio using the FTIR method and the carbon balance method.
[Air-fuel ratio calculation processing]
Next, the air-fuel ratio calculation process in this embodiment will be described with reference to FIG. This process is repeatedly executed at a predetermined cycle by the air-fuel ratio calculation processing unit 4b.

まず、ステップS101では、空燃比演算処理部4bは、排気ガス成分濃度計測部4aより、FTIR法で計測された排気ガス成分濃度を取得する。具体的には、空燃比演算処理部4bは、空燃比の算出に必要な成分のガス濃度を取得する。詳しくは、空燃比演算処理部4bは、HOのガス濃度(水分濃度)や、CO、CO、HCなどのC含有成分のガス濃度(炭素成分ガス濃度)や、EtOHのガス濃度などを取得する。そして、処理はステップS102に進む。 First, in step S101, the air-fuel ratio calculation processing unit 4b acquires the exhaust gas component concentration measured by the FTIR method from the exhaust gas component concentration measurement unit 4a. Specifically, the air-fuel ratio calculation processing unit 4b acquires the gas concentration of the component necessary for calculating the air-fuel ratio. In detail, the air-fuel ratio calculation processing unit 4b is configured such that the gas concentration of H 2 O (water concentration), the gas concentration of C-containing components such as CO 2 , CO, and HC (carbon component gas concentration), the gas concentration of EtOH, etc. To get. Then, the process proceeds to step S102.

ステップS102では、空燃比演算処理部4bは、ステップS101で取得された水分濃度(水分濃度実測値)が所定範囲内にあるか否かを判定する。ここでは、排気系で水分の結露・再気化が生じているか否かの判定を行っている。当該判定に用いる所定範囲は、本来の燃焼生成ガスにおける水分濃度などに基づいて定められる。   In step S102, the air-fuel ratio calculation processing unit 4b determines whether or not the water concentration (water concentration actual measurement value) acquired in step S101 is within a predetermined range. Here, it is determined whether or not moisture condensation or re-vaporization has occurred in the exhaust system. The predetermined range used for the determination is determined based on the moisture concentration in the original combustion product gas.

水分濃度実測値が所定範囲内にある場合(ステップS102;Yes)、処理はステップS106に進む。この場合には、排気系で水分の結露・再気化がほとんど生じていないと言えため、空燃比演算処理部4bは、FTIR法で計測された炭素成分ガス濃度を補正しない。つまり、空燃比演算処理部4bは、FTIR法で計測された炭素成分ガス濃度をそのまま用いて、カーボンバランス法により空燃比を算出する(ステップS106)。そして、処理はステップS107に進む。   When the moisture concentration actual measurement value is within the predetermined range (step S102; Yes), the process proceeds to step S106. In this case, since it can be said that almost no condensation or re-vaporization of moisture occurs in the exhaust system, the air-fuel ratio calculation processing unit 4b does not correct the carbon component gas concentration measured by the FTIR method. That is, the air-fuel ratio calculation processing unit 4b calculates the air-fuel ratio by the carbon balance method using the carbon component gas concentration measured by the FTIR method as it is (step S106). Then, the process proceeds to step S107.

これに対して、水分濃度実測値が所定範囲外にある場合(ステップS102;No)、処理はステップS103に進む。この場合には、排気系で水分の結露・再気化が生じているものと考えられるため、空燃比演算処理部4bは、ステップS103以降の処理(ステップS103〜S105)で、FTIR法で計測された炭素成分ガス濃度を補正するための処理を行う。   On the other hand, when the moisture concentration measured value is outside the predetermined range (step S102; No), the process proceeds to step S103. In this case, since it is considered that moisture condensation and re-vaporization occur in the exhaust system, the air-fuel ratio calculation processing unit 4b is measured by the FTIR method in the processing after Step S103 (Steps S103 to S105). Processing for correcting the carbon component gas concentration is performed.

ステップS103では、空燃比演算処理部4bは、理論燃焼反応式より水分濃度理論値を算出する。具体的には、空燃比演算処理部4bは、燃料データ記憶部4cに記憶された燃料データ(C/H/O組成比若しくはEtOH含有率など)を用いて、上記の式(1)で示した理論燃焼反応式に基づいて、水分濃度理論値を算出する。そして、処理はステップS104に進む。   In step S103, the air-fuel ratio calculation processing unit 4b calculates a theoretical water concentration value from the theoretical combustion reaction equation. Specifically, the air-fuel ratio calculation processing unit 4b uses the fuel data (C / H / O composition ratio or EtOH content ratio) stored in the fuel data storage unit 4c, and is expressed by the above equation (1). Based on the theoretical combustion reaction equation, the theoretical value of water concentration is calculated. Then, the process proceeds to step S104.

ステップS104では、空燃比演算処理部4bは、ステップS101で取得された水分濃度実測値、及びステップS103で算出された水分濃度理論値に基づいて、排気系で結露・再気化した水分量を算出する。具体的には、空燃比演算処理部4bは、水分濃度実測値と水分濃度理論値との差分を求め、当該差分に対応する水分量を求める。そして、処理はステップS105に進む。   In step S104, the air-fuel ratio calculation processing unit 4b calculates the amount of moisture condensed / re-vaporized in the exhaust system based on the actual measured water concentration obtained in step S101 and the theoretical water concentration calculated in step S103. To do. Specifically, the air-fuel ratio calculation processing unit 4b obtains the difference between the actually measured water concentration value and the theoretical water concentration value, and obtains the moisture amount corresponding to the difference. Then, the process proceeds to step S105.

ステップS105では、空燃比演算処理部4bは、ステップS104で算出された水分量に基づいて、FTIR法で計測された炭素成分ガス濃度を補正する。具体的には、空燃比演算処理部4bは、排気系で結露・再気化した水分量に対応する濃度分だけ、当該炭素成分ガス濃度を高くしたり低くしたりする補正を行う。そして、処理はステップS106に進む。   In step S105, the air-fuel ratio calculation processing unit 4b corrects the carbon component gas concentration measured by the FTIR method based on the moisture amount calculated in step S104. Specifically, the air-fuel ratio calculation processing unit 4b performs correction to increase or decrease the carbon component gas concentration by a concentration corresponding to the amount of moisture condensed or re-vaporized in the exhaust system. Then, the process proceeds to step S106.

ステップS106では、空燃比演算処理部4bは、ステップS105で補正された炭素成分ガス濃度を用いて、カーボンバランス法により空燃比を算出する。そして、処理はステップS107に進む。   In step S106, the air-fuel ratio calculation processing unit 4b calculates the air-fuel ratio by the carbon balance method using the carbon component gas concentration corrected in step S105. Then, the process proceeds to step S107.

ステップS107では、空燃比演算処理部4bは、ステップS106で算出された空燃比のデータを表示部4dに出力して、これを表示部4dに表示させる処理を行う。そして、処理は終了する。   In step S107, the air-fuel ratio calculation processing unit 4b outputs the data of the air-fuel ratio calculated in step S106 to the display unit 4d and performs a process for displaying the data on the display unit 4d. Then, the process ends.

以上説明した空燃比算出処理によれば、排気系で結露・再気化した水分量を適切に考慮に入れて、排気ガスの空燃比を精度良く算出することができる。   According to the air-fuel ratio calculation process described above, it is possible to accurately calculate the air-fuel ratio of the exhaust gas by appropriately taking into consideration the amount of moisture condensed and re-vaporized in the exhaust system.

1 エンジン(内燃機関)
2 排気通路
3 排気ガス採取通路
4 排気ガス分析装置
4a 排気ガス成分濃度計測部
4b 空燃比演算処理部
4c 燃料データ記憶部
4d 表示部
5 排気ガス排出通路
1 engine (internal combustion engine)
2 Exhaust passage 3 Exhaust gas collection passage 4 Exhaust gas analyzer 4a Exhaust gas component concentration measurement unit 4b Air-fuel ratio calculation processing unit 4c Fuel data storage unit 4d Display unit 5 Exhaust gas discharge passage

Claims (1)

内燃機関から排出された排気ガスの分析を行う排気ガス分析装置であって、
フーリエ変換赤外分光法により前記排気ガスを分析することで、前記排気ガスにおける水分濃度を計測する水分濃度計測手段と、
前記内燃機関での燃焼を表した理論燃焼反応式に基づいて、前記排気ガスにおける水分濃度を算出する水分濃度算出手段と、
前記水分濃度計測手段によって計測された水分濃度、及び前記水分濃度算出手段によって算出された水分濃度に基づいて、前記内燃機関における排気系で結露した水分量、及び、前記排気系で結露した水分が再気化した水分量を算出する水分量算出手段と、
前記水分量算出手段によって算出された水分量に基づいて、前記フーリエ変換赤外分光法により計測された前記排気ガスにおける炭素成分のガス濃度を補正する炭素成分ガス濃度補正手段と、
前記炭素成分ガス濃度補正手段によって補正された前記炭素成分のガス濃度を用いて、カーボンバランス法により前記排気ガスの空燃比を算出する空燃比算出手段と、を備えることを特徴とする排気ガス分析装置。
An exhaust gas analyzer for analyzing exhaust gas discharged from an internal combustion engine,
A moisture concentration measuring means for measuring the moisture concentration in the exhaust gas by analyzing the exhaust gas by Fourier transform infrared spectroscopy;
A moisture concentration calculating means for calculating a moisture concentration in the exhaust gas based on a theoretical combustion reaction equation representing combustion in the internal combustion engine;
Based on the moisture concentration measured by the moisture concentration measuring means and the moisture concentration calculated by the moisture concentration calculating means, the amount of moisture condensed in the exhaust system in the internal combustion engine and the moisture condensed in the exhaust system are Water content calculating means for calculating the re-vaporized water content;
Carbon component gas concentration correcting means for correcting the gas concentration of the carbon component in the exhaust gas measured by the Fourier transform infrared spectroscopy based on the moisture amount calculated by the moisture amount calculating means;
An exhaust gas analysis comprising: an air-fuel ratio calculating means for calculating an air-fuel ratio of the exhaust gas by a carbon balance method using the gas concentration of the carbon component corrected by the carbon component gas concentration correcting means. apparatus.
JP2009070160A 2009-03-23 2009-03-23 Exhaust gas analyzer Expired - Fee Related JP5316143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070160A JP5316143B2 (en) 2009-03-23 2009-03-23 Exhaust gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070160A JP5316143B2 (en) 2009-03-23 2009-03-23 Exhaust gas analyzer

Publications (2)

Publication Number Publication Date
JP2010223702A true JP2010223702A (en) 2010-10-07
JP5316143B2 JP5316143B2 (en) 2013-10-16

Family

ID=43041056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070160A Expired - Fee Related JP5316143B2 (en) 2009-03-23 2009-03-23 Exhaust gas analyzer

Country Status (1)

Country Link
JP (1) JP5316143B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130488A (en) * 2011-12-22 2013-07-04 Horiba Ltd Sample gas analyzer and program for sample gas analyzer
JP2014174054A (en) * 2013-03-11 2014-09-22 Horiba Ltd Exhaust gas analyzer
JP2015105830A (en) * 2013-11-28 2015-06-08 株式会社堀場製作所 Exhaust gas measuring apparatus and exhaust gas measurement program
CN106770059A (en) * 2016-11-16 2017-05-31 浙江多普勒环保科技有限公司 A kind of motor-vehicle tail-gas remote sensing detection method based on burning equation correction algorithm
US10132225B2 (en) 2013-08-12 2018-11-20 Horiba, Ltd. Fuel consumption calculation unit, fuel consumption measuring apparatus, and exhaust gas measuring apparatus
JP2020046100A (en) * 2018-09-18 2020-03-26 株式会社デンソーウェーブ Method and device of estimating moisture content
WO2022071066A1 (en) * 2020-10-02 2022-04-07 株式会社堀場製作所 Exhaust gas analysis device, exhaust gas analysis method, and program storage medium for exhaust gas analysis device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219746A (en) * 1988-05-17 1990-01-23 Avl Ges Verbrennungskraftmas & Messtech Mbh Method of measuring lamda coefficient or air/fuel ratio and both and apparatus for implementing the same
JPH05296923A (en) * 1992-04-18 1993-11-12 Horiba Ltd Multicomponent analyzing method for spectrochemical analysis
JPH07103895A (en) * 1993-09-30 1995-04-21 Mazda Motor Corp Concentration detector for exhaust gas component
JPH08128948A (en) * 1994-10-31 1996-05-21 Horiba Ltd Multicomponent simultaneous continuous analytical method
JP2000346801A (en) * 1999-06-04 2000-12-15 Horiba Ltd Multi-component gas analysis with ftir method
JP2001099781A (en) * 1999-09-29 2001-04-13 Horiba Ltd Method for correcting effect of co-existing gas in gas analysis by infrared absorption method
JP2006275801A (en) * 2005-03-29 2006-10-12 Horiba Ltd Component analyzer of exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219746A (en) * 1988-05-17 1990-01-23 Avl Ges Verbrennungskraftmas & Messtech Mbh Method of measuring lamda coefficient or air/fuel ratio and both and apparatus for implementing the same
JPH05296923A (en) * 1992-04-18 1993-11-12 Horiba Ltd Multicomponent analyzing method for spectrochemical analysis
JPH07103895A (en) * 1993-09-30 1995-04-21 Mazda Motor Corp Concentration detector for exhaust gas component
JPH08128948A (en) * 1994-10-31 1996-05-21 Horiba Ltd Multicomponent simultaneous continuous analytical method
JP2000346801A (en) * 1999-06-04 2000-12-15 Horiba Ltd Multi-component gas analysis with ftir method
JP2001099781A (en) * 1999-09-29 2001-04-13 Horiba Ltd Method for correcting effect of co-existing gas in gas analysis by infrared absorption method
JP2006275801A (en) * 2005-03-29 2006-10-12 Horiba Ltd Component analyzer of exhaust gas

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130488A (en) * 2011-12-22 2013-07-04 Horiba Ltd Sample gas analyzer and program for sample gas analyzer
JP2014174054A (en) * 2013-03-11 2014-09-22 Horiba Ltd Exhaust gas analyzer
US9568396B2 (en) 2013-03-11 2017-02-14 Horiba, Ltd. Exhaust gas analyzing apparatus
US10132225B2 (en) 2013-08-12 2018-11-20 Horiba, Ltd. Fuel consumption calculation unit, fuel consumption measuring apparatus, and exhaust gas measuring apparatus
JP2015105830A (en) * 2013-11-28 2015-06-08 株式会社堀場製作所 Exhaust gas measuring apparatus and exhaust gas measurement program
CN106770059A (en) * 2016-11-16 2017-05-31 浙江多普勒环保科技有限公司 A kind of motor-vehicle tail-gas remote sensing detection method based on burning equation correction algorithm
CN106770059B (en) * 2016-11-16 2019-06-04 浙江多普勒环保科技有限公司 A kind of motor-vehicle tail-gas remote sensing detection method based on burning equation correction algorithm
JP2020046100A (en) * 2018-09-18 2020-03-26 株式会社デンソーウェーブ Method and device of estimating moisture content
JP7024675B2 (en) 2018-09-18 2022-02-24 株式会社デンソーウェーブ Moisture content estimation method, estimation device
WO2022071066A1 (en) * 2020-10-02 2022-04-07 株式会社堀場製作所 Exhaust gas analysis device, exhaust gas analysis method, and program storage medium for exhaust gas analysis device

Also Published As

Publication number Publication date
JP5316143B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5316143B2 (en) Exhaust gas analyzer
d’Ambrosio et al. Calculation of mass emissions, oxygen mass fraction and thermal capacity of the inducted charge in SI and diesel engines from exhaust and intake gas analysis
WO2017013897A1 (en) Methane number calculation method and methane number measurement device
US11448588B2 (en) Analyzer, analysis method, analyzer program, and analysis learning device
RU2009122509A (en) METHOD FOR DETERMINING THE TEMPERATURE OF THE MEASURING SENSOR
JP2007163164A (en) Engine measuring device
US8852950B2 (en) Method and device for measuring NOx concentration using measurements of NOx and a second gas component
RU2456549C2 (en) Apparatus for measuring parameters of fluid medium and method of measuring parameters of fluid medium
US9448211B2 (en) Analysis of exhaust gas
US20140047899A1 (en) Device for determining a composition of fuel in a combustion chamber of a power station
JP6967387B2 (en) Gas analyzers, programs for gas analyzers, and gas analysis methods
CN103175786B (en) Sample gas analytical equipment and sample gas analytical equipment method
Wei et al. The on-board PM mass calibration for the real-time PM mass measurement
Müller General air fuel ratio and EGR definitions and their calculation from emissions
JP6035628B2 (en) Gas sensor
JP5424636B2 (en) Gas analyzer using FTIR method and program used therefor
US20100178706A1 (en) Method for monitoring concentration of water borne substance in an aqueous medium
US8177957B2 (en) Multiple frequency method for operating electrochemical sensors
JP2010139281A (en) Instrument for measuring exhaust gas
JP5767158B2 (en) Gas sensor evaluation method and gas sensor evaluation apparatus
US11698338B2 (en) Exhaust gas analyzer, and exhaust gas analysis method
JP6888089B2 (en) Gas analyzer, program for gas analyzer, and gas analysis method
JP5844556B2 (en) Method for correcting output of heat conduction type gas sensor and gas detector
US20110287372A1 (en) Method and Device for Monitoring the Combustion Process in a Power Station on the Basis of an Actual Concentration Distribution of a Material
JP5060378B2 (en) Gas analysis method and gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R151 Written notification of patent or utility model registration

Ref document number: 5316143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees