JPS6345529A - Measuring method for transparency of optical fiber - Google Patents

Measuring method for transparency of optical fiber

Info

Publication number
JPS6345529A
JPS6345529A JP18859286A JP18859286A JPS6345529A JP S6345529 A JPS6345529 A JP S6345529A JP 18859286 A JP18859286 A JP 18859286A JP 18859286 A JP18859286 A JP 18859286A JP S6345529 A JPS6345529 A JP S6345529A
Authority
JP
Japan
Prior art keywords
optical fiber
light
emitted light
measured
photodetecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18859286A
Other languages
Japanese (ja)
Inventor
Shinichi Kitazawa
北沢 進一
Tadashi Namiki
並木 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP18859286A priority Critical patent/JPS6345529A/en
Publication of JPS6345529A publication Critical patent/JPS6345529A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To eliminate the influence of a flaw and a thickness irregularity at a measurement position of an optical fiber and whether or not there is sticking matter by detecting the quantity of emitted light at the same position of the optical fiber by two photodetecting elements provided at distant positions. CONSTITUTION:When the running optical fiber 1 reaches the arrangement position of a light irradiating device 2, light from the light irradiating device 2 is guided in the optical fiber 1. The optical fiber where the light is guided in runs as it is and the quantity of emitted light is measured by a 1st photodetecting element 3 at a place where the optical fiber reaches the installation position of the 1st photodetecting element 3. The optical fiber continuous to run and the quantity of emitted light at the same position as the detection position of the 1st photodetecting element is measured by a 2nd photodetecting element 4 at a place where the fiber reaches the installation position B' of the 2nd photodetecting element 4. Then, optical transmission loss is measured from the intensity ratio of the emitted light beams from the photodetecting elements 3 and 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバー、特に有機重合体からなる光フ
ァイバー(以下、有機光学繊維という)の透光性、すな
わち光伝送損失測定法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the light transmittance, ie, optical transmission loss, of an optical fiber, particularly an optical fiber made of an organic polymer (hereinafter referred to as an organic optical fiber).

(従来の技術) 光ファイバーの非破壊連続測定法、すなわち光ファイバ
ーの側面を光で照射して光ファイバー中に光を入光させ
、該光照射位置から離れた2ケ所の位置で該光ファイバ
ーから放射される光を検出し、これら2つの検出光の強
さの比から該光ファイバーの透光性を測定する方法とし
て、特公昭59−18647号公報に開示されている方
法があるが、この測定法は光ファイバーから放射される
光を検出部位の異なる2ケ所で同時に検出することを要
件としている。
(Prior art) Non-destructive continuous measurement method of optical fiber, that is, the side of the optical fiber is irradiated with light, the light enters the optical fiber, and the light is emitted from the optical fiber at two positions apart from the irradiation position. As a method of detecting light and measuring the light transmittance of the optical fiber from the ratio of the intensities of these two detected lights, there is a method disclosed in Japanese Patent Publication No. 59-18647. The requirement is that the light emitted from the sensor be detected simultaneously at two different detection sites.

しかるに、光ファイバーの測定部位が異なると、該測定
部位の傷、クラッドの剥離、太ざムラおよび付着物の有
無によって、光ファイバーからの放射光量を正確に検出
できなくなり、結果として光ファイバーの透光性を高精
度で測定することができないことがある。
However, if the measuring site of the optical fiber is different, the amount of light emitted from the optical fiber cannot be accurately detected due to the presence or absence of scratches, peeling of the cladding, uneven thickness, and deposits at the measuring site, and as a result, the light transmittance of the optical fiber may be affected. It may not be possible to measure with high precision.

そして光ファイバーの表面は、製造プロセス、条件とし
て、その長さ方向における汚れや傷の発生を防止し、で
きる限り同一の表面状態が保たれるように管理されるけ
れども、このような表面の同一性を完全に管理すること
は生産性を無視することなくしては困難である。
The surface of optical fibers is controlled in the manufacturing process and conditions to prevent dirt and scratches along their length, and to maintain the same surface condition as much as possible. is difficult to fully manage without neglecting productivity.

(発明の解決しようとする問題点) 本発明の目的は、上記光ファイバーの測定部位の傷、ク
ラッドの剥離、太ざムラおよび付着物の有無によって測
定精度に影響を受けることの少ない光ファイバーの透光
性測定法を提供するものである。
(Problems to be Solved by the Invention) An object of the present invention is to transmit light through an optical fiber whose measurement accuracy is less affected by the presence or absence of scratches, peeling of the cladding, uneven thickness, and deposits at the measurement site of the optical fiber. It provides a method for measuring gender.

(問題点を解決するための手段) このような本発明の目的は、特許請求の範囲に記載した
発明、すなわち 光ファイバーの走行方向に沿って、光照射装置および2
つの光検出素子を順次適宜間隔を置いて配置し、走行す
る光ファイバーの側面に該光照射装置から光を照射して
光ファイバーの中に光を入光させ、該光ファイバー内を
進行してゆく光の放射光をまず該第1の光検出素子によ
って検出した後、次いで該第1の光検出素子によって検
出した部位と同一部位における該光ファイバーの放射光
の強さを第2の光検出素子によって検出し、これら2つ
の光検出素子によって検出された光の強さを対比するこ
とによって達成することができる。
(Means for Solving the Problems) The object of the present invention is to provide a light irradiation device and two optical fibers along the running direction of the optical fiber.
The light detecting elements are sequentially arranged at appropriate intervals, and the light irradiation device irradiates the side of the running optical fiber so that the light enters the optical fiber. After the emitted light is first detected by the first photodetecting element, the intensity of the emitted light of the optical fiber at the same site as that detected by the first photodetecting element is then detected by a second photodetecting element. , can be achieved by comparing the intensities of the light detected by these two photodetecting elements.

以下、本発明を図面に基づいて、詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は、本発明の光学繊維の透光性測定法の1!!!
様を示す側面図および第2図は光検出素子の1態様を示
すモデル図であり、図において、1は矢印aの方向に走
行する光学繊維、2は光照射装置、3は第1の光検出素
子、4は第2の光検出素子、5は球殻、6はフォトマル
チプライヤ−17は細孔を示す。
FIG. 1 shows 1 of the optical fiber translucency measurement method of the present invention! ! !
2 is a model diagram showing one aspect of the photodetecting element. In the figure, 1 is an optical fiber running in the direction of arrow a, 2 is a light irradiation device, and 3 is a first light source. Detection elements: 4 is a second photodetection element; 5 is a spherical shell; 6 is a photomultiplier; 17 is a pore.

図に示すように、光学繊維1の走行方向に沿って、光照
射装置2、第1の光検出素子3、第2の光検出素子4が
順次適宜間隔を置いて設置されるが、走行する光学繊維
1が光照射装置2の配置位置に達すると、ここで照射装
置2からの光が光学繊ii内に導入される。そして光が
導入された光学繊維1は、そのまま走行しながら第1の
光検出素子3の設置位置Bに到達したところで第1の光
検出素子3によりその放射光量を測定され、ざらに走行
を続けて第2の光検出素子4の設置位置B′に到達した
ところで第2の光検出素子4によりその放射光量が測定
される。本発明の特徴は、これら第1の光検出素子3お
よび第2の光検出素子4によって検出測定される光学繊
維の測定位置BおよびB′は同一部位であることにある
As shown in the figure, a light irradiation device 2, a first photodetection element 3, and a second photodetection element 4 are installed at appropriate intervals along the running direction of the optical fiber 1. When the optical fiber 1 reaches the position where the light irradiation device 2 is placed, the light from the irradiation device 2 is introduced into the optical fiber ii. The optical fiber 1 into which the light has been introduced continues to run as it is, and when it reaches the installation position B of the first light detection element 3, the amount of emitted light is measured by the first light detection element 3, and it continues to run roughly. When the second photodetector element 4 reaches the installation position B', the amount of emitted light is measured by the second photodetector element 4. A feature of the present invention is that the measurement positions B and B' of the optical fiber detected and measured by the first photodetection element 3 and the second photodetection element 4 are the same location.

このようにして光ファイバーの同一部位について測定さ
れる第1の検出素子3および第2の検出素子4の放射光
の強ざ11、I2を測定することになる。11、I2を
測定する際、第1の検出素子3と第2の検出素子4との
間の距離をL (m>とすれば、光伝送損失で(dB/
m)はτ=(10・I ogll /12 )/Lで与
えられる。この値は光ファイバの透光性を表す。
In this way, the intensities 11 and I2 of the emitted light from the first detection element 3 and the second detection element 4 are measured at the same portion of the optical fiber. 11. When measuring I2, if the distance between the first detection element 3 and the second detection element 4 is L (m>), then the optical transmission loss is (dB/
m) is given by τ=(10·Iogll/12)/L. This value represents the translucency of the optical fiber.

すなわち本発明の測定方法において、被測定試料である
走行する光ファイバーにおいて、第1の光検出素子の放
射光検出部位は、同時に第2の光検出素子の放射光検出
部位(周一部位)であるから、これら2つの検出素子に
よって検出される放射光は光ファイバーの測定部位(表
面)の傷、汚れなどの有無乃至程度の相違に全く依存し
ない。
That is, in the measurement method of the present invention, in the traveling optical fiber that is the sample to be measured, the emitted light detection site of the first photodetecting element is simultaneously the emitted light detecting site (peripheral site) of the second photodetecting element. The emitted light detected by these two detection elements does not depend on the existence or degree of scratches, dirt, etc. on the measurement site (surface) of the optical fiber.

すなわち、光ファイバーの非破壊連続測定法においては
、測定対象の光ファイバーは連続的に走行しており、事
前に該光ファイバーの傷、汚れなどをチエツクすること
は困難であり、特に光ファイバーの製造工程に該非破壊
連続測定法を組込む、すなわちオンラインで適用する場
合に簡便、かつ精度を上げて測定することができるので
極めて有用である。
In other words, in the non-destructive continuous measurement method for optical fibers, the optical fiber to be measured runs continuously, and it is difficult to check the optical fiber for scratches, dirt, etc. in advance, and especially during the manufacturing process of the optical fiber. It is extremely useful when incorporating a destructive continuous measurement method, that is, when applied online, because it allows measurements to be made easily and with increased accuracy.

本発明は上記したように、光ファイバの同一部位におけ
る放射光量をそれぞれ離れた位置に設けた2つの光検出
素子によって検出し、それらの値を対比するものであり
、従来性なわれていた光ファイバーの透光性測定の連続
測定法のように、光ファイバーの異なった部位からの放
射光量を検出し、対比するものではないから、光ファイ
バー表面の傷、汚れやクラッドの剥Mなどの有無または
それらの程度の相違による放射光量の変動および影響を
殆ど最小にすることが可能であり、結果として測定誤差
を極めて小さくできるという効果がある。これに対して
従来の測定方法の如く光ファイバーの異なる部位の2つ
の位置で放射光量を測定した場合には、傷や汚れの程度
が著しく相違する2つの部位における光ファイバーの放
射光量を測定することになり、該光ファイバーの表面状
態の相違の程度によってはτの値が負になることさえ経
験されるが、本発明の測定法を採用するときは、このよ
うな問題は解消される。
As described above, the present invention detects the amount of emitted light at the same part of an optical fiber using two photodetecting elements installed at separate positions, and compares the values. Unlike the continuous measurement method of translucency measurement, it does not detect and compare the amount of light emitted from different parts of the optical fiber, so it is difficult to detect scratches, dirt, peeling of the cladding, etc. on the surface of the optical fiber. It is possible to almost minimize the variation and influence of the amount of emitted light due to differences in degree, and as a result, there is an effect that measurement errors can be made extremely small. On the other hand, when the amount of emitted light is measured at two different locations on an optical fiber as in the conventional measurement method, the amount of emitted light from the optical fiber is measured at two locations that have significantly different degrees of scratches or dirt. Therefore, depending on the degree of difference in the surface condition of the optical fiber, it is even experienced that the value of τ becomes negative, but when the measuring method of the present invention is adopted, such problems are solved.

なお、上記本発明の測定法において、照射装置に用いる
光源としては通常のハロゲンランプ光をレンズ系で集光
して用いることが出来る。
In the measurement method of the present invention described above, as the light source used in the irradiation device, ordinary halogen lamp light can be used by condensing it with a lens system.

第2図は放射光量検出素子の一例を示すモデル図でおる
FIG. 2 is a model diagram showing an example of a radiation amount detection element.

第2図に示した検出素子は光ファイバー1の通過する細
孔7,7′を備えた球殻5の中にフォトマルチプライヤ
6を配した構造のものである。
The detection element shown in FIG. 2 has a structure in which a photomultiplier 6 is disposed within a spherical shell 5 having pores 7, 7' through which the optical fiber 1 passes.

なあ、本発明の実施においては、光ファイバを走行せし
め光照射装置2、検出素子3.4の位置をそれぞれ固定
し、光ファイバのある部位が検出素子3を通過した時の
放射光ff111を測定し、この部位が光ファイバの走
行に伴って検出素子4を通過するに至った時点の放射光
ff112を測定するのが、測定操作および装置設計の
上で容易であり、望ましいことである。
In carrying out the present invention, the optical fiber is run, the positions of the light irradiation device 2 and the detection element 3.4 are fixed, and the emitted light ff111 is measured when a certain part of the optical fiber passes through the detection element 3. However, it is desirable to measure the emitted light ff112 at the time when this portion passes through the detection element 4 as the optical fiber runs, because it is easy in terms of measurement operation and device design.

このような同一部位を測定する手段の1態様を挙げれば
、走行する光ファイバーの走行速度と検出素子による検
出位置との関係をコンピータ−などを用いて同調させる
ことにより、同一部位を再現性よく、測定することが可
能である。
One example of such means for measuring the same area is to synchronize the relationship between the traveling speed of the optical fiber and the position detected by the detection element using a computer or the like, so that the same area can be measured with good reproducibility. It is possible to measure.

(発明の効果) 上記した如く、本発明になる光ファイバーの透光性測定
法は光ファイバーの本質的な透光性の相違ではない、光
ファイバーの汚れ、傷、クラッド層の剥離など、その表
面状態の相違に起因する透光性の測定誤差を解消した、
高精度の非破壊連続的透光性測定法を与えるものである
。したがって製品における測定精度の向上のみならず、
光ファイバーの製造工程においてオンラインで透光性を
測定する場合に特に優れている。
(Effects of the Invention) As described above, the optical fiber translucency measuring method according to the present invention does not measure the essential difference in transmissivity of optical fibers, but rather the surface condition of the optical fiber, such as stains, scratches, and peeling of the cladding layer. Eliminates measurement errors in translucency caused by differences.
This provides a highly accurate non-destructive continuous translucency measurement method. Therefore, in addition to improving measurement accuracy in products,
It is particularly suitable for measuring translucency online during the manufacturing process of optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測定方法を説明する概略図である。 第2図は放射光量検出素子の一例を示すモデル図である
。 1:被測定光ファイバ  2:光照射装置3.4:光検
出素子   5:球殻 6:フォトマルチプライヤ− 7:細孔
FIG. 1 is a schematic diagram illustrating the measuring method of the present invention. FIG. 2 is a model diagram showing an example of a radiation amount detection element. 1: Optical fiber to be measured 2: Light irradiation device 3.4: Photodetection element 5: Spherical shell 6: Photomultiplier 7: Pore

Claims (1)

【特許請求の範囲】[Claims] (1)光ファイバーの走行方向に沿つて、光照射装置お
よび2つの光検出素子を順次適宜間隔を置いて配置し、
走行する光ファイバーの側面に該光照射装置から光を照
射して光ファイバーの中に光を入光させ、該光ファイバ
ー内を進行してゆく光の放射光をまず該第1の光検出素
子によって検出した後、次いで該第1の光検出素子の光
検出部位と同一部位から放射される光の強さを第2の光
検出素子によって検出し、これら2つの光検出素子によ
って検出された光の強さを対比することを特徴とする光
ファイバーの透光性測定方法。
(1) A light irradiation device and two light detection elements are sequentially arranged at appropriate intervals along the running direction of the optical fiber,
Light was irradiated from the light irradiation device onto the side surface of the traveling optical fiber to enter the optical fiber, and the emitted light traveling through the optical fiber was first detected by the first light detection element. After that, the intensity of the light emitted from the same part as the photodetection part of the first photodetection element is detected by the second photodetection element, and the intensity of the light detected by these two photodetection elements is detected. A method for measuring the translucency of an optical fiber, which is characterized by comparing.
JP18859286A 1986-08-13 1986-08-13 Measuring method for transparency of optical fiber Pending JPS6345529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18859286A JPS6345529A (en) 1986-08-13 1986-08-13 Measuring method for transparency of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18859286A JPS6345529A (en) 1986-08-13 1986-08-13 Measuring method for transparency of optical fiber

Publications (1)

Publication Number Publication Date
JPS6345529A true JPS6345529A (en) 1988-02-26

Family

ID=16226357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18859286A Pending JPS6345529A (en) 1986-08-13 1986-08-13 Measuring method for transparency of optical fiber

Country Status (1)

Country Link
JP (1) JPS6345529A (en)

Similar Documents

Publication Publication Date Title
JPH03267745A (en) Surface property detecting method
US7012698B2 (en) Method and arrangement for contactless determination of geometric and optical characteristics
KR100876257B1 (en) Optical measuring method and device therefor
US3834822A (en) Method and apparatus for surface defect detection using detection of non-symmetrical patterns of non-specularly reflected light
JPS6345529A (en) Measuring method for transparency of optical fiber
JPH0228541A (en) Optical concentration detector
JPS6186621A (en) Method and apparatus for simultaneously measuring emissivity and temperature
JP3384927B2 (en) Transparent long body defect detection device
JPH11248637A (en) Defect detecting device
JPH0755720A (en) Defect inspecting apparatus for transparent and opaque films
KR100226904B1 (en) Detecting apparatus and method of surface fault of steel plate using laser
JPH0252241A (en) Surface defect inspection instrument
JP2779316B2 (en) Inspection method for uneven thickness of colored layer of colored optical fiber
JPH0426845A (en) Foreign matter inspecting method
JPS6352004A (en) Measuring instrument
JP3160103B2 (en) Optical glass thickness measurement method
RU2035721C1 (en) Method of checking transparency of flat light-translucent materials
JPH1164231A (en) Method and apparatus for detecting bubble streak of glass tube
JP2864762B2 (en) Probe placement method for ultrasonic flaw detector
JPH07103722A (en) Method for measuring thickness of composite sheet
JPH0431753A (en) Foreign-matter inspecting apparatus
JPS6348433A (en) Measuring method for light transmission loss of optical fiber
JPS61207951A (en) Defect inspecting device for transparent object
JPH044207Y2 (en)
JPS6310778B2 (en)